
Automating the Generation of Privacy Policies for Context-sharing Applications

Wolfgang Apolinarski, Marcus Handte, Pedro José Marrón
Networked Embedded Systems

Universität Duisburg-Essen
Essen, Germany

firstname.lastname@uni-due.de

Abstract—Enabling the automated recognition and sharing
of a user’s context is a primary motivation for many pervasive
computing applications. In the past, a significant amount of
research has been focusing on the aspect of effective and
efficient recognition. Yet, when context is shared with others,
the resulting disclosure of personal information can have
undesirable privacy implications. A common solution to this
problem is the manual creation of an application-specific
privacy policy that defines which information may be shared
with whom. However, as the number of applications increases,
such a manual approach becomes increasingly cumbersome
and over time, it is likely to lead to incomplete or even
inconsistent policies. In this paper, we discuss how a privacy
policy can be derived automatically by analyzing the user’s
sharing behavior when using online collaboration tools. Our
approach retrieves shared content and the associated sharing
settings, detects context types and automatically derives a
privacy policy that reflects the user’s past sharing behavior.
To validate our approach, we have implemented it as an
extensible software library for the Android platform and we
have developed plug-ins for two popular collaboration tools,
namely Google Calendar and Facebook.

Keywords-Privacy policy, online services, policy derivation,
context-sharing

I. INTRODUCTION

Nowadays, more and more pervasive computing, crowd-
sourcing or participatory sensing applications share context
among their users [1], [2], [3]. Also commercially avail-
able applications (e.g., Windows Media Player) may share
context among their users, for example the song they are
currently listening to (e.g., using the Skype or Facebook
status message). In the past, the research focus usually
lay on the efficient recognition of context information.
Therefore, privacy concerns were often underestimated, with
the major exception of location privacy [4], [5]. Beside
location privacy, also the sharing of other types of context
information, especially the disclosure of personal context
can have undesirable privacy implications. While a common
solution to this problem is the manual creation of a privacy
policy, this has several drawbacks. The created privacy
policy will be application specific, i.e., not shared between
different pervasive computing applications. As a result, the
user needs to define a privacy policy for each application.
This is cumbersome and can result in an incomplete or

inconsistent policy since the user must manually maintain all
privacy policies for different context-sharing applications.

Additionally, the user defines several privacy policies
when using online collaboration tools such as Facebook or
Google Calendar while sharing content with other users.
Here, the user usually defines with whom the content should
be shared manually, either by adding individual users, pre-
defined user lists or individually inviting users to events. So,
on the one hand, the user already defines an implicit privacy
policy for her content. On the other hand, the shared content
contains information about the context of a user, for example
the current context (e.g., status messages) or even a future
context (e.g., events in a calendar). If the context type is
now recognized, it is possible to combine sharing settings
and context types to derive a policy that can be applied to
context-sharing pervasive computing applications.

In this paper, we discuss how a privacy policy can be
derived automatically by analyzing the user’s past sharing
behavior when using online collaboration tools like Face-
book or Google Calendar. Our approach retrieves shared
content and the associated sharing settings, detects context
types and automatically derives a privacy policy that reflects
the user’s past sharing behavior. Context-sharing applica-
tions can then use this privacy policy directly or offer it to
the user as a basis for further customization. In addition, they
can frequently update the policy in order to avoid conflicts
and minimize inconsistencies. To validate our approach, we
have implemented it as an extensible software library for the
Android platform and we have developed plug-ins for two
popular collaboration tools; Google Calendar and Facebook.
To demonstrate and evaluate the library, we discuss its use
in a location sharing application.

The reminder of the paper is structured as follows. In
Section II, we discuss our approach for a framework which
automates the privacy policy generation for context-sharing
applications. Then, we present our prototypical implemen-
tation that detects the context type location and uses plug-
ins to derive a privacy policy from Google Calendar and
Facebook. In Section IV, we show our location sharing
application which benefits from the automatic generation of
a privacy policy. In Section V, we evaluate our approach
using the prototypical application. Finally, we discuss related
work in Section VI and conclude the paper in Section VII.



