
A Generic Approach for Energy Efficient Context Recognition using Smart
Phones

Muhammad Umer Iqbal, Marcus Handte, Pedro José Marrón
Networked Embedded Systems, University of Duisburg-Essen, Germany

umer.iqbal@uni-due.de, marcus.handte@uni-due.de, pjmarron@uni-due.de

Abstract—Intelligent environments rely on context infor-
mation for providing services to their users. Among various
existing platforms for context recognition, smart phones are
one of the most widely used. However, despite numerous
advantages, smart phones exhibit limited energy resources.
To mitigate this there exist approaches for energy efficient
context recognition for smart phones but these approaches
are usually fine-tuned for specific types of context. As a
result their applicability to other context types is limited.
In this paper, we present an energy efficient context recogni-
tion system for smart phones which provides generalized
applicability of four generic energy efficiency techniques
which have been described in the literature and applied to
location sensing using mobile phones. These four techniques
as termed by authors include Suppression, Substitution,
Adaptation and Piggybacking. Our system provides their
generalized applicability by modelling context recognition
applications using a state machine abstraction. Consequently
the resulting applications are structured as combinations of
states and transitions. To aid rapid prototyping our system
is equipped with an off-line development tool which allows
the creation and (code) generation of state machines using a
graphical editor. We evaluate our system by creating a test
application. Using a precise hardware set up, we perform
energy measurements to demonstrate the energy savings of
these different techniques.

Keywords-Context; System; Energy; Smart Phones

I. INTRODUCTION

Intelligent environments provide useful services to its
users by identifying the tasks which users are currently
involved in. Examples could be an environment which
automatically adjusts the intensity of lights in the offices
when a user is working or an environment which guides
users to park their cars in the parking places. For either
of these or many scenarios, intelligent environments rely
on the context information of the user i.e what the user is
currently doing and/or where the user is at the moment.
Among various platforms for determining user′s context,
smart phones are one of the most widely used platforms.

There exist many context recognition systems and ap-
plications such as [1], [2], [3] for smart phones. These
and similar systems provide recognition of their desired
context features with suitable accuracy. However, despite
the fact that modern day smart phones have become more
resourceful in terms of computation power they still suffer
from the lack of breakthrough advancements in the domain
of battery capacity. As context recognition applications
require energy consuming operations, their use can have
significant effect on the energy usage of phones. This, in
turn, can lead to less time for other basic operations such
as talk time, for instance.

To overcome this limitation there exist systems which
provide energy efficient solutions for context recognition
using smart phones. However, most existing approaches
are usually specific to particular context types, e.g. ap-
plications targeting localization solutions [4] focus on
achieving localization in energy efficient manner, appli-
cations targeting activity recognition [5] specialize on
how to recognize certain activities in an energy efficient
manner, etc. Consequently, there exist a number of energy
efficiency techniques which are used for specific contexts
but despite of having the potential, are not utilized for
other context domains.

To bridge this gap, we present an energy efficient con-
text recognition system for smart phones which provides
generalized applicability of four energy efficiency tech-
niques for location sensing described in [4]. These four
techniques include Suppression, Substitution, Piggyback-
ing and Adaptation. With our system these four techniques
can be applied to any type of context. Our system achieves
this generalized applicability by modelling applications us-
ing a state machine abstraction. Consequently, applications
are structured as combination of states and transitions. A
state in our system refers to some context characteristic
that an application computes at different stages of its
execution. In order to compute the context characteristics
our system relies on an existing component system for
context recognition [6]. A transition in our system refers to
conditional context changes between the states. The tran-
sitions are realized as rules (i.e. conditional expressions)
and the system uses a rule engine to automatically evaluate
the transitions that initiate state changes.

Our system is equipped with a visual graphical editor
implemented as Eclipse [7] plug-in. The editor allows
developers to create state machines required for their
applications. It can also generate the source code of the
designed state machines which can then be directly used in
an application, thereby relieving developers from coding
development effort.

We evaluate our system experimentally with a test
application. Using a precise hardware set up similar to
the one shown in [8], we perform energy measurements
on the application and demonstrate the potential energy
savings of the different energy efficiency techniques.

The remainder of this paper is structured as follows.
Next we introduce the four energy efficiency techniques to
make the paper self-contained. In Section III, we describe
the design rationale behind our system. In Section IV, we
describe our system in detail. In Section V, we discuss



some implementation details and in Section VI, we present
an evaluation of the system. In Section VII, we discuss the
related work and conclude the paper in Section VIII.

