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Abstract

Online collaboration tools are a ubiquitous mediator of many human inter-
actions. In the virtual world, they enable secure interaction by controlling
access to shared resources. Yet relying on them to support face-to-face collab-
oration might be suboptimal as they require Internet connectivity. A more
efficient way of co-located resource sharing is the use of local communica-
tions. Yet setting up the necessary security mechanisms can be cumbersome.
In this article we present PIKE and its variant P2PIKE, key exchange pro-
tocols that minimize this configuration effort. Both piggyback the exchange
of keys on top of an existing service and exchange keys proactively – before
the interaction takes place. In addition to an implementation, we outline
two applications and present a thorough evaluation to show the benefits and
limitations of our approach.
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1. Introduction

Online collaboration tools such as Google+, Facebook or Dropbox have
become an important and ubiquitous mediator of many human interactions.
In the virtual world, they enable secure remote interaction by supporting re-
stricted sharing of resources such as documents, photos or calendars between
users. Users are typically identified with a unique identifier and they authen-
ticate themselves by means of passwords or similar mechanisms1. The shared

1Examples are two-factor authentication or client-specific certificates.
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resources can then be tied to different sets of identifiers such as friend lists in
Facebook or circles in Google+. To control access to resources, online collab-
oration tools typically use encrypted communication such as TLS and require
authentication upon resource access. Using web-based interfaces, users can
access their information from different machines. In addition, many services
also provide mobile applications to support access on-the-go and an API for
third-party tools to access their resources. Besides providing optimized visu-
alizations, most mobile applications and third-party tools make use of local
caching and synchronization to enable disconnected operation.

The success of these collaboration tools indicates that this mediation
model can effectively support secure remote interaction. Yet, using them
for face-to-face collaboration2 that take place in the physical world can be
suboptimal. The main reason for this is that such collaboration involves
multiple partners that interact with each other at the same time and place.
In such a setting, the various issues arising from a remote connection—such
as higher response times or intermittent connectivity—cannot be hidden by
caching and synchronization. A much more efficient way to support online
collaboration between co-located partners would be to support their online
collaboration by means of short-range wireless communication. However,
to provide a similar level of security, this would require encryption and the
configuration of corresponding authentication mechanisms. Without a medi-
ating online tool, the co-located interaction partners would have to manually
exchange authentication or encryption keys which so far has been too cum-
bersome to be used in practice.

To avoid this problem, we have designed PIKE, a key-exchange protocol
that aims at seamlessly extending the support provided by online collabora-
tion tools to enable wireless collaboration among face-to-face collaborators.
The basic idea behind PIKE is to piggyback the exchange of keys on top of
the existing service infrastructure of an online collaboration tool in a proac-
tive manner. Thereby, we eliminate the need for manual configuration as
well as Internet connectivity when the interaction takes place locally.

A prototype application scenario for PIKE is a business meeting for which
invitations are shared over a secure connection using Google Calendar. When
detecting the invitations, PIKE automatically exchanges keys over the Inter-
net using the Google infrastructure and stores them locally on each partner’s

2Here, collaboration is not restricted to work context.
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device. When the meeting takes place, the keys can be used to establish
secure wireless LAN communication among the participants’ devices or to
authenticate participants without requiring any Internet connectivity. A sec-
ond scenario envisions two friends that meet spontaneously in the city. Using
their smart phones, they want to interact and transfer data (e.g., pictures)
securely. A variant of PIKE, P2PIKE enables them to use automatically
exchanged peer-to-peer keys to set-up a secure communication.

The contribution of this article is threefold. First, we introduce PIKE as
an approach for enabling non-mediated, secure and configuration-free face-to-
face collaboration. Second, we describe its implementation as an extensible
Android library that integrates with wireless tethering to enable the fully
automatic establishment of a secure wireless LAN. Third, we present several
applications and an analytical as well as an experimental evaluation indicat-
ing that PIKE is broadly applicable and (at least) as secure as the underlying
online service.

