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Abstract—Queueing systems are used to estimate the attributes
of waiting lines, for example the number of people in line or the
waiting time. This information helps to reduce the time spent
waiting by balancing people amongst multiple lines or aids in
the decision making about opening a new line. However, current
queueing systems are often mounted at fixed positions, require
user participation, or need time consuming manual calibration
after each layout change. In this work, we introduce CutiQueue,
a flexible and portable queueing system that is battery powered,
needs no manual calibration or user participation. CutiQueue is
based on passive presence detection using the RSSI of low cost
Bluetooth Low Energy transceivers. We analyze the performance
of the system in experiments using a prototype implementation
to estimate the number of people waiting as well as the length
of the line. The experimental evaluation indicates an average
accuracy of 97.96% when compared to counting people walking
or standing in the waiting line using a laser barrier.

I. INTRODUCTION

Waiting lines are part of daily life. Examples include coffee
shops, supermarkets, airports, or entertainment facilities such
as amusement parks or music festivals. A waiting line has a
service point at which the desired resources, e.g. plane tickets
or a cup of coffee, are distributed, and a waiting area for
people to spend their time until the staff at the service point
can serve the next customer. In facilities dealing with hundreds
of people every day, waiting areas are typically indicated by a
set of portable barrier poles that are connected by retractable
belts. This way, the layout of the waiting line can easily be
changed by moving the barrier poles to different positions. For
example, at an airport, adjusting the layout can be necessary
to guide passengers to a different check-in counter, or at an
amusement park, to a newly opened ticket booth. Knowing
the performance attributes of the waiting line, like the number
of people in the line, can help making decisions about when
to open secondary service points to reduce the overall waiting
time.

However, current queueing systems to track the number of
people in the line are often installed at fixed positions and
cannot be moved at all or need time-consuming manual recal-
ibration after each layout change. This reduces the queueing
systems capabilities to record performance attributes and thus
negatively affects the waiting time.

The goal of this work is the creation of a portable queueing
system, capable of counting the people in line, that is easy
to deploy, has a high detection accuracy and has no need for
manual calibration. Recent work in the field of RSSI-based
passive detection has shown that battery powered radio nodes
can be used to accurately detect human presence in the radio
link between the nodes [1], [2].

In order to achieve this goal, we equip wooden barrier
poles with affordable radio transceivers and create a proto-
type queueing system called Communication Utility Queue
(CutiQueue). As communication technology we use Bluetooth
Low Energy (BLE) because of its stable Received Signal
Strength Indicator (RSSI), to achieve a high detection accuracy
as shown in our previous work [3].

The contributions of the paper are the development and
implementation of the necessary communication infrastructure
between the nodes of the queueing system based on the BLE
protocol and the creation of the CutiQueue algorithm that
counts the persons passing and waiting in the line. Further-
more, we adapt our previous work on presence detection with
BLE [3] for this application scenario and evaluate the queueing
system in a set of experiments.

This paper is structured as follows: Section II provides a
brief overview of the related work in the fields of queueing
systems and RSSI-based passive presence detection. In Sec-
tion III we present the BLE based detection algorithm, the
communication infrastructure, and the CutiQueue algorithm.
We evaluate our approach in Section IV. Section V concludes
the paper.

II. RELATED WORK

This section gives an overview on existing work in the areas
of queueing systems and RSSI-based detection algorithms for
human presence.

Queueing Systems are used to analyze the properties of
waiting lines. Current queueing systems can be classified into
participatory systems, in which the user is actively providing
information to the system, and autonomous systems, which
gather the information independently. Examples for participa-
tory systems are [4] and [5], in which users carry hand-held



devices, i.e. smartphones, to interact with the queueing system.
The information needed to estimate the waiting lies properties
can either be extracted from the smartphones wireless capa-
bilities [4], [6], [7], or from one of the smartphone sensors,
e.g. the accelerometer [5].

In [4] a special, traffic generating app is installed on
the devices. Messages send from the app are received and
evaluated by a single signal monitor at the service point of the
waiting line. Depending on the strength of the received WIFI
signals, the system estimates whether a person is waiting in
line, approaching the service point or leaving the line. The
higher the signal strength the closer the person is assumed to
be to the service point. The number of connections can be
used as an indicator of the number of people in the line.