II. ENERGY EFFICIENCY TECHNIQUES

For completeness, we briefly outline the four energy
efficiency techniques introduced in [4]. These techniques
have been implemented for Android phones in the context
of location sensing scenarios. The evaluation detailed
in [4] shows considerable energy savings and therefore
provides compelling grounds for having a system which
can use these techniques in a generic manner - that is
beyond the scope of location sensing.
• Suppression: Suppression refers to the use of low

energy sensors to first determine the user movement
and then use high energy sensors to perform local-
ization.

• Substitution: Substitution refers to the use of low
energy consuming location sensing sources instead of
high energy consuming source, provided the accuracy
of low energy consuming source is equal or better
than the accuracy of high energy consuming source.

• Adaptation: Adaptation refers to the adjustment of
location sampling parameters based on the current
battery levels or other user settings. If the battery
level is below a certain threshold then the location
sensing time interval or location sensing distance
threshold is increased.

• Piggybacking: Piggybacking refers to combining
multiple location sensing request into a single re-
quest. If there are more than one location based appli-
cations asking for the current location, piggybacking
uses the sensing parameters of one application which
are finer than the sensing parameters of all other ap-
plications. It then reports the location information to
all the applications based on the chosen parameters.

III. DESIGN RATIONALE

In order to provide generic applicability of the pre-
viously mentioned energy efficiency techniques beyond
location sensing, a generic system for energy efficient
context recognition must provide support for the following
three functions:
• Conditional execution: In order to enable Suppres-

sion, a system must be able to recognize context in
multiple steps (possibly structured in a hierarchical
fashion) such that low energy consuming operations
are performed first to decide whether high energy
consuming operations are required. This can be done
by enabling the conditional execution of different
steps based on the context that has been recognized
so far.

• Adaptation support: To enable Substitution and Adap-
tation, a system must provide adaptation support so
that an application can modify the behavior of its con-
text recognition logic by adjusting settings. This can
be triggered either based on the cost for determining

Figure 1. Architectural Building Blocks

context (Substituion) or on the state of the device,
e.g. its remaining battery power (Adaptation).

• Request multiplexing: To enable Piggybacking, a
system must be able to capture the requests from
multiple applications and handle them jointly in order
to avoid duplicate sampling and processing.

In order to support these functions, we use state machine
abstraction as basis for our context recognition system.
Since a state machine introduces states and (conditional)
transitions, they are a simple and flexible way to model
the conditional execution. For example, developers can
structure applications such that states represent low and
high energy consuming operations and transitions rep-
resent the rules for switching between them. Similarly,
to achieve adaptation support, developers can use states
to represent alternate context recognition methods with
different energy and accuracy cost to recognize same con-
text or use them to represent different application settings
relevant to particular battery levels. The transitions then
provide switching between different recognition methods
or different application settings. In addition, adaptation
support can also be achieved by structuring applications
as combination of multiple state machines instead of just
one state machine. In this case, the transitions provide
switching between different state machines. Finally, to
support request multiplexing, we rely on an existing
component system described in [6] as execution platform
for the state machines. This system models individual
context recognition actions as parameterizable component
configurations that can be executed by a common runtime
system. To enable piggybacking in a generic fashion, the
system applies configuration folding which dynamically
analyzes a set of simultaneously executed configurations in
order to eliminate redundant sampling and computations.

IV. SYSTEM ARCHITECTURE

The building blocks of the resulting system are depicted
in Figure 1. The system consists of two subsystems namely
the activation system and the component system. The
activation system is responsible for managing the state



machines that define the context recognition steps of
different applications. Underneath the activation system,
the component system provides generic context recogni-
tion support realized by configurations of components as
described in [6].

The main architectural building blocks of activation
system are the state machine description and the associated
runtime system which executes them. The runtime system
consists of the state machine instantiation logic and the
rule engine. In the following, we first describe the basics of
the state machine model before we discuss the interaction
of the different building blocks at runtime.

A. State Machines

The state machine model introduced by the activation
system consists of two elements, namely states and tran-
sitions. Conceptually, a state represents a step in a context
recognition application at an arbitrary level of granularity.
During this step, the application continuously recognizes
certain context characteristics using a particular sensing
and processing logic until a certain context constellation
is detected. The constellations that are relevant for the
application are represented as transitions consisting of a
source state, a target state and a rule, i.e. a set of con-
ditions that describe the applicable constellations. When
a constellation associated with a transition (whose source
state is the current state) is detected, the state machine
moves to the target state, thereby, effectively moving on to
the next step in the application which may then modify or
replace the sensing and processing logic. In the following,
we discuss both states and transitions in more detail.