II. APPROACH

Our goal is to derive a privacy policy from the settings
defined in an online collaboration tool like Facebook or
Google Calendar. This allows users to re-use their previously
specified privacy settings for the use with context-sharing
applications. Often, users already define their individual
privacy needs in online collaboration tools, for example by
adding sharing settings to a (shared) resource (e.g., a status
message, photo, event). This is usually accomplished by
manually choosing the users with whom a resource should
be shared. Additionally, user groups may be predefined to
ease this process, e.g., allowing to choose a predefined
group named family instead of selecting each individual
family member. We assume that these sharing settings can
be translated to context sharing settings for applications,
effectively forming a privacy policy. Our goal is now to use
the resource and the associated sharing setting to derive a
general, context-dependent privacy policy for the use with
pervasive computing, context-sharing applications.

A. System Model

For the derivation of privacy policies from online collab-
oration tools, we require the technical basis described here.
Users are sharing resources by specifying sharing settings in
online collaboration tools. Effectively, it is possible to derive
context types from a resource that could be used by context-
sharing applications. The resources are shared with other
users using a network. Regarding each individual building
block, this is the system model for the derivation of a privacy
policy from online collaboration tools:

• Resource: Resources can be shared between users. A
resource can be a status message, a photo or similar
content shared using an online collaboration tool. Of-
ten, a resource describes parts of the current situation
of a user.

• Sharing setting: Each resource contains sharing settings
that constrain the access to a set of users (e.g., friends
in Facebook). This setting can be specified by the user.
It can be configured individually for each resource.

• Context Type: Since resources in online collaboration
tools often describe details of the current situation of
a user, they may be used to derive their context types.
An example would be a status message resource where
the user reveals her current position. Although the type
of the resource (e.g., image or text) might influence the
context type, there is no direct connection.

• Network: The resource and the associated sharing set-
tings must be accessible remotely over a network such
as the Internet. For this purpose, online collaboration
tools usually exhibit an API which can be used by third
party tools.

Privacy Policy
Generator

Online 
Collab.

Tool
Plug-in

Data Storage

Context
Type

Context
Recognizer

1 2 3

4

5

6

Figure 1. Privacy Policy Generation Framework Architecture & Data Flow

B. Design Rationale and Goals

The overall goal is the derivation of a user-specific privacy
policy by analyzing shared resources in online collaboration
tools. Therefore, we design a framework for the policy
derivation which should be widely applicable. To achieve
this, we define the following design goals.

• Generic: Pervasive computing applications use many
different kinds of context information. As a result, the
framework should be generic with regard to context
types. It should support any type and format of context.
Additionally, different context scopes (e.g., for location:
country, city, street) should be supported.

• Extensible: Beside widely-used social networks like
Facebook or online business tools like Google Calen-
dar, there exist many other online collaboration tools.
The framework should be extensible such that it is
possible to extend the existing framework to support
these other tools.

• Automation: In online collaboration tools, users already
specify their privacy needs manually using sharing
settings. The derivation of the privacy policies should
therefore run fully automatic. Additionally, it should
support the detection of conflicting sharing settings and
present them to the user.

• Low Overhead: Manually defining sharing settings in
online collaboration tools already needs the user’s time
and attention. The privacy policy generation should
have a low overhead in terms of data transfer and the
time that it takes to derive a policy from a resource.

C. Privacy Policy Generation Framework

The privacy policy generation framework consists of
several components that are combined to derive a privacy
policy from online collaboration tools. All components and
their interactions are depicted in Figure 1. The privacy policy
generator has a plug-in interface for online collaboration
tools and another interface for context recognizers. Addi-
tionally, a data storage is connected to the privacy policy
generator to store the derived privacy policy. This allows
the framework to support both, different types of online
collaboration tools as well as different context types. Using
this architecture, the privacy policy generator does not need



to know any details about the collaboration tool plug-ins,
while the context types (and the associated recognizers) are
registered with the generator.

The policy generation can either be executed one-time
(e.g., at the first start of a pervasive computing application)
or regularly (e.g., to re-check the validity of the current
privacy policy). The generation is started when a plug-in
inputs a resource and its associated sharing settings into
the privacy policy generator. The generator then utilizes
the registered context types and their recognizers to detect
context types from that resource. If the context recognizers
detect a context type with a certain probability (definable
both by the recognizer and the policy generator), the type
and the sharing settings are transformed into a privacy policy
and stored in the data storage. If a previous policy for the
same context type contradicts the new policy, the new policy
is not stored, but can be presented to the user to resolve the
conflict. This ensures that only conflict free privacy policies
are stored in the data storage. In detail, the privacy policy
generation data flow looks as follows (see also Figure 1).