As alternative to use the RSSI from the WIFI signals the
accelerometer data of a smartphone is used in [5]. The data
of devices in the waiting line is collected by an app and
transmitted to a central server for analysis. There it is classified
into tranquil periods of waiting and periods of moving forward
in the line, i.e. “shuffling forward”.

Both techniques utilize smartphones to transmit the gathered
data to the queueing system. However, while smartphones
are largely common in urban areas, with coverage values
nearing 100% [6], it still is difficult to provide the necessary
incentive for users to participate [8] in such a system. The
lack of interest, issues regarding privacy or simply the missing
knowledge about the existence of the system can prevent users
from participating, negatively influencing the accuracy.

Autonomous queueing systems do not require users to carry
devices but instead utilize previously installed infrastructure.
Common types of those systems are camera or beam-type
systems, e.g. laser-beam, light-beam or infra-red. Camera
based systems use computer vision-based algorithms on the
visual input of the cameras to estimate the number of persons
in an area. However, cameras are often installed at fixed
positions with a limited field of view and are not flexible to
changes in the layout of a waiting line. Additionally, constant
video monitoring raises privacy issues, since every user can
be identified.

Beam-type systems detect people entering or leaving the
system by counting the interruptions of a laser- or light-beam
received by a light sensor. When a user interrupts the beam
the change in the luminance is registered and the estimated
number of persons in the waiting line is increased. However,
beam-type systems relay on the accurate calibration of the
laser-beam aiming at the light sensor. A layout change in a
beam-type system requires time-consuming calibration every
time the system is altered. This reduces the flexibility of
the system. Another issue beam-type systems share is their
sensitivity to sunlight. Sunlight directly hitting the light sensor
can increase the received luminance to a level on which
passing persons are not recognized anymore, causing the
system to miss detection events.

RSSI-based queueing systems on the other hand do not
share these issues. They are not influenced by visible light,
people cannot be identified, and the radio waves are transmit-

ted omnidirectional, which removes the need for calibration
after a layout change. For example, in [9] an autonomous
queueing system used to estimate road occupancy and traffic
queue lengths is introduced.

By studying the fluctuations of the RSSI of a radio link, it
is also possible to passively detect the presence of a person.
Algorithms for passive presence detection can coarsely be
classified into mean RSSI-based and RSSI variance-based
techniques [10]. An early work using the mean RSSI-based
technique is [11], in which the influence of the human body
on a radio link is analyzed. If the currently measured RSSI
is one standard deviation below the mean RSSI, a detection
event on the radio link will be assumed. Building on this in
[2] and [12] a grid of sensor nodes is used to detect a person
moving in a room. The concept, introduced in [12], of Radio
Tomographic Imaging (RTI) is then used to track and visualize
the movement of the person. In [1] and [13] these results are
extended by using a variance-based algorithm to cope with
fluctuations in the RSSI caused by long term changes in the
environment.

The challenges of passive presence detection on BLE radio
links are addressed in our previous work by extending a mean
RSSI-based and a RSSI variance-based algorithm to cope with
different BLE channels [3]. In this paper we further explore
this by creating a hybrid algorithm using both techniques
simultaneously. We then use the results of the hybrid algorithm
as input for the CutiQueue algorithm to count people in a
waiting line scenario.

Thus, the approach in this work uses the advantages of
flexible, omnidirectional passive RSSI-based detection to cre-
ate an autonomous queueing system that does not need user
participation, is easy to deploy and is not limited to fixed
sensor positions.

III. APPROACH

This section describes the techniques used to create the
CutiQueue prototype queueing system. It is split in three parts.
The first part addresses detecting people using the RSSI-based
hybrid passive presence detection algorithm and the advan-
tages and challenges in using BLE. The second part focuses
on the communication infrastructure for the transmission of the
detection results and implementation details of the prototype
queueing system, while the third part explains the CutiQueue
algorithm for counting people in the waiting line.