2. Approach

Our goal with PIKE is to support local collaboration in a configuration-
free and secure manner that does not require Internet connectivity during
the time the interaction takes place. To achieve this, PIKE exchanges keys
piggybacked on an existing service infrastructure before the interaction takes
place. This key exchange is typically triggered by a virtual representation of
the upcoming interaction such as a meeting entry in a calendar. Additionally,
it can be performed with all known users of an online service that use PIKE
(e.g., Facebook friends running the PIKE app). The exchanged keys can
then be used by applications to secure a wireless LAN communication, e.g.,
by means of encryption or message authentication.

2.1. System Model and Assumptions

The technical basis for PIKE are mobile devices, such as phones, tablets
or laptops that share resources with each other remotely through a network,
mediated by a service. Regarding these four building blocks we assume:

• Services: The service enables secure restricted sharing of resources.
This means that the service authenticates its users, models relation-
ships between different users with respect to resource usage and en-
ables the specification and enforcement of access rights. The service
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performs its access control to resources properly. Meaning that a) it
protects the resources from being accessed by illegitimate users and b)
it allows access from legitimate users. Yet, beyond proper service op-
eration, we do not assume that the service is necessarily trustworthy.
Examples may be Facebook, Google+ or Dropbox.

• Network: A network such as the Internet enables devices to access the
service regularly. The network may be insecure and, occasionally, it
may be unreliable or unavailable, e.g., due to a network outage, an
incomplete coverage or unaffordable roaming fees.

• Devices: The user’s device is able to access the service regularly through
the network. For this, the service uses a mobile application that syn-
chronizes the changes to a shared resource or provides an API that can
be used for resource synchronization.

• Resources: Some of the resources shared between users can be read and
edited not only by the creator but also by the interaction partners. For
PIKE, we assume that some of the shared resources are used to plan a
face-to-face collaboration and thus, provide time information. Exam-
ples for such resources are a calendar entry or a message indicating an
upcoming meeting. Using P2PIKE, this assumption can be dropped.
In Section 2.3.2, we describe the necessary changes to PIKE.

2.2. Design Rationale and Goals

Besides achieving the functional goal of exchanging keys, the desire to
maximize PIKE’s applicability for various types of face-to-face collaboration
defines the following design goals.

• Full Automation: To minimize the time required by interaction part-
ners to set up secure communication, PIKE should not require manual
configuration. Instead, the key exchange performed by PIKE should
be fully automated such that it becomes transparent to them.

• High Security : In order to truly protect the interactions between the
devices, key exchange with PIKE must be secure. Given that the col-
laboration partners are already using an online collaboration service
through remote interaction in order to share resources in a secure man-
ner, the use of PIKE to secure wireless collaboration in face-to-face
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meetings should result in (at least) the same level of security as offered
by the online service.

• Low Latency: To avoid situations in which keys are not available for
partners, the exchange of keys with PIKE must not introduce a high
latency. Specifically, PIKE should be able to provide the exchanged
keys quickly after a face-to-face collaboration has been planned, i.e.,
after a corresponding calendar event has been created or an invitation
email has been sent. The key should therefore be exchanged within a
few seconds.

• High Scalability: As the face-to-face collaboration may involve groups
of different sizes, PIKE should be able to support typical group sizes.
This means that it should not only be able to provide keys for office
scale meetings, but it should also support larger events such as scientific
conferences with a few hundred participants.

2.3. Key Exchange Protocol

As explained in Section 2.1, the mobile application provided by the ser-
vice contacts the service and synchronizes recent resource changes regularly
onto the user’s device. If the mobile application is not present, the PIKE
or P2PIKE app can use the API provided by the service to do this resource
synchronization. We now describe our two approaches for key exchange pro-
tocols, PIKE and its variant P2PIKE. Both protocols piggyback on services
such as online collaboration platforms. PIKE exchanges keys for a group of
users. The key exchange is triggered by a resource (e.g., an event) that is
stored at the service. P2PIKE exchanges keys on a peer-to-peer basis with
single users of a service. Using our current implementation, both require the
users to use a service that is supported by the PIKE application (i.e., Google
Calendar or Facebook).