1) Resource Retrieval: A plug-in uses the API of an
online collaboration tool to retrieve resources and
associated sharing settings.

2) Resource Preparation: The plug-in prepares the con-
text type detection by adding meta information to the
resource (possible context types, remove redundant
users from the sharing settings). The prepared resource
and the sharing settings are then transferred to the
privacy policy generator.

3) Context Detection: The privacy policy generator re-
ceives the resource and sends it to all (relevant) context
recognizers. Each recognizer detects the context type
(e.g., by using data mining techniques) and associates
a probability with a (possible) detection. A recognizer
is not constrained to one context type, but can recog-
nize several different types.

4) User Matching: In parallel to the context type detec-
tion, the privacy policy generator matches the users
contained in the sharing settings with the user database
of the pervasive computing application. Users that are
not in this database are removed from the settings.

5) Privacy Policy Generation: The privacy policy gener-
ator gets the result from the context recognizers, uses
the context type with the highest probability (if it is
above a predefined threshold) and generates a privacy
policy from the context type and the sharing settings.

6) Storing the Policy: The generated privacy policy is
now transferred to the data storage. If the policy
conflicts with an already stored policy, the storage
marks it as ”preliminary” and asks the user to perform
a conflict resolution for the newly added, conflicting
context types. Preliminary policies are not evaluated
during normal operation, i.e., the used privacy policy

Context
Type

String 
Recognizer

Image 
Recognizer

Audio 
Recognizer

Object
Identification

Context Recognizer

Figure 2. Context Type with Context Recognizer

is always free of conflicts.
If there are no conflicts, or the conflicts were resolved,
the privacy policy is stored in the data storage and will
be queried when applications want to share context.

The successful execution of these steps results in the
generation of a privacy policy containing the context type(s)
published at a particular online collaboration tool and the
intersection of the users that (a) use the pervasive computing
applications and (b) are mentioned in the sharing setting(s).

The steps can be executed several times for each online
collaboration tool. Each execution will then extend the
policy for an existing context type or add new context types
to the policy. The Steps 3 and 4 can be executed in parallel,
reducing the time for the policy generation. Similarly, all
steps can be parallelized with different plug-ins. Only Step
6 must be synchronized between all parallel instances to
keep the privacy policy in the storage conflict free.

III. IMPLEMENTATION

Validating the concepts of our approach, we have im-
plemented it as an extensible framework. The core part is
developed as a library on the Android operating system. An-
droid was chosen since it is an operating system for mobile
devices (such as smartphones) that are used by pervasive
computing applications. User interfaces are implemented
using so-called activities, computations in the background
can be either implemented as services (long-running) or as
asynchronous tasks (short running, result usually changes
the user interface). The prototypical implementation focuses
on the context type location, but is designed generic which
allows support for other context types. Additionally, the
extensible implementation includes two plug-ins for popular
online collaboration tools. The first plug-in uses Google
Calendar and evaluates shared events and sharing settings
for the calendar, while the second plug-in analyzes status
messages of users in Facebook.

A. Context Types and Recognition

As can be seen in Figure 2, a context type is always
associated with at least one context recognizer. This allows
the framework to recognize context types of arbitrary re-
sources (such as a status message or an image). As a result,
context types without recognizer cannot be derived from
resources and are therefore not considered by the framework.



Permission {
User 616
Context type location
Scope 0

}

Figure 3. A Permission of the Privacy Policy

In general, a context type usually describes a single context
like location and also allows to define scope levels (such as
country, city or street using the location context type). This
allows an application to share context on different scopes.

For the privacy policy generation, the context recognizers
perform an important task, the recognition of the context
type from a (Java) object (the resource) that is passed on by a
caller. While this paper does not present context recognizers,
it is possible to add several recognizers to the framework.
Possible examples are the NARF activity recognition frame-
work [6] or other stand-alone (not server-based) recognizers
like CenceMe [1] that can be executed on Android devices.
To fulfill the context type recognition task, each recognizer
will first identify if the object type is supported and execute
the appropriate recognizer component. The example depicted
in Figure 2 supports string, image and audio contents. After
the appropriate context recognizer is executed, it will assign
a probability (which can be 0%) to each object type that
was passed on. The probability will then be reported back
to the caller.