A. BLE Based Detection

In order to create the prototype queueing system we estab-
lish multiple radio links between radio transceivers on opposite
sides of the waiting area. Messages are constantly being
sent between the transceivers generating RSSI samples to be
analyzed by the detection algorithm. The space between the
transceivers is hereby called the monitored area. Traditionally,
protocols based on the 802.15.4 standard or WLAN are used to
establish these links [11]. However, along with the increasing
popularity of smartphones in recent years new standards for
wireless communication, have been introduced, like BLE [14].



TABLE I
STATES OF THE RSSI-BASED DETECTION ALGORITHM

State Description
0 No detection - empty link
1 Detection - person in link
2 No detection with reduced credibility
3 Detection with reduced credibility
4 Error
5 Calibration

The BLE protocol is designed with the goal of supporting
short range data transmission at low energy cost. This design
is especially aimed at small, battery powered devices such as
radio beacons which are periodically broadcasting messages.
The network connection is established between a central
device, like a smartphone, and a peripheral, like a wearable or
a beacon.

BLE uses 40 channels separated by 2MHz in the spectrum
between 2402 MHz and 2480 MHz. Three of the channels are
advertising channel used to broadcast advertisement messages
for establishing a BLE connection, the others are used for
data transmission. In addition to their intended purpose the
advertising channels can also be used to create radio links
supporting passive presence detection. The advantages of BLE
compared to WIFI include a very stable RSSI on the radio
links, which can be used to improve the detection accuracy
for presence detection algorithms [3].

The two algorithms introduced in our previous work [3]
are used as foundation for the prototype queueing system
and work with RSSI samples of a single radio link. Both
algorithms have been tested with transceivers at different
positions and distances between 0.5m and 4m to ensure high
detection accuracy in a flexible set-up. The first algorithm
is using RSSI variance-based detection. The RSSI variance
is computed from a sliding window containing the newest
RSSI samples. If the RSSI variance is above a calibrated
threshold, a detection event will be triggered. Since variance
in the RSSI can be caused by the movement of a person, the
variance-based algorithm is well suited to detect a walking
person in the monitored area with an average accuracy of 99%.
However, the algorithm fails to robustly detect people standing
motionless, not causing any variance in the RSSI. The second
algorithm is using mean RSSI-based detection. The mean RSSI
is computed as a weighted sum of all previous RSSI samples.
If the mean RSSI is below a threshold based on the attenuation
of a radio link caused by a person, a detection event will be
triggered as well, with an detection accuracy of at least 92%.
Its benefits lie in robustly detecting standing people and in a
faster response time compared to the variance-based algorithm.
The output of each algorithm is the current detection state on
a link. An overview of the different states can be found in
Table I.

The states differentiate between “detection” or “no detec-
tion” and the credibility of the estimation. The credibility is
based on the quality of the link. If the quality is below a weak
link threshold (WLT) introduced in [3], the credibility of the

1: detectionState = meanAlgorithmResult
2: if (detectionState = 0) ∨ (detectionState = 2) then
3: if (RSSI < WLT )∧ (varAlgorithmResult = 1)∧

(previousV arAlgorithmResult = 0) then
4: detectionState = 3
5: end if
6: end if
7: return detectionState

Fig. 1. RSSI-based hybrid detection algorithm.

detection will be reduced.
In this work, the mean RSSI-based detection algorithm

serves as foundation for the hybrid detection algorithm. This
algorithm achieves good results when analyzing the attenua-
tion of a radio link, but neglects the influences of variation
in the RSSI. To aid the mean RSSI-based algorithm in those
cases, the RSSI variance-based algorithm is used. Since the
variance of a radio link is influenced by human movement, this
factor is added to the event detection. The decision mechanism
behind the hybrid algorithm can be seen in Figure 1.

If the previous result of the mean RSSI-based algorithm
is state 0 or state 2 (no detection), but the observed link is
below the WLT, a detection event with reduced credibility
can be triggered. However, this will only be the case if the
variance-based algorithms result is state 1 (detection) and it is
a newly detected event, which means, the previous result of the
variance-based algorithm was state 0. This way the accuracy of
the purely mean RSSI-based algorithm is increased, while the
benefit of accurately detecting standing people is maintained.