2.3.1. PIKE

PIKE is using an online collaboration platform to support resources like
group events. PIKE uses resource changes in online collaboration platforms
to trigger key exchanges. Every time a resource changes, PIKE starts to
analyze it in order to detect changes in PIKE-enabled resources that trigger
a key exchange. An example for such resource changes is the creation of an
event on Facebook that has been shared with a set of friends and is marked
as shared event (c.f., Figure 1(a)).
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(a) PIKE Resource and Trigger (b) P2PIKE Resource

Figure 1: PIKE Resources in Facebook

Once a relevant change has been detected, key exchange takes place. For
this, each partner shares a key with the creator of the resource, who in
turn shares her or his key with each of the partners. This key exchange is
facilitated by sharing capabilities that are already provided by the service. To
do this, PIKE performs either a local modification on the triggering resource
or, if this is not possible due to a limitation of the mobile application, it
uses the API of the service. Once the changes have been made, PIKE waits
for the next resource synchronization at which point all partners will receive
the key of the resource creator and the resource creator will receive all keys
from all other partners. Once this key exchange has taken place, these keys
can be used to enable direct secure communication among the devices of the
partners.

Figure 2(a) depicts the resulting logical protocol flow which is executed
remotely by all partners before the face-to-face collaboration takes place.
Conceptually, PIKE involves three entities, namely the device of the partner
creating the resource (the initiator), the devices of the remaining partners
(the participants) and the online collaboration service. To establish keys,
these three entities interact with each other using five steps.

1. Initiation: The initiator creates the resource that triggers the key ex-
change (e.g., an event invitation) using the service’s UI and marks it
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as a PIKE-enabled resource. Thereby, the initiator specifies the set of
users (participants) that should be able to access the resource and sets
the appropriate access restrictions. The resource is then added to the
service which makes it available to the specified users.

2. Synchronization: After the resource has been added and shared by the
service, the devices of all partners will eventually retrieve the change as
part of their normal synchronization process. At that point, the device
of the initiator as well as the devices of the participants can access the
triggering resource.

3. Trigger Recognition - Initiator: The initiator’s device recognizes the
trigger resource retrieved from the service. The local PIKE process
creates a key and shares it with all participants simply by attaching
it to the resource which will be synchronized with the service again.
This key can later be used to protect the communication between the
devices of the partners from other entities that are not participating in
the interaction.

4. Trigger Recognition - Participants: After the initiator has attached its
key, it will eventually be propagated to the participants. At this point,
their corresponding local PIKE processes retrieves the key and stores
it for later use (4a). In order to enable user-level authentication, the
PIKE processes on the participants’ devices in turn each create a new
key and share it with the initiator (4b). Depending on the service,
this can be either done by attaching it to the triggering resource or by
creating a new resource that is only shared with the initiator.

5. Trigger Synchronization: Every time a participant shares a new key (by
means of attaching it or by creating a new resource for it), the initiator
will eventually receive it on his device. At this point, the PIKE process
on the initiator’s device learns that this participant wants to join the
event, takes the key and stores it for later use.

After the completion of these steps all interaction partners possess the
key generated by the initiator and the initiator shares a key with each of
the participants. Once the face-to-face collaboration takes place, these keys
can be used to enable group communication as well as private communication
and user-level authentication between the initiator and the participants. The
authentication information can then be used to bootstrap further keys (e.g.,
using Kerberos), though the applications described in this article do not
require this.
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Figure 2: Logical Protocol Flow

To speed up the sequential protocol flow described previously, it is pos-
sible to execute steps 3 and 4b in parallel. For this, the participants share
their keys with the initiator immediately after detecting the triggering re-
source (without waiting for the initiator to share a key). As part of step 5,
they then check for updates on the trigger resource in order to detect the
initiator’s key as soon as it has been shared. As we describe later on, this
simple parallelization can provide a significant speed up.

PIKE distributes a symmetric key for each event resource (i.e., a shared
group key) which allows us to support resource constrained devices using
symmetric cryptography. Although theoretically possible, in our implemen-
tation, we do not support asymmetric key exchanges (like a group key diffie-
hellman) here. Asymmetric cryptography could be implemented in PIKE,
but would result in a higher processing time. For a similar reason, the indi-
vidual user-level keys are distributed as symmetric keys (i.e., posted by the
participants).