Eventually, the caller (usually the privacy policy gener-
ator) can evaluate all answers received from the context
recognizers. Then, the caller decides, based on the individual
probabilities, which context type should be assigned to the
resource, if any.

B. Privacy Policy Generator Library

The privacy policy generator library is the central element
of the privacy policy generation framework. The data flow to
and from the generator is depicted in Figure 1 and described
in Section II-C. To be as flexible as possible, each online
collaboration tool plug-in can trigger the privacy policy
generator and start the policy generation. This can also be
done in parallel, only the access to the common data storage
component must be synchronized to provide a consistent
view on the stored data.

The library uses then the transferred sharing settings
and reads out the individual users. Hereby, it only extracts
users that are allowed to access a shared resource. The
reason for this is that our current privacy policy is using
a binary grant/deny access scheme on context types. Of
course, this model can be extended with a more complex
scheme (e.g., involving the time of the day when access
to certain context types is granted). After the individual
users are read out, a user matching is performed. The user
matching process is twofold. At first, only users whose
unique account identification for an online collaboration

Figure 4. A Screen Showing the Generated Permissions

tool (e.g., the Facebook id) that is already known to the
framework are considered. In a second step, we match the
user name and e-mail address. In the future, we plan to
extend this with a more sophisticated user matching process
involving multiple attributes (e.g., location, birthday, etc.)
to match users even when other attributes (like the e-mail
address) are not publicly available. This process shows that
it is possible to match users even when few attributes are
available and it has also proven to be effective [7]. In the
end, all matched users are added to a preliminary privacy
policy permission object.

In parallel, the privacy policy generator uses the context
recognizers to detect context types from the transferred re-
source. Both information, the detected type and the users are
then combined to one policy element, in our implementation
called permission. An example can be seen in Figure 3. All
permissions together form the privacy policy of the device.

At the end, the library stores these permissions in the
data storage (usually after user approval, see Figure 4),
adding them to the privacy policy. The screen depicted
here suggests the user that the context type location should
be shared with two users. As an additional information,
the context detection mechanisms provided a probability of
80%. Conflicting permissions are not added to the policy.
Instead, the user is presented a screen to choose which
permission should be added. The privacy policy generated
by the library can then be accessed through the data storage
by other (context-sharing) applications.

C. Google Calendar Plug-in

Google calendar is a popular tool for sharing calendars
between users. It allows to set different levels of calendar
sharing. A user may choose to only share her free/busy state,
but can also share the calendar completely, including the
ability to create appointments in the calendar.

Additionally, the appointments in the calendar contain
fields that may exhibit different context information. The
where field for example indicates that location information
is shared, the guest list shows not only with whom this
appointment is shared, but could also reveal if this is a
private or a work-related appointment.



Figure 5. A Status Message on Facebook

"privacy": {
"description": "Marcus Handte, Stephan Wagner", 
"value": "CUSTOM", 
"friends": "SOME_FRIENDS", 
"networks": "", 
"allow": "100001057542495,645219883", 
"deny": ""

}, 
"message": "Currently working in Essen. Nice weather today, 
meet you later in the beer garden!", 
"id": "100001039541728_819141028130541", 
"created_time": "2014-09-04T14:20:26+0000"

Figure 6. Graph API Representation of Figure 5

The Google calendar plug-in uses Google’s API to extract
information and sharing settings from the appointments and
sends it to the privacy policy generator library. For fields
with known context types (such as the where field), the plug-
in defines the context types that are going to be detected by
the library. For other fields (like description), the library
determines the context types (if any). For all detected types,
the library then extracts the set of users the types are shared
with and adds the derived permissions to the privacy policy.

D. Facebook Status Messages Plug-in

Another popular online collaboration tool is Facebook.
It is used mostly for private interactions and supports the
creation of small statements that describe the current status
of a user, so-called status messages (see Figure 5). Since
the messages are usually describing the current situation of
a user, they can often be used to derive context information.

Additionally, the user creating the status message can
constrain access to these messages by providing sharing
settings. Each status message may be shared with a different
set of users (called friends in Facebook) or lists of users
(friendlists). The user can also define a default sharing
setting that will apply, if she did not specify a custom setting.

The Facebook status messages plug-in uses the Facebook
Graph API and retrieves status messages from Facebook.
An example JSON response by Facebook can be seen in
Figure 6. Additionally, the plug-in extracts friends that have
access to these messages from the sharing settings and also
processes friendlists. Each status message and its associated
sharing setting can be transferred to the privacy policy
generator library to detect possible context types and add
them, together with the set of users that is allowed to access
these types, as a permission to the privacy policy.