1) States: As indicated previously, a state represents
a particular step in an application that is associated with
a particular sensing and processing logic. To model this
logic, states are associated with a collection of component
configurations that are used to determine the relevant
context characteristics. Depending upon the granularity of
the step, the attached configurations could be detecting
range of context characteristics with different levels of
details. As an example, Figure 2 depicts a state machine
with two states. These states capture user’s mode of
transportation. If the user is travelling in train, the state
machine remains in the Travelling in Train state otherwise
it switches to the Waiting for Train state.

2) Transitions: A transition represents a conditional
change between two states. In our system we realize the
conditions using rules. Every transition is associated with
one or more configurations attached to its source state.
Each transition is associated with one rule, however, a
rule may consist of one or more than one conditions.
Each condition is attached to only one configuration and
it is modelled as an abstract syntax tree to enable the
formation of composed conditions. Each condition consist
of three nodes namely the operand, the operator and the
value. If there are more than one conditions in a rule they
can be joined together with AND or OR clause. For a
transition between states to take place it is necessary that
the associated rule is evaluated to be true.

Figure 2. Example of state machine with two states

• Operand: An operand receives the outcome of the
configuration associated with the condition. A rule is
evaluated every time the operand receives any update.

• Operator: An operator represents a mathematical
operator for evaluating the operand. The operators
supported by our system include GREATER THAN
(if operand is greater than the value), LESS THAN
(if operand is less than the value ) and EQUALS
TO (if operand is equals to the value).

• Value: A value is used to compare the output of the
operand using the operator. A value can be either of
NUMERIC data type or character based data type
such as STRING.

Examples of rules for the state machine shown in
Figure 2 are shown in Figure 3. The rules for Figure 2
assumes that there are two configurations ”Average Ac-
celeration” (which uses accelerometer data to determine
acceleration and body posture of the user) and ”Mode of
Transportation” (which uses WiFi and sound information
to determine the type of vehicle) consisting of different
components and attached to both states ”Travelling in
Train” and ”Waiting for Train”. The condition tree for the
rules attached to the transitions of both states has seven
nodes, three nodes for representing two conditions and one
node for the aggregation of the two conditions.

B. Interaction

To demonstrate the interaction between the architectural
building blocks, we briefly outline the general process
depicted in Figure 1: (1) As the first step the application
passes a state machine description to the activation system.
According to the model described previously, a state ma-
chine description consists of configurations attached to dif-
ferent states and rules associated with transitions between
different states. (2) Once the state machine description has
been passed, the activation system identifies the starting
state in the state machine and instantiates that state by
sending the request to the underlying component system.
The component system in turn instantiates the components
and links described in the configurations attached to the
state. Once the configurations are instantiated they start
determining the context characteristics. Upon completion
of each recognition cycle i.e from sampling of sensor
data to processing of data and from processing of data



Average 
Acceleration

10

EQUALS_TO

Mode of 
Transportation

Fast Moving
Vehicle

EQUALS_TO

AND

Average 
Acceleration

10

GREATER_THAN

Mode of 
Transportation

Standing/ 
Walking

EQUALS_TO

AND

(a)

(b)

IF Average Acceleration EQUALS_TO 10 AND Mode of Transportation EQUALS_TO 
Fast Moving Vehicle THEN Travelling in Train

IF Average Acceleration GREATER_THAN 10 AND Mode of Transportation EQUALS_TO 
Standing/ Walking THEN Waiting for Train

Figure 3. Examples of condition trees for two rules

to classification of processed data, the configuration sends
the output to the activation system. (3) Next, the activation
system instantiates the rules associated with the current
state and then (4) activates the rule engine by passing rules
to it. The rule engine evaluates the rules based on the out-
put send by the configurations and when a rule is evaluated
to be true a change of state takes place. (5) When the need
for a state change is detected, the activation system signals
the change of state to the application. At the same time
the activation system stops the configurations attached to
the current state, instantiates the configurations associated
with the new state and instantiates the associated rules.
The rule engine then starts evaluating the new rules using
the new configurations and the process continues.