2.3.2. P2PIKE

In general, PIKE uses a triggering resource to support full automation.
This automation allows choosing the necessary keys automatically at the time
the face-to-face collaboration takes place. In order to drop the assumption
of needing a triggering resource, we created P2PIKE, a peer-to-peer version
of PIKE which allows exchanging keys with each user individually, i.e., the
initiator of an exchange would possess individual keys, one for each user. The
exchanged keys can then be used for spontaneous face-to-face collaboration.
It depends on the used discovery mechanism (e.g., visual identification of
users or the transferring of data between users that includes a user’s id) how
far automation is supported in P2PIKE.
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In contrast to PIKE, P2PIKE is focused on single users (i.e., peers) in-
stead of a group of users. It allows to exchange keys which can then be used
for peer-to-peer communication at face-to-face meetings. The usage of the
keys is not restricted at all and could be used for the secure exchange of
any kind of data. Instead of using a resource to trigger the key exchange,
users can either manually trigger the key exchange by choosing from a list of
P2PIKE users on the online collaboration platform of their choice. Alterna-
tively, they automatically start to exchange keys with all users of P2PIKE
that they are related to (e.g., friends in Facebook) when they start to use
P2PIKE. If P2PIKE detects a key exchange request from such a friend, it
automatically answers the request without user interaction.

As depicted in Figure 2(b), the goal of P2PIKE is the automatic compu-
tation of a shared secret key for two peers. Additionally, the service should
not be able to passively overhear this key. Therefore, we support asymmetric
algorithms like Diffie-Hellman (DH) or RSA which require two messages that
can be executed in the following four steps.

First, an asymmetric key pair (e.g., a DH key pair) is created. Then,
similar to the procedure performed by PIKE, P2PIKE will use the mobile
application or the API of the service. P2PIKE will—depending on the used
online service—attach or create a new resource (e.g., Figure 1(b)), adding
the public key of the created key pair (Step 1). At the next resource synchro-
nization, the peer will pick up the resource (Step 2), create his own key pair
and then attach his public key to it (Step 3). In the next synchronization
interval, the device that triggered the key exchange will recognize the attach-
ment from the peer and complete the key exchange (Step 4). At this time,
both peers can now compute the shared secret key by extracting the other
peer’s public key from the resource. The key pairs that were created during
the key exchange are not used anymore and deleted after the shared secret
key is computed. This key can be used for secure communication similarly
to the shared group key that was exchanged using PIKE. In difference to the
shared group key, which identifies a communication group, the shared secret
key identifies a connection between two peers.

At the time a face-to-face collaboration between the two peers takes place,
both can use the exchanged symmetric key to establish a secure communi-
cation channel using symmetric encryption which is suitable for resource
constrained devices. Also note that—in contrast to PIKE—the key itself is
never transmitted to the service, but only the two public keys of the used
asymmetric key exchange algorithm.
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3. Implementation

To validate the concepts of PIKE and P2PIKE, we have implemented
both approaches on top of the Android operating system. The implementa-
tion consists of activities (i.e., user interfaces) and services (i.e., background
tasks) that not only perform the key exchange but also facilitate secure com-
munication and user-level authentication. As depicted in Figure 3, our im-
plementation of PIKE is modular and can support arbitrary services that
exhibit the characteristics described in Section 2.1 by means of a simple
plug-in model. To demonstrate this, we have developed two plug-ins for
popular services. The first one taps into the Google infrastructure and uses
shared calendar entries as trigger. The second plug-in taps into Facebook
and uses Facebook events as triggers. Both plug-ins presented here use the
API of their respective services. They are independent of any app provided
by the service provider (like the Facebook app).

3.1. Core Library

The mechanisms of PIKE used commonly across different services are im-
plemented as an Android library (apklib). This core library is responsible for
managing the interaction with different plug-ins and it provides functionality
to create keys. The latter is used for both the exchanged key for the group
(on the initiator’s device) as well as the user-level keys. Keys are created
using a secure pseudo random number generator that creates 128 bit keys
(to support common ciphers such as AES). To further simplify application
development, the signaling of a face-to-face collaboration is also implemented
as part of the core library. For this, the library manages the meta data such
as the list of participants, prospective start and end time, keys, etc. The
meta data is represented as a parcelable object which can be passed to the
scheduler provided by Android (i.e., the AlarmManager), which fires a no-
tification (a so-called Intent) when the start time has passed - even if the
device has been gone to sleep. With this meta data, the Android scheduler
can automatically trigger further applications.