B. Data Transfer

In BLE data transmission is handled by the Generic Ac-
cess Profile (GAP). GAP is establishing connections using
advertisement messages followed by a handshake procedure.
Afterwards, data messages can be send on the data channels.
However, RSSI-based passive presence detection can be imple-
mented using the RSSI of any periodically send message, e.g.
the advertising message, eliminating the need of an actual BLE
connection. Keeping this in mind, the CutiQueue queueing
system consists of three different applications installed on BLE
transceivers and a fourth application installed on a PC. The
transceivers are either configured to act as beacon, as node
running the detection algorithm, or as data sink. To further
reduce the data transmission time for the connection between
node and sink a connectionless approach is used here as well.
An example of the queueing systems structure in a deployment
with four links can be seen in Figure 2.

1) Beacon: The beacon application periodically broadcasts
beacon messages every 100ms. Each message is broadcast on
one of the three advertising channels. It is received and its
RSSI is analyzed by the node application. However, while the
RSSI on each BLE advertising channel is very stable, the RSSI
level between the three channels can largely be different [15].
To avoid mixing the RSSI from different channels and thus
decreasing the detection accuracy, the detection algorithms
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Fig. 2. Deployment of the CutiQueue prototype.
Fig. 3. Lab Set-up.

have to handle the advertising channels independently. Yet,
the BLE radio stack often is a closed system and has no
configuration possibilities [16]. Thus, the information about
the current advertising channel is hidden from the application
programmer. To solve this issue the beacon application in-
cludes the information about the advertising channel in the
payload of every message. This is done by stopping the,
otherwise constantly running, advertisement mode after each
message, setting the advertising channel to a specific one, and
sending the next message including the updated information.
The GAP message structure is hereby retained such that the
messages can still be processed by arbitrary BLE devices. The
message structure can be seen in Figure 4.

2) Node: The node application has two tasks. First, it
continuously scans for new beacon messages, secondly, it ana-
lyzes new RSSI samples using the hybrid detection algorithm
and forwards any changes in the link state to the sink. For
this, the node is configured to run the BLE scanning mode
after its initialization. While in this mode, it will receive all
messages broadcast on the advertising channels and filter them
by the included node ID. When a message has been received
containing its own node ID, the node differentiates between
beacon messages or acknowledgment messages send by the
sink. Is the received message a beacon message the node
checks, whether the detection algorithm is still in the automatic
calibration phase, introduced in [3]. The calibration phase ends
when at least one message was received on each advertising
channel and is used to ensure that the initial values of the
detection algorithm are collected in a tranquil phase without
human presence in the link. The duration of this phase depends
on the scan interval of BLE after which the channels are
switched and lies between 10.25s to 20.49s in our experiments.
During the calibration phase the detection algorithm gathers
data, RSSI variance and mean are computed, but no detection
state information is generated. When the detection algorithm
is not in the calibration phase, it analyzes the RSSI of the
received beacon message and computes the current detection
state. Only if there is a change in the detection state of the
link, a new event notification message will be generated and
send to the sink. This is handled by sending one advertisement
message on each advertising channel and starting an acknowl-
edgment timer. The event notification message can contain
one event with up to two older events piggybacking the same
message. Each event contains its detection state, beacon and

Beacon Message

Event Notification Message

Acknowledgement Message

5Byte 
Header

1Byte 
Length

1Byte
Number of Events

12Byte Event Data 
(3x4 Byte: State,BeaconID,RSSI,Difference)

1Byte Unique ID 
of Last Event

5Byte 
Header

1Byte 
Length

4Byte
Debug Counter

1Byte
Channel Information

5Byte 
Header

1Byte 
Length

1Byte
ACK (Node ID)

1Byte Unique ID
of Last Event

Fig. 4. Structure for the beacon, event notification and acknowledgment
messages.

node ID as well as the time difference to the previous event
if piggybacking. Additionally, the event notification message
includes the number of contained events and the unique ID
of the last event waiting to be acknowledged. The message
structure can be seen in Figure 4. After the event notification
message was sent, the BLE scan mode for new messages is
started again.