IV. APPLICATION

To validate our approach, we have implemented a location
sharing application called Locator. The application works

similar to the localization components of LifeMap [8]. It per-
forms the location detection using three different localization
methods. It executes a WiFi scan, uses the GSM/UMTS net-
work and GPS, depending on the current (detected) status of
the user (e.g., indoor, moving or outdoor). The combination
of these three different localization methods allows the Loca-
tor application to perform an energy-efficient localization of
the user. Additionally, Locator supports different scopes for
the context location. E.g., instead of showing the actual GPS
coordinates of the position of a user, it is possible to only
show the current city. Locator uses the geo-coding abilities
of Google’s location service to obtain the address and then
extracts parts of the address that coincide with the scope the
user specified.

In addition to the LifeMap features, Locator allows to
share the location between its users, creating an application
which works similar to the Google application Latitude1.
The application itself builds on the GAMBAS middleware
[9] which provides Locator with a query processor that is
used to query for the location of other users. More details
on the GAMBAS middleware and SDK can be found in [9].

Since location sharing is sensitive for most users, Locator
requires user consent when sharing the current location
information. As with similar context-sharing applications,
user consent is obtained by a privacy policy that must be
edited by the user. The privacy policy generation framework
allows to automate this step. When a user now wants to use
Locator instead or in addition to manually written status
messages to share her current location (see Figure 5), she
can either manually edit her privacy policy and allow sharing
her location with another user, or, use the framework to
automatically generate privacy policies (see Figure 4) which
(after user approval) allow the sharing according to previous
sharing behavior in online collaboration tools. As soon as the
policy is applied, it is possible for users that were included
in the policy to retrieve the user’s location (see Figure 7(a)).
Additionally, Locator allows a user to view her own trip
history (see Figure 7(b)). Since the trip history is only stored
on the user’s own device, no privacy policy applies in this
case. Similar to Google Latitude, Locator does not store the
location history of other users, for privacy reasons.

V. EVALUATION

In this section, we evaluate our approach for the automatic
generation of privacy policies. We concentrate on the four
design goals that we introduced in Section II-B.

A. Generic

Our approach for the automatic generation of privacy
policies does not constrain the type of context, i.e., it is
possible to use it with every type of context. Similarly,
the approach does also not constrain the recognizer in any

1Google Latitude was retired on August 9th, 2013. A similar feature is
now offered to users of the social network Google+.



(a) Location Sharing (b) Trip History

Figure 7. The Locator location-sharing Application

way. A context recognizer could support the recognition of
context types from any kind of data. Although context types
that cannot be recognized by a recognizer are supported,
the generated privacy policy will never include these types
of context, since they could not be detected. These kinds
of unrecognizable context types can be added to the policy
manually by the user, though.

Additionally, the privacy policy generation framework
does allow for a context type to have different scopes. If
supported by the context recognizer, the generated privacy
policy contains the proper scope for a recognized type. So, it
is possible to use an arbitrary ontology that defines different
context types and scopes like the CoBrA ontology [10].

B. Extensible

There are several providers with resources that can be
used to derive a privacy policy from them. In our imple-
mentation, we were using Facebook status messages and
Google Calendar events. Additionally, the framework can
be extended with other plug-ins. Each plug-in can use one
or more resource types from an online collaboration tool
for the policy derivation. Only two kinds of information
must be accessible and delivered to the framework: (a) the
contents of the resource and (b) the users with whom the
resource is shared. Using this information, the framework
can execute the context recognizers and create permissions
for the context types. Additionally, a plug-in can also deliver
a list of possible context types that the resource can exhibit.
This might speed up the context recognition process since
the framework will then concentrate the recognition on a
subset of all possible context types.

In summary, the framework can be extended easily by
plug-ins for other online collaboration tools. Additionally,
we argue that the threshold for the creation of such plug-ins

Mean (in ms) Standard deviation (in ms)

Facebook Plug-in 868 ms 79.4 ms

Context Recognition (location) 0.60 ms 0.081 ms

Privacy Policy Generation 52 ms 16.4 ms

Figure 8. Measuring the Privacy Policy Generation depicted in Figure 1

is low since the plug-ins only need to extract few information
from the online collaboration tools.