In addition, the core library also enables applications to set up secure
wireless communication among all devices of the interaction partners and it
provides the capability for user-level authentication. For providing user-level
authentication, it uses a key derivation function and a challenge-response
mechanism using a Keyed-Hash Message Authentication Code (HMAC). For

10



Update 
events

Android 
AlarmManager

Core 
Library

Service 
plug-in

Service 
Provider

Regular service check intent

Transfer events

Update events

Store alarm

Alarm intent

Register for regular service check

Figure 3: PIKE Architecture for Android

providing secure wireless communication, the core library is capable of es-
tablishing a wireless LAN using the tethering capabilities of the Android
operating system3. If an application requests secure wireless communica-
tion, the group key exchanged via PIKE is used to setup a WPA2 protected
network. To do this, all devices present at the face-to-face collaboration de-
rive an SSID as well as a passphrase from the group key. The initiator’s
device then uses this key to automatically configure and start the tethering
mode. The devices of the participants automatically add the configuration to
the list of preferred networks, such that the device will automatically join if
the network is in the vicinity. While the interaction takes place, the devices
can use this network to interact securely. After its completion, the devices
automatically remove the network configuration and the tethering mode is
deactivated.

Using this functionality, it is easy to build further applications. However,
in order to be useful, the core must be integrated with an online service. To
do this, the core relies on plug-ins which realize the recognition of triggers
and the attachment of keys.

3.2. Google Calendar Plug-in

Google Calendar is one of the most used business services for the man-
agement of shared calendars. At work the calendars can be used to be in-
formed about the absence and availability of co-workers. Meetings can then
be planned efficiently and co-workers can be invited to join via the service.

3The tethering capabilities are not part of the official Android API. Yet, the required
functions are available on many devices running Gingerbread or higher and they can be
invoked via Java reflection.
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Figure 4: User-level keys, posted in an event in Google Calendar

Additionally, Google Calendar is pre-installed on most Android phones mak-
ing it a perfect candidate for PIKE.

To access Google Calendar, we use its API to regularly synchronize
events between devices and the service. Intuitively, we use shared meet-
ings—appointments with multiple guests—as a trigger for the key exchange.
In order to distribute the key generated by the creator of the appointment
(i.e., our initiator), we use a hidden, non-visible field (shared extended prop-
erties). This field is automatically synchronized with all guests (i.e., our
participants) and, if the event is set to private, only guests can see these
properties. To distribute the user-level keys, we use the comment field of the
appointment as shown in Figure 4. Again, if the appointment is private and
guests do not have the permission to see the guest list, this field cannot be
seen by others except by the creator. So using this approach, the initiator can
retrieve all user-level keys and the participants can retrieve the coordinator’s
key by reading the associated fields of the appointment.

3.3. Facebook Event Plug-in

Our second plug-in uses Facebook. This online social network service is
used mostly for private communication. This usually includes the planning of
events or trips with multiple persons. Facebook also provides clients for many
different mobile operating systems (e.g., iOS, Android, Windows Phone), so
users can stay connected as long as they have network access.

For this implementation, we are using the Facebook Graph API to ac-
cess and modify data from the social network. As trigger for PIKE we use
Facebook events. The participants of events in Facebook can be constrained
by the event’s initiator. Each event has a private place for discussions only
viewable by the event’s guests, the so-called wall. This wall is used to post
the initiators key that is then automatically picked up by the participants’
devices. Since participants cannot change the visibility of posts on the event’s
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(a) Shared key, at the event’s wall (b) User-level key, at a participant’s wall

Figure 5: Keys exchanged with PIKE in Facebook

wall, the participant keys are posted to the participants’ profiles. Each pro-
file has a place for discussion (also called wall). On this wall, posts can be
created with a privacy setting that constrains the access to the event’s initia-
tor (see Figure 5(b)). The initiator can then retrieve the participants’ keys
by going through their walls. For similar reasons, P2PIKE uses a post on a
profile’s wall as resource. The post can only be seen by the two peers and is
deleted automatically by P2PIKE, after the successful execution of the key
exchange.