The acknowledgment timer has a timeout of 1s. If no
acknowledgment message is received during this time a new
event notification message will be sent every 1s while the
BLE scan is running. The event notification message can be
the same message as before or an updated version with the
old event piggybacking, if a detection state change occurred.
If an acknowledgment message has been received while the
acknowledgment timer is running, it will be stopped, and the
acknowledgment is analyzed. If all events are acknowledged
by the unique ID of the last event included in the received
acknowledgment message, they will be deleted from the event
notification message. If no event is acknowledged, the cur-
rently running BLE scan will be stopped and the advertising
of the event notification message will be resumed. After the
acknowledgment has been handled the node application returns
to its initial BLE scanning mode.

3) Sink: The sink applications main purpose is to forward
data to the PC application and to acknowledge every received
event notification message with an acknowledgment message.
For this, the sink application is also set into the scanning
mode of BLE after its initialization. When an event notification
message is received, the scan is stopped and the message is
analyzed. The sink filters the events included in the message
and only forwards those, that have not been forwarded before,
to the PC application. Afterwards, the advertisement mode
is started, broadcasting a single acknowledgment message on
each channel. The acknowledgment message includes the node
ID of the node that sent the event notification message and
the unique ID of the last event received from that node.
This way, only the node matching node ID will consider the
acknowledgment and set all of its events up to the transmitted
unique ID as acknowledged. Then, after broadcasting the
acknowledgment message, the BLE scan on the sink is started
again.
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C. CutiQueue Algorithm

The CutiQueue algorithm is used to estimate the number
of people currently waiting in line and runs as an application
on a PC. The aim is to design an algorithm, that can use the
information from all links to create a synergy between the
separate event detections. If a person crossing a link has been
missed and no detection event was created, the information
from other the links should compensate this, if possible. The
CutiQueue algorithm is based on the information from the
underlying hybrid detection algorithm and must be able to
cope with possibly faulty information.

1) Finite-State Machine: The CutiQueue algorithm is ex-
ecuted whenever a new message arrives from the sink. Each
message is sorted and matched to the link it was received
on. Then, the detection state of the link is updated following
the finite-state machine in Figure 5. The state included in the
current message is compared with the previous state of the
same link, which is initialized with the calibration state 5.
The new state is handled depending on the previous state.

• If there is no change in the state, the message will be
ignored by the state machine.

• If the credibility of the detection state changes, either
from 0 to 2, 1 to 3, or vice versa, the link state will be
updated.

• If the detection state changes from no detection to detec-
tion the detection state will be updated, and two timers
will be started. The first timer is the blockedLinkTimer,
which is used to keep track of a detection events duration
on a link. If a link is occupied for a time longer than
set by the blockedLinkTimer, the link will be considered
“blocked”. If all links from the end of the waiting line
are blocked, it will be seen as an indicator that people
are waiting and the line is filled up to this link. The
second timer is the recoveryTimer. Since the system is
working on possibly faulty input, it can drift away from
the accurate number of people counted during its runtime
with no way of recovery. To avoid this, the recoveryTimer
is used to set the number of persons currently in the
system to zero in phases on tranquility, i.e. when no
person is detected in the waiting area. The timer will
be triggered, if there is no detection event on all links
in the complete system for a set period of time. Lastly,
a third timer, the freeLinkTimer, will be stopped, if the

current detection event is recorded on the last link at the
end of the waiting line. The freeLinkTimer timer is used
to estimate how many people have left the queue. It will
be triggered, if the last link of the system, so the first
one to be blocked when people are waiting, records no
detection event for a set period of time. It is stopped,
whenever a detection event occurs on the last link.

• If the detection state changes from detection to no de-
tection again, the detection state will be updated. The
blockedLinkTimer will be stopped and the link will be
set to “not blocked”. Furthermore, the freeLinkTimer will
be set, if the observed link is the last link of the waiting
line.