C. Automation

The generation of a privacy policy for context-sharing
applications is executed fully automatic. All steps depicted
in Figure 1 can be performed automatically. Plug-ins for the
framework only need user interaction when the user autho-
rizes the application. The type of authorization depends on
the online collaboration tool, but often involves an OAuth-
like [11] process. The generation of the privacy policy itself
is executed without any user interaction. When a conflict-
free privacy policy is generated, it could be applied to the
context-sharing applications automatically.

Because of the possible unreliability of context type de-
tection and sharing settings chosen by mistake, the generated
privacy policy should be reviewed by the user. This would
introduce a manual step, before the policy is applied and
stored. Similarly, if a conflict is detected, the user would
need to manually resolve it. The framework can prepare
possible solutions, but the user needs to choose the right
one. This manual step is inevitable to ensure that the user
really agrees to the generated policy. In our implementation,
as can be seen in Figure 4, we visualize the generated
permissions (which form the privacy policy), helping the
user in validating the automatically generated privacy policy.

D. Low Overhead

The overhead of the automatic generation of a privacy
policy depends heavily on the used plug-ins for the online
collaboration tools and the context recognizers. If, for ex-
ample, a plug-in transfers high resolution images and let the
context recognizer perform a complicated image processing
task, the overhead is much higher than when only text is
transferred and a relatively simple word processing task is
executed. When complicated processing tasks are executed,
the framework can ensure that the generation of the privacy
policy is only executed when (a) WiFi is available (to avoid
exhausting the data plan) and (b) the smart phone is not used
(e.g., at night time) and charging.

To measure the framework’s overheads, we follow the
steps shown in Figure 1. At first, we measured our Facebook
plug-in (retrieving status messages, Step 1 and 2), then
our recognizer (detecting the context type location using
a word list with more than 26500 cities, Step 3) as well
as the complete time, executing the policy generator and



the recognizer (Steps 3 to 5), computing and displaying the
generated policy to the user. Our measurement setup consists
of one Nexus 5 smart phone that is using a dedicated WiFi
network. We performed each measurement 100 times and
computed the average as well as the standard deviation. The
results can be seen in Figure 8. The total time for Steps
1 to 5 stays well below 1000ms (868ms + 52ms), with a
standard deviation of σ = 95.8ms (79.4ms+ 16.4ms).

As can be seen easily in Figure 8, the main latency
(868ms) is introduced by the online social collaboration tool
plug-in. The execution of the privacy policy generator only
takes 52ms, including the context recognition of 0.60ms.

Regarding the amount of transferred data, we use the
message that is displayed in Figure 5 as a reference for
an average status message. Facebook status messages can
be longer, but often tend to stay well below the maximum
length of a Twitter message (140 characters). As can be
seen in Figure 6, the sharing settings are often longer than
the actual message. The status message presented here uses
a data volume of 383 bytes. This results in a very low data
volume, even if the user has many recent status messages.

Although the actual data volume and execution time
depends on the used plug-ins and context recognizers, we
conclude that the components we implemented in our frame-
work only introduce a low overhead.

VI. RELATED WORK

The privacy policy generator is a continuation of the idea
to use online collaboration tools for pervasive computing
applications. In our previous work PIKE [12], we used the
tools to exchange cryptographic keys which allowed data-
sharing over an encrypted and authenticated communication
channel. In contrast to that, we exploit the sharing of
information (i.e., context) with users of online collaboration
tools here. This work is focused on the privacy aspects,
i.e., which kind of data should be shared with whom. Both
approaches are therefore orthogonal to each other and can
be combined to achieve a high level of security and privacy.

There are more and more pervasive computing applica-
tions that share context information. An example is the
CenceMe [1] application which shares detected context.
While currently these applications usually post directly to
the online collaboration tools and use a user-defined policy
for each of them, the privacy policy generator presented here
allows them to use one consistent privacy policy for multiple
online collaboration tools with several context types.

Several papers describe approaches to create or extend
a privacy policy language [13], [14], [15]. Our currently
used simple policy language can be replaced with such a
language. This would also allow to describe more complex
situations, e.g., if a context should be shared only in a
specific time-slot. In this paper, we do not focus on the
privacy policy language itself, but on the possibility to derive
a privacy policy (or parts of it) from online collaboration

tools. The privacy policy generation framework can export
or convert the created policy in other policy languages, if
necessary. Nevertheless, the simple policy that is generated
currently can be used directly by pervasive computing ap-
plications as demonstrated in Section IV.