C. Discussion

As depicted in Figure 4, in this section we discuss how
the proposed system architecture enables the four tech-
niques to be used not just for location-based application
but for any type of context recognition application.
• Suppression: As any type of configuration (for deter-

mination of movement, for determination of sound
etc.) can be attached to a state, it is completely
flexible to use Suppression irrespective of type of
target context. An example of Suppression could be
to use audio sensor at low sampling rate to determine
presence of some particular sound e.g. sound of
opening of door first and then turn on GPS for
outdoor location sensing. With our system this can be
realized by having two states, one with configuration
for determining the sound and other for determining
the location. This shows that with state machine
abstraction employed in our activation system, we can
enable Suppression for different contexts.

• Substitution: Like Suppression the Substitution can
also be applied in a generic way by the activation
system. As Substitution means replacement of one
sensing method with another, we can have different
configurations for different sensing methods attached
to different states. We can also have different state

machines to achieve the same effect. With the eval-
uation of rules attached to transitions, the activation
system can substitute one sensing method with other.
e.g we can use one configuration for GSM localiza-
tion attached to one state and second configuration
for GPS localization attached to other state.

• Adaptation: Just like Suppression and Substitution,
adaptation can conceptually be realized by introduc-
ing separate states for the different adaptation levels
(e.g. one state for detecting movement if the phone’s
battery level is low and another state for detecting
movement if the phone’s battery level is high) and
associating different configurations (e.g. one with a
low sampling rate and one with a high sampling rate)
with the states. However, since this will generally
lead to complex state machines with a large num-
ber of transitions to represent the adaptation, it is
typically more convenient to use separate machines
to represent the different levels and to introduce
an additional ”meta” state machine to detect the
appropriate adaptation level. This meta state machine
is then responsible for activating the appropriate
variant of the actual state machine that performs
the recognition. In order to thoroughly support this,
our implementation of the system described in the
next section enables developers to directly associate
state machines with states which technically enable
a hierarchical composition. Yet, it is noteworthy to
point out that this is primarily a tool for simplifying
the development as it is possible to generate a single
machine to handle adaptation.

• Piggybacking: As mentioned in Section III, the un-
derlying component system that we use to run the
sampling and processing logic for the activation
system already provides configuration folding as a
generic solution to achieve Piggybacking. Thus, if
a state of a state machine exhibits multiple config-
urations or if multiple state machines are executed
simultaneously, the configuration folding algorithm
of the component system will ensure the energy effi-
cient execution of the complete set of configurations
that is running at the same time. More details on this
including an evaluation of the possible savings can
be found in [6].

Figure 4 illustrates the generic applicability of these
techniques which, for the sake of clarity, uses a ”meta”
state machine to control the execution of two other state
machines. Both the states in the meta state machine have a
variant of configuration A attached to it. Depending upon
the transition, either state machine 1 or state machine 2
is active at any time. This switching of state machines
demonstrates application of Adaptation. In state machine
1 and state machine 2, there are three states and depending
upon the definition of the states, the switching between
states can either represent Suppression or Substitution.
Lastly, State 1 and State 2 in the two state machines have
two configurations attached to them. Thus, configuration
folding is applied to these configurations in the two states



State 
machine 1

State 
machine 2

A A

State 1 State 2 State 3

B C DE

BE

Piggybacking

Suppression & Substitution

Adaptation

State 1 State 2 State 3

B C DF

CF

Piggybacking

Suppression & Substitution

Adaptation

State machine 1 State machine 2

Meta state machine

Figure 4. Generic applicability of four energy efficiency techniques

to produce a single configuration which demonstrates the
applicability of Piggybacking.

V. IMPLEMENTATION

To evaluate the system, we have implemented the activa-
tion system and integrated it with our existing component
system. In addition, to simplify the application develop-
ment using the proposed abstraction, we have created a
visual development tool that is capable of hiding the low
level details by means of code generation. In the following,
we briefly describe the implementation of both.

A. Activation System

The activation system has been implemented for An-
droid. The system is implemented as an Android ser-
vice and applications can start and stop state machines
by sending their description as an Andorid Parcelable
to the activation system service. The activation system
service identifies the default state and if the Parcelable
also contains a meta state machine, it first identifies the
default state machine and then the default state. Once
the state is identified the service starts another service
that runs the component system and passes it the con-
figurations attached to the state. The component system
service performs configuration folding and instantiates the
configurations. The outputs of running configurations are
signaled via Android broadcasts.