The duration of the blockedLinkTimer, recoveryTimer and
freeLinkTimer are discussed in Section IV.

After the state of the current link has been updated, the
influence of any new detection event (state 1 or 3) on the
estimated number of people in the waiting line is checked.
However, due to the non-uniform influence on the RSSI caused
by human arm and leg movement when crossing a radio link,
the same person can trigger multiple detection events. This
can occur especially when entering or leaving a link. To cope
with this, an mergeInterval is introduced possibly grouping
multiple detection events into one. The mergeInterval is based
on the end of the last detection event on a link and is updated
every time a new event follows state 1 or 3. If the new event
is in the merge interval of the previous event on the same link,
they will be combined into one event with increased duration
and the new event will be discarded. If the new event is not
in the mergeInterval of the previous event, it will be checked
whether a new person is to be estimated in the waiting line.

2) People Counting: The queueing system stores a list of
estimations to count the current number of people in line. Each
estimation has a slot for each link in the queueing system. If a
new detection event is found, the slots for the respective link
will be checked by iterating through the list of all estimations.
If one or more estimation with an empty slot for the link
exist, the detection event will be set into the empty slot of the
first estimation found. If all slots for the respective link are
occupied, a new estimation will be created. In both cases the
detection event is discarded afterwards.

A global timer is used to update the estimate of people
in the waiting line, that is periodically triggered after a set
duration. This countingTimer iterates through the complete list
of estimations every time it is triggered. For each slot con-
taining a detection event, points are awarded to the estimation
depending on the state of the detection event. For a state 1
detection event 50 points are awarded, for a state 3 detection
event 34 points. Afterwards the points are added up to a total.
If the total number of points is higher than a threshold of 100
points, an additional person will be counted by the queueing
system. This way at least two links with strong signal quality
or three links with weak signal quality are needed for a new
person to be counted, reducing false positives.

Additionally, the threshold is influenced by the number of
blocked links. If links are blocked, they are no longer available



to generate new detection events. Since the number of blocked
links reduces the potentially available number of links to count
people, the threshold of 100 points is reduced by an amount
of (1/numberOfLinks) ∗ 100 points for each blocked link.

If a new person is counted, the respective estimation will
be marked as such, but not yet removed from the list. This
is done to prevent the same person being counted multiple
times. Only after a estimation has an entry in each slot and
has been marked as counted, it is removed. As a last step, the
number of persons identified as leaving by the freeLinkTimer
is subtracted from the computed total. The subtrahend is
displayed as the result of the CutiQueue algorithm and is the
estimate of the number of people currently in the waiting line.

The values for the countingTimer and mergeInterval are
discussed in Section IV.

IV. EVALUATION

To evaluate the CutiQueue queueing system, we perform
multiple experiments under lab conditions to test the systems
robustness and accuracy, as seen in Figure 3. For this, we build
a prototype queueing system by mounting 8 BLE transceivers
on wooden poles. We use the ATMEL Xplained Pro evalu-
ation platform as transceivers featuring a ATMEL SAMB11
Bluetooth 4.1 module. In the prototype system the transceivers
are powered via USB cable which are also used for data
collection. The barrier poles are ordered in a grid of 1x4 meters
indicating the waiting area in a corridor like fashion, following
the deployment seen in Figure 2. All beacons are placed at
one side of the corridor, all nodes on the other side. For our
evaluation, radio links are only established between the beacon
and the node on exactly opposite sides of the corridor. Doing
so, our prototype system observes four radio links crossing the
waiting area orthogonally to simulate part of a waiting line in
e.g. an airport scenario. Additionally, a transceiver is used as
sink and connected to a laptop running the PC application with
the CutiQueue algorithm.