Toch et al. [16] and Fang et al. [17] describe that it is
difficult for users to adjust their privacy settings to their
needs properly. As a consequence, they try to help them
and ease the process of privacy setting creation. Fang et al.
[17] create a privacy wizard that can be trained by the user
and allows to configure (at least parts of) the user’s privacy
settings automatically. Toch et al. [16] analyzes and clusters
existing privacy settings, allowing a new user to choose
from a popular set of privacy settings instead of starting
from scratch. This allows users to set their privacy settings
correctly, which is mandatory for our framework to be used
reliably. Both approaches do not extract a privacy policy
from the online collaboration tools or detect the context
type that is shared, but they can be combined with our work
which might result in a better fit of the generated privacy
policy.

There also exists related work that is deriving privacy
policies from online collaboration tools [18], [19], [20].
Danezis [18] is grouping users according to their mutual
relationships and because of this relationship, a context
is assigned to them. In contrast to our work, the context
describes the group and not the type of data that is shared.
Additionally, the user specified sharing settings of shared
resources are not taken into account. Vyas et al. [19] tries to
automatically manage privacy for different types of content,
similar to our approach. Instead of using machine learning
techniques to derive the context information, they require the
user to manually assign tags to the content they are going
to share. While this will work on user-published content
like a Blog post, average users of online collaboration
tools might not be willing to tag all their posts or events.
Toch [20] describes how privacy preferences can be crowd-
sourced using a crowdsourcing framework called Super-Ego.
Beside crowdsourcing privacy preferences, they also predict
preferences (using the crowd sourced data). In contrast to our
work, they are using a centralized server to store manually
made privacy preference decisions in a so-called crowd
model. In this paper, we use several context sources from
online collaboration tools, not using the crowd, but only
one, individual user. We store the generated privacy policy
exclusively on the user’s own device, making it available to
other pervasive computing applications executed by the user.

VII. CONCLUSION

Context-sharing applications have become more and more
important in the domain of pervasive computing. Often,
this has undesirable privacy implications which can be
mitigated by defining a privacy policy for each application.
Additionally, the user is already defining privacy policies



for shared content in online collaboration tools such as Face-
book or Google Calendar. These policies can be used for the
automated generation of privacy policies for context-sharing
applications. The generated policies are then based on the
user’s previous sharing behavior. This eases the process of
defining privacy policies which is often cumbersome for the
user. Therefore, we have developed a tool that automatically
generates privacy policies out of sharing settings used in on-
line collaboration tools. Frequent re-runs of the tool update
the policy, avoid conflicts and minimize inconsistencies. In
this paper, we have shown that our concept is feasible and
can, through the support of different online collaboration
tools and context types, be extended easily to a wide range
of pervasive computing scenarios.

Our tool, the privacy policy generator, is currently being
integrated into the GAMBAS middleware. The generated
policy will then be used by all context-sharing applications
that are built on the basis of the GAMBAS SDK. With
regard to the privacy policy generation, we are planning
to attach the NARF activity recognition system [6] to the
generator so that we are able to recognize more context
types. Additionally, we want to provide better support to
users who use only one collaboration tool account for
professional and private life.

ACKNOWLEDGMENTS

This work is supported by UBICITEC e.V. (European
Center for Ubiquitous Technologies and Smart Cities),
GAMBAS (Generic Adaptive Middleware for Behavior-
driven Autonomous Services) and BESOS (Building Energy
Decision Support Systems for Smart Cities) funded by the
European Commission under FP7 with contract numbers
FP7-2011-7-287661 and FP7-SMARTCITIES-2013-608723.

REFERENCES

[1] E. Miluzzo, N. D. Lane, K. Fodor, R. Peterson, H. Lu,
M. Musolesi et al., “Sensing meets mobile social networks:
The design, implementation and evaluation of the cenceme
application,” in Proc. of the 6th ACM Conf. on Embedded
Network Sensor Systems, ser. SenSys ’08. ACM, 2008.

[2] P. Shankar, Y.-W. Huang, P. Castro, B. Nath, and L. Iftode,
“Crowds replace experts: Building better location-based ser-
vices using mobile social network interactions,” in Perv.
Comp. and Comm. (PerCom), 2012 IEEE Int. Conf. on.