Once the configurations are started, the activation sys-
tem service starts the rule engine service. The rule engine
service registers the broadcast receivers for the currently
executed configurations. When the broadcasts from the
configurations are received, the rule engine evaluates the
rules for all transitions of the current state. If a state
change occurs, the activation system service modifies the
set of running configurations by starting and stopping them
according to the state machine description and updates
the rule engine and the registration of broadcast receivers
accordingly. Finally, the change in states is sent to the
applications via broadcasts so that it can perform any
desired task.

Figure 5. Screenshot of the Visual Editor

B. Visual Editor

Depending on the size of the state machine, the num-
ber of lines of code required to define a state machine
description can be comparatively large. For example, a
simple state machine consisting of two states with one
configuration attached to each state and one outgoing
transition per state already requires more than 100 lines
of code. Although, this code is conceptually trivial, due to
the sheer size and the fact that the definition requires the
repetitive and consistent use of different model elements
such as states, transitions, nodes, operands, operators,
values, etc. its manual creation is a tedious process that is
prone to errors.

To mitigate this, we have created an Eclipse-based
graphical editor plug-in for the visual definition of state
machines. The editor allows developers to create and
modify state machine by simply dragging, dropping and
connecting states. The editor supports the attachment of
configurations to the states and also allows the definition
of rules for the transitions. Furthermore, the editor pro-
vides a state machine validation mechanism with which
it can identify missing or inconsistent details in the state
machine description. Lastly, the editor also supports code
generation for the designed state machine. Figure 5 and
Figure 6 show a screenshot of the editor with a two state
machines and a fragment of the resulting generated code,
respectively.

VI. EVALUATION

In order to demonstrate the effectiveness of our system
we created a test application for performing indoor local-
ization by using our system. The application was realized
using different configurations which are detailed in the
next section. The developed application demonstrates the
use of different targeted energy efficiency techniques as
has been depicted in Figure 4. It is worth mentioning
that we have chosen an indoor localization application pri-
marily for illustrative purposes, since the various context



StateMachineConfiguration configuration = new 
StateMachineConfiguration(configurationName);

// create states configurations
State state0 = new State();
state0.setName("Stationary");
state0.setDefaultState(true);
AccelActivation AccelActivation0 = new AccelActivation();
state0.setConfigurations(AccelActivation0.createConfiguration("AccelActivation"));
configuration.setState(state0);
// create transition configurations
Transition transition0 = new Transition();
transition0.setName("transition t1");
transition0.setPriority(1);
transition0.setSourceState("Stationary");
transition0.setTargetState("Moving");

Rule rule0 = new Rule();
rule0.setName("Rule");
ConditionTree conditionTree0 = new ConditionTree();
//setting up value
Value value0 = new Value();
value0.setValue("9.8");
//setting up operand
transition0.addConfigurationsAttacdhedToTransition("AccelActivation");
Operand operand0 = new Operand(Platform.ANDROID,"AccelActivation");
//setting up operator
Node node_operand0 = new Node(NodeType.OPERAND,null,null,null,operand0,null,null);
Node node_value0 = new Node(NodeType.VALUE,null,null,null,null,value0,null);
Node node_operator0= new 
Node(NodeType.OPERATOR,node_operand0,node_value0,OperatorType.GREATER_THAN,null,null,null);
//setting up nodes in the condition tree
conditionTree0.setCondArrayList(node_operand0);
conditionTree0.setCondArrayList(node_operator0);
conditionTree0.setCondArrayList(node_value0);

Defining 
State

Defining 
Transition

Defining Rule

Figure 6. Generated code snippet of a state machine

recognition approaches are easy to explain and understand.
The basic methodology and principles for integrating the
four energy efficiency techniques in the form of certain
state machine configurations, however, can be applied to
any kind of application which supports the recognition of
context via alternative approaches.

A. Application

The indoor localization application was built in two
stages. In the first stage, we created the component
configurations required for performing the localization.
In the second stage we created the state machines to
arrange those configurations such that the Suppression,
Substitution and Adaptation are used. As [6] already
provides a detailed evaluation on Piggybacking, we skip
its evaluation using the test application. The configurations
were created using the existing graphical editor and the
component toolkit provided by the component system [6].
In total we created four configurations which include
a configuration for measuring the battery status of an
Android device (BatteryConfiguration) as basis for adap-
tation, a configuration to determine user movement using
the device’s accelerometer (AccelConfiguration), a config-
uration to determine user movement using the audio sensor
(SoundConfiguration) and a configuration for performing
the actual localization (LocalizationConfiguration). These
configurations were then used to create different state
machines using the graphical editor and its code generation
utility for state machines presented in this paper.