We compare the results of the hybrid detection algorithm
and of the CutiQueue algorithm with a ground truth generated
from a laser barrier. In order to set-up the laser barrier, we use
the light sensors of smartphones and aim wall-socket powered
laser-pointers at them, one pair per link. While it generates an
accurate ground truth, the laser barrier has a high set-up time
of up to 35s per link and is sensitive to the influence of ceiling
lamps or sunlight. The laser-pointers are positioned in a way,
that when a radio link is crossed, the respective laser-beam is
interrupted as well. Both, the hybrid detection algorithm and
the laser based ground truth system then generate a detection
event which is forwarded to the same laptop running the PC
application. There, each event is combined with a timestamp,
such that the events can be set in direct relation to each other.
Due to the nature of the RSSI-based detection, it takes a longer
time to detect a person, than using the laser based ground truth.
When analyzing the time difference between a detection event
and the ground truth event, we find that 66% of all received
detection events are recorded within 1s after the respective
ground truth event. 98% of all detection events are recorded
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Fig. 6. Error of the CutiQueue algorithm with different interval for the
countingTimer.

within 2.5s after the ground truth event. For our analysis we
double this time and define an detection event as match, if it
was recorded within an interval of 5s to the ground truth.

We use the precision, recall and F1-Score of the event
detection as metrics to evaluate the accuracy of the hybrid
detection algorithm. The precision measures how many of
the detected events are actual matches. It is computed using
Equation 1.

precision =
#truepositives

#truepositives+#falsepositives
(1)

The recall measures how many matches have been missed.
It is computed using Equation 2.

recall =
#truepositives

#truepositives+#falsenegatives
(2)

The F1-Score combines both an is computed using Equa-
tion 3.

F1-score = 2 ∗ precision ∗ recall
precision+ recall

(3)

The error between the current estimated number of people
in the waiting line and the actual number of people obtained
from the ground truth is computed as metric to evaluate the
CutiQueue algorithm. This is done by comparing the two
values every time a new message arrives and computing the
error in percent using Equation 4.

%error = |#estimated−#actual

#actual
| ∗ 100 (4)

A. Parameter Configuration

In order to configure the parameters for the CutiQueue
algorithm, we first perform an experiment EX1 with the hybrid
detection algorithm. During one run of the experiment, the four
radio links of the prototype queueing system are crossed by a
person in consecutive order. Detection events and ground truth
events are recorded and forwarded to the PC application. The
experiment run is repeated 53 times. The results of the hybrid
detection algorithm and its comparison to the ground truth can
be seen in Figure 7. For clarity reasons, both state 1 and state
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Fig. 8. Detection events compared to ground truth for EX3.

TABLE II
PERFORMANCE PARAMETERS FOR THE RADIO LINKS IN EX1.

Link Precision (%) Recall (%) F1-Score (%)
1 100 96.2 98.1
2 97.9 86.8 92.0
3 100 92.5 96.1
4 100 94.3 97.1

3 are plotted as ’1’, and state 0 and state 2 as ’0’. The light
level of the ground truth is set to ’0’ for detection, and ’1’ for
no detection. The detection algorithm achieves an accuracy of
98.1%, 92% 96.1% and 97.1% on the respective links from
start to end of the waiting line, thus reaching a detection
accuracy of 95.8% averaged over all links. The results can
be seen in TableII. Afterwards, the CutiQueue algorithm is
run on the detection results to estimate the best values for the
parameters.

1) Merge Interval: First, the merge interval for the Cu-
tiQueue algorithm is configured. For this, we take a look at
the duration of the detection events. While the average duration
of a ground truth event is 0,622s, the average duration of a
detection event is 2,956s, since the radio link is influenced by
human presence for a longer time. Analyzing the results of
EX1 we observe that by setting the merge interval to a value
of 5s actual detection events caused by a person crossing a
link are no longer wrongly identified as false positives. Thus,
the merge interval is set to a duration of 5s for our further
experiments.

2) countingTimer Interval: Testing the influence of the
countingTimer by using different values from 1s to 10s, we
observe that the countingTimer interval has no influence on
the number of counted people at the end of the experiment (as
long as it is executed at least once). However, the maximum
and average error increase from 1.9% at 1s to 5.6% at 10s and
1.58% at 1s to 1.71% at 10s respectively, as seen in Figure 6.
This is caused by the longer duration between two executions
of the people counting process. Since the duration is longer
there is more time for people to enter the system without
being counted, increasing the time in which the number of
counted people is inaccurate, despite them being counted later

on. Because of this, the countingTimer interval is set to 1s.
3) blockedLinkTimer Interval: When determining the

merge interval we assume that events on a link can belong
to the same detection event for a duration of up to 5s, when
the link is crossed. In order to clearly differentiate between
crossing and standing in the link we double this time and
assume that a link is blocked after a detection event that lasts
at least 10s. For this reason the blockedLink interval is set to
10s.