[3] D. Philipp, P. Baier, C. Dibak, F. Dürr, K. Rothermel,
S. Becker et al., “Mapgenie: Grammar-enhanced indoor map
construction from crowd-sourced data,” in Perv. Comp. and
Comm. (PerCom), 2014 IEEE Int. Conf. on, March 2014.

[4] M. Wernke, F. Dürr, and K. Rothermel, “Pshare: Position
sharing for location privacy based on multi-secret sharing,” in
Pervasive Computing and Communications (PerCom), 2012
IEEE International Conference on, March 2012, pp. 153–161.

[5] D. Riboni and C. Bettini, “Differentially-private release of
check-in data for venue recommendation,” in Perv. Comp. and
Comm. (PerCom), 2014 IEEE Int. Conf. on, March 2014.

[6] M. Handte, U. Iqbal, W. Apolinarski, S. Wagner, and P. J.
Marrón, “The NARF architecture for generic personal context
recognition,” in Sensor Net., Ubiquitous, and Trustworthy
Comp. (SUTC), 2010 IEEE Int. Conf. on, June 2010.

[7] M. Ali, “Gathering and matching of user information de-
rived from social networks,” Bachelor’s thesis, Universität
Duisburg-Essen, March 2011.

[8] Y. Chon and H. Cha, “Lifemap: A smartphone-based context
provider for location-based services,” Pervasive Computing,
IEEE, vol. 10, no. 2, pp. 58–67, April 2011.

[9] W. Apolinarski, U. Iqbal, and J. Parreira, “The GAMBAS
middleware and SDK for smart city applications,” in Perva-
sive Computing and Communications Workshops (PERCOM
Workshops), 2014 IEEE Int. Conf. on, March 2014.

[10] H. Chen, T. Finin, and A. Joshi, “An ontology for context-
aware pervasive computing environments,” Knowl. Eng. Rev.,
vol. 18, no. 3, pp. 197–207, Sep. 2003.

[11] D. Hardt, “The OAuth 2.0 authorization framework, draft-
ietf-oauth-v2-31,” July 2012.

[12] W. Apolinarski, M. Handte, U. Iqbal, and P. J. Marrón, “Se-
cure interaction with piggybacked key-exchange,” Pervasive
and Mobile Computing SI, vol. 10, Part A, 2014.

[13] L. Kagal, T. Finin, and A. Joshi, “A policy language for
a pervasive computing environment,” in Proc. of the 4th
IEEE Int. Workshop on Policies for Distributed Systems and
Networks, ser. POLICY ’03. IEEE Computer Society, 2003.

[14] D. Hong, M. Yuan, and V. Y. Shen, “Dynamic privacy
management: A plug-in service for the middleware in per-
vasive computing,” in Proc. of the 7th Int. Conf. on Human
Computer Interaction with Mobile Devices & Services, ser.
MobileHCI ’05. ACM, 2005, pp. 1–8.

[15] W3C, P3P Working Group, “The Platform for Privacy
Preferences 1.1 (P3P1.1) Specification.” [Online]. Available:
http://www.w3.org/TR/P3P11/

[16] E. Toch, N. M. Sadeh, and J. Hong, “Generating default
privacy policies for online social networks,” in CHI ’10 Ext.
Abs. on Human Factors in Comp. Sys., ser. CHI EA ’10, 2010.

[17] L. Fang and K. LeFevre, “Privacy wizards for social network-
ing sites,” in Proc. of the 19th Int. Conf. on World Wide Web,
ser. WWW ’10. ACM, 2010, pp. 351–360.

[18] G. Danezis, “Inferring privacy policies for social networking
services,” in Proc. of the 2nd ACM Workshop on Security and
Artificial Intelligence, ser. AISec ’09. ACM, 2009.

[19] N. Vyas, A. Squicciarini, C.-C. Chang, and D. Yao, “Towards
automatic privacy management in web 2.0 with semantic anal-
ysis on annotations,” in Collaborative Computing: Network-
ing, Applications and Worksharing, 2009. CollaborateCom
2009. 5th International Conference on, Nov 2009, pp. 1–10.

[20] E. Toch, “Crowdsourcing privacy preferences in context-
aware applications,” Personal and Ubiquitous Computing,
vol. 18, no. 1, pp. 129–141, 2014.