In order to demonstrate Adaptation we created two
state machines to perform the localization (using differ-
ent strategies) and a meta state machine to control the
adaptation process. Thus, the meta state machine is used
to switch between two state machines each representing
different settings for the localization. To do this, the meta
state machine used BatteryConfiguration in two states to
start/stop one of the state machine. The rule used by the

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

1.40E+00

1.60E+00

1.80E+00

2.00E+00

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

30
1

32
1

34
1

36
1

38
1

40
1

42
1

44
1

46
1

48
1

50
1

52
1

54
1

56
1

58
1

60
1

Figure 7. Power consumption when Adaptation is used. State machine
1 perform continuous WiFi scans and State machine 2 performs WiFi
scans every 10 seconds.

meta state machine was to use state machine 1 when the
phone’s battery is more than 50% and use state machine
2 when the phone’s battery is less than 50%.

In one of the two state machines, the LocalizationCon-
figuration was parametrized to perform continuous WiFi
scans whereas for the other state machine the Localiza-
tionConfiguration was parametrized to perform WiFi scans
every 10 seconds. The time interval of 10 seconds is
chosen to highlight the energy savings compared with
continuous location recognition. To demonstrate Suppres-
sion, we added a second state to the state machines
that used the AccelConfiguration in order to suppress the
use of the LocalizationConfiguration in cases where the
device is not moved (i.e. accelerated). To demonstrate
Substitution, we copied the state machine and replaced
the AccelConfiguration to determine the user movement
with the SoundConfiguration. Though, accelerometer data
is typically used for the determination of movement in
scenarios where user is moving between places a distinct
change of ambient noise can be an alternate source of
information.

B. Experiments

For our experiments with the application, we used a
Samsung Galaxy Nexus phone running on Android 4.2
as our target platform. To determine the energy usage,
we used a precise energy measurement hardware set-up
similar to one described in [8] for measuring the power
consumption. We first computed the base power drain
with device’s screen brightness set to minimum (0.609
watts). Thereafter, we performed additional measurements
showcasing the three techniques. For Adaptation, the
power consumption of the first state machine in which the
LocalizationConfiguration was parametrized to perform
continuous WiFi scans was computed to be 0.96 Watts
where as for the state machine in which the Localiza-
tionConfiguration was parametrized to perform WiFi scans
every 10 seconds was computed to be 0.634 Watts. In both
cases the state machines were executed for 60 seconds.
We subtracted base power consumption to obtain actual
power consumptions. For first state machine the actual
power consumption was calculated to be 0.96-0.609 =



0.00E+00

5.00E-01

1.00E+00

1.50E+00

2.00E+00

2.50E+00

1 15 29 43 57 71 85 99 11
3

12
7

14
1

15
5

16
9

18
3

19
7

21
1

22
5

23
9

25
3

26
7

28
1

29
5

30
9

32
3

33
7

35
1

36
5

37
9

39
3

40
7

42
1

43
5

44
9

46
3

47
7

49
1

50
5

51
9

53
3

54
7

56
1

57
5

58
9

Figure 8. Power consumption when Suppression is used. State machine
1 is attached to AccelConfiguration and State machine 2 is attached to
AccelActivation and LocalizationConfiguration both.

0.351 Watts where as for the second state machine it
was 0.634-0.609 = 0.0252 Watts. The net power saving
for executing the localization with different setting were
computed to be(1-0.0252/0.351)*100 = 92%. The power
consumption graphs for Adaptation are shown in Figure 7.

For Suppression, we assumed that user does not move
for half of the execution time of the application i.e. for 30
seconds out of 60 seconds (similar to experiment settings
in [4]), the user remains static. As a result the state
machine used for Suppression remains in state attached
with AccelActivation Configuration for 30 seconds and
switches to other state attached with AccelActivation
and LocalizationConfiguration both for the remaining 30
seconds. The average power consumption for this state
machine was computed to be 0.842 Watts. After subtract-
ing the base power the actual power consumption becomes
0.842-0.609 = 0.233 Watts. In order to measure the power
savings for Suppression, we computed power consumption
of state machine continuously executing LocalizationCon-
figuration. Its power consumption was computed to be
0.946-0.609 = 0.337 Watts. Hence, the net power savings
for Suppression were computed to be (1-0.233/0.337)*100
= 30.8%. The power consumption graph for Suppression is
shown in Figure8. We can see that the power consumption
of state machine 1 is almost same through out the time
since it is continuously performing localization. The power
consumption of state machine 2 remains low for about
period of 30 seconds. This is due to the fact that user is
not moving. Afterwards, as user starts to move, the lo-
calization is performed and hence the power consumption
is increased. It can be seen in the figure that during this
time period the power consumption of state machine 2 is
higher than state machine 1. This is due to the fact that
during this period state 2 of state machine 2 is executing
LcalizationConfiguration and also AccelConfiguration.