4) freeLinkTimer Interval: Following the same logic as
before, if there are no new events in a duration of 5s we assume
that the link is free and currently no person is standing in it.
Thus, the freeLinkTimer interval is set to 5s.

5) recoveryTimer Interval: The duration of the recovery-
Timer interval needs to be in the balance point between two
extremes. If the interval is set to high, error in the estimation
will accumulate normally, as if the recovery mechanism would
not be existing. If the interval is set to low, the number of
counted people will always be reset to zero after a person has
been counted, despite there possibly being multiple people in
the line. In order to avoid both, the recoveryTimer is set to
only fire, if there is an interval of 10s since the last detection
event in which the complete waiting line is undisturbed and
no new detection events are recorded on any link.

B. Queueing System Evaluation

We perform additional experiments to analyze the accuracy
of the prototype queueing system during its operation. For
this, we first repeat the experiment performed to calibrate the
parameters. A person is walking through the waiting line 62
times, crossing the links consecutively. To normalize the error
we divide it by the number of people counted by the ground
truth after the end of the experiment.

Figure 9 shows the error experienced in EX2 without the use
of the recoveryTimer. As seen in the figure, the error slowly
accumulates over time, reaching a final value of 4.839% at the
end of the experiment. Figure 10 shows the error of EX2 while
the recoveryTimer is used. Since the system can recover itself
in tranquil phases, when no person is in the waiting line, the
experiment is concluded with no error and an average error of
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Fig. 9. Error of EX2 without recoveryTimer.
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Fig. 10. Error of EX2 with active recoveryTimer.
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Fig. 11. Normalized error of EX4.

1.093% over time with a standard deviation of 0.754%. This
equals an accuracy of 98.91%. Out of the 62 times the person
is walking through the prototype queueing system, 59 times
have been counted at the end of EX2.

In the third experiment EX3 the detection of blocked links
is tested. A person walks through the queueing system 20
times, each time stopping at a different link and blocking it.
The results of the hybrid detection algorithm of EX3 can be
seen in Figure 8. 19 out of the 20 times a link is blocked are
detected and 20 of 20 persons are counted in EX3.

Next, we test the prototype queueing systems capabilities,
for situations when multiple persons are in the waiting line.
For this, we perform an experiment EX4, in which three
persons enter the waiting line after another. The first person
entering walks through the complete line and waits at its end.
Afterwards, the second persons enters and waits behind the
first person, in the monitored area of the next link. Finally,
the third person enters, and waits in the link after the second
person. When all have entered, the first person leaves the
system. The second and third person each advance to the next
link and wait. Next, the second person leaves the system, while
the third person advances to wait in the last link. At the end,
the third person leaves the link.

The experiment is repeated 20 times, so that the waiting
line is passed through 60 times in total. The results of EX4
can be seen in Figure 11. During the experiment, 109 out
of the 120 times a link was blocked are detected, and 54
of the 60 persons walking through the system are counted.
The CutiQueue queueing system achieves an average error of
2.042% over time with a standard deviation of 1.309%, which
equals an accuracy of 97.96%.

This demonstrates that the combination of the hybrid detec-
tion algorithm with fast, BLE-based data transmission and the
CutiQueue algorithm can be used under realistic conditions to
count the people in a waiting line.

V. CONCLUSION

In this work, we developed a prototype queueing system to
count the number of people in a waiting line. The system is
based on RSSI-based passive detection and no user participa-
tion is required. It is easy to deploy, has high portability and
needs no manual calibration. The system achieves an accuracy
of 98.91% when analyzing a single person passing through it,
and an accuracy of 97.96% when analyzing a waiting line in
which there are multiple people simultaneously.
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