For Substitution, the actual power consumption for
state machine with SoundConfiguration was computed
to be 0.982-0.609 = 0.373 Watts and for state machine
with AccelConfiguration was computed to be 0.675-0.609
= 0.0662 Watts. The net power savings if AccelCon-
figuration is used instead of SoundConfiguration were
(1-0.0662/0.373)*100 = 82.2%. The power consumption
graph for Substitution is shown in Figure 9.

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

1.40E+00

1.60E+00

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

20
1

20
9

21
7

22
5

23
3

24
1

24
9

25
7

26
5

27
3

28
1

28
9

29
7

30
5

31
3

32
1

32
9

33
7

34
5150 30

Figure 9. Power consumption when Substitution is used. State machine
1 is attached to SoundConfiguration and State machine 2 is attached to
AccelConfiguration

As mentioned earlier and also demonstrated by the test
application, it can be seen that our system can be used
to develop applications targeting any context type such
that they can benefit from the supported energy efficiency
techniques irrespective of their target context.

VII. RELATED WORK

Existing approaches for achieving energy efficient con-
text recognition for smart phones provide solutions either
at the application level or at the system level. At applica-
tion level, the provided solutions are specific to the context
type which the application targets and thus are useful to
the application only. At the system level, the provided
solutions can be utilized by different applications targeting
different contexts. Some of application level solutions
include [1],[9]. [1] provides a microphone based sound
classification approach for Apple iPhone. The approach
suggests to process only those sound samples which have
certain energy level to avoid processing of non important
ones. [9] uses a hierarchical recognition scheme with
variable step size and adjustment of sliding window size
for accelerometer data for recognizing human activities
such as Standing, Sitting, Walking etc.

Examples at the system level include [10],[11],[12]. [10]
uses sensing pipelines for accelerometer, microphone and
GPS sensors. These pipelines provide adaptive processing
of microphone and accelerometer data when data quality is
low. Depending upon the mobility and behaviour pattern
of user, it also provides intelligible triggering of power
hungry GPS sensor. [11] provides energy savings of sev-
eral applications by reducing the amount of sampling and
processing. The system allow developers to specify context
recognition requirements for their applications. Based on
the requirements the system uses minimal sensors and
computations to determine the desired context. [12] uses
inferring mechanisms instead of continuous sensing to de-
termine current context. It provides inference by learning
relationships between different context attributes.

The system presented in this paper provides generic
applicability of Substitution, Suppression, Adaptation and
Piggybacking techniques described for localization in [4].
Comparing the activation system with above mentioned
application level and system level solution indicates that



activation system is complementary to these solutions. To
mention, these four techniques have also been discussed in
systems targeting contexts other than location. Examples
include [13],[14],[15],[16]. However, unlike our system
which provides generic applicability of all four techniques,
these systems uses only a subset of them.

The presented activation system uses a state machine
abstraction. The state machine abstractions have been used
in existing context and activity recognition systems. Ex-
amples include [13],[17],[18],[19]. [17] uses state machine
abstraction for the determination of suspicious human
activities based on video surveillance. [18] uses a multi-
layered state machine for human activity recognition and
object identification. [19] uses finite state machines for
detection of common household activities such as cooking,
eating, brushing teeth etc. The system observes location
of users by video cameras fitted on the ceilings and their
actions with the help of a wearable sensors placed on users
arms. These example systems show that the applicability
of state machines in context and activity recognition is
well established in the existing work.

VIII. CONCLUSION

Existing solutions for energy efficient context recogni-
tion for smart phones are usually fine tuned for specific
context types. As a result their applicability to other con-
texts is limited. To bridge this gap, in this paper we have
presented a generic energy efficient context recognition
system for smart phones. The system provides generalized
applicability of four energy efficiency techniques namely
Suppression, Substitution, Adaptation and Piggybacking
for any context type. Our system achieves this by using
state machine abstraction for the modelling and execution
of context recognition applications. We evaluated our
system by creating a test application and measurements
showed energy savings when the test application uses the
aforementioned techniques supported by our system.

IX. ACKNOWLEDGEMENTS

This work is supported by UBICITEC e.V. (European
Center for Ubiquitous Technologies and Smart Cities) and
GAMBAS (Generic Adaptive Middleware for Behavior-
driven Autonomous Services) funded by the European
Commission under FP7 with contract FP7-2011-7-287661.

REFERENCES

[1] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T.
Campbell, “Soundsense: Scalable sound sensing for people-
centric applications on mobile phones,” in MobiSys 2009.

[2] M. U. Iqbal, N. Fet, S. Wagner, M. Handte, and P. J.
Marrón, “Living++: A platform for assisted living appli-
cations,” ser. UbiComp ’13 Adjunct, 2013.

[3] P. Mohan, V. N. Padmanabhan, and R. Ramjee, “Nericell:
Rich monitoring of road and traffic conditions using mobile
smartphones,” in SenSys 2008.

[4] Z. Zhuang, K.-H. Kim, and J. P. Singh, “Improving energy
efficiency of location sensing on smartphones,” in Proceed-
ings of the 8th International Conference on Mobile Systems,
Applications, and Services, ser. MobiSys ’10, 2010.

[5] Z. Yan, V. Subbaraju, D. Chakraborty, A. Misra, and
K. Aberer, “Energy-efficient continuous activity recogni-
tion on mobile phones: An activity-adaptive approach,” in
Wearable Computers (ISWC), 2012.

[6] M. Iqbal, M. Handte, S. Wagner, W. Apolinarski, and
P. Marron, “Enabling energy-efficient context recognition
with configuration folding,” in PerCom 2012.

[7] “Eclipse,” http://www.eclipse.org/.

[8] M. Iqbal, M. Handte, S. Wagner, W. Apolinarski, and
P. Marron, “Configuration folding: An energy efficient
technique for context recognition,” in PerCom 2012 (Work-
shops).

[9] Y. Liang, X. Zhou, Z. Yu, B. Guo, and Y. Yang, “En-
ergy efficient activity recognition based on low resolution
accelerometer in smart phones,” in Proceedings of the
7th International Conference on Advances in Grid and
Pervasive Computing, 2012.

[10] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and
A. T. Campbell, “The jigsaw continuous sensing engine
for mobile phone applications,” in SenSys 2010.

[11] S. Kang, J. Lee, H. Jang, H. Lee, Y. Lee, S. Park, T. Park,
and J. Song, “Seemon: Scalable and energy-efficient con-
text monitoring framework for sensor-rich mobile environ-
ments,” in MobiSys 2008.

[12] S. Nath, “Ace: Exploiting correlation for energy-efficient
and continuous context sensing,” IEEE Transactions on
Mobile Computing, 2013.

[13] Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong,
B. Krishnamachari, and N. Sadeh, “A framework of energy
efficient mobile sensing for automatic user state recogni-
tion,” in MobiSys 2009.

[14] A. Kansal, S. Saponas, A. B. Brush, K. S. McKinley,
T. Mytkowicz, and R. Ziola, “The latency, accuracy, and
battery (lab) abstraction: Programmer productivity and en-
ergy efficiency for continuous mobile context sensing,” in
Proceedings of the ACM SIGPLAN International Confer-
ence on Object Oriented Programming Systems Languages
; Applications, 2013.

[15] T. Park, J. Lee, I. Hwang, C. Yoo, L. Nachman, and
J. Song, “E-gesture: A collaborative architecture for energy-
efficient gesture recognition with hand-worn sensor and
mobile devices,” in SenSys 2011.

[16] S. Kang, Y. Lee, C. Min, Y. Ju, T. Park, J. Lee, Y. Rhee,
and J. Song, “Orchestrator: An active resource orchestration
framework for mobile context monitoring in sensor-rich
mobile environments,” in PerCom 2010.

[17] A. Fernandez-Caballero, J. C. Castillo, and J. M. Rodrguez-
Snchez, “Human activity monitoring by local and global
finite state machines,” Expert Systems with Applications,
2012.

[18] D. Mahajan, N. Kwatra, S. Jain, P. Kalra, and S. Banerjee,
“A framework for activity recognition and detection of
unusual activities.” ICVGIP, 2004.

[19] T. Teixeira, D. Jung, G. Dublon, and A. Savvides, “Recog-
nizing activities from context and arm pose using finite state
machines,” in Distributed Smart Cameras, ICDSC 2009.