4. Applications

To validate the approach, we have developed a number of applications
that apply PIKE. In the following, we present two of them. The first one
provides registration services for large scale events. For this, the applica-
tion requires secure user-level authentication but it cannot rely on Internet
connectivity. The second one shows how PIKE can be used to establish a
private network that can be used for energy-efficient resource sharing. This
application requires a low-latency reliable private network in an environment
where no public network (like UMTS) is available. Both applications are
canonical examples that show PIKE’s capabilities in different conditions.

4.1. Configuration-free Conference Registration

As an example for using PIKE in a large-scale event such as a scientific
conference, we developed a registration application. At a registration desk
for a scientific conference, users register themselves by giving their names,
which are then looked up in a list. Using PIKE this time-consuming, error-
prone and insecure process can be automated and secured appropriately. To
do this, all participants are invited to a Facebook event of the organizers as
part of the participant’s payment process. When PIKE detects the event, the
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creator of the event (i.e., the organizer) will provide a key to all participants
and the participants will share their user-level keys with the organizer.

At the start of the conference, each participant uses its mobile device to
identify itself at the registration desk. To detect the presence of the regis-
tration desk, the mobile devices can use the automatic WLAN configuration
described previously. On top of that, in order to identify themselves in a
secure manner, they send a verifiable message containing their name to the
device of the organizer. To create this verifiable message, they compute an
HMAC over the message using their individual user-level key which was dis-
tributed by PIKE. The organizer can then validate the key and mark the
participant as registered.

To perform this process, neither the participants nor the organizers need
to perform any manual configuration at the conference site. PIKE detects the
shared event days before the start of the conference and exchanges keys. The
keys are then used to provide user-level authentication at the conference’s
start in a fully automated process without needing Internet connection.

4.2. Energy-efficient Resource Sharing

As an example for using P2PIKE, we have developed an energy-efficient
resource sharing application that aims at supporting the collaborative col-
lection of GPS traces during a hiking trip. Imagine several friends who want
to go hiking in the mountains. During their trip, they will not be able to get
a reliable Internet connection. Yet, while they are hiking, they want to be
able to display their current location in an offline map to support outdoor
navigation. Once they completed their trip, they want to be able to analyze
their walking and climbing speeds. To do this, they would like to continu-
ously capture their current GPS coordinates but due their devices’ energy
constraints each of the friends can only capture a part of the trip.

Our application mitigates this problem by distributing the energy load
generated by the GPS receiver among the friends participating in the hiking
tour. To do this, the devices of the hiking friends perform GPS data collec-
tion in a round-robin fashion and share the results through WLAN with all
other devices. To support the traceability of the GPS data, the data must
be authentifiable. Using P2PIKE, the friends can spontaneously meet for a
hiking tour without the need for a triggering resource since they performed
the piggybacked key-exchange in advance and can now use the shared keys to
establish secure peer-to-peer communication. To do this, the friends can join
an insecure WLAN network (e.g., a WLAN hotspot created by one of them)
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and use the shared keys to authenticate each other. After successful authen-
tication, one of the friends starts sharing his GPS coordinates. He does that
by creating a secure network link to each of the friends (using the keys shared
with them), transmitting the GPS coordinates over this link. The whole pro-
cess does not need an active Internet connection, since P2PIKE performed
the key-exchange several days before, without needing a physical meeting of
the friends or devices. After joining the network, each friend retrieves the
GPS coordinates from the sharer’s device and the client application shows
the current position (using android’s mock locations feature). Our measure-
ments4 show the following: Two devices running only the GPS receiver need
each 891 mW (i.e., 1782 mW in total). Using P2PIKE, it is possible to
combine a device receiving the GPS coordinates over WLAN (660 mW) and
a second device using the GPS receiver and sending the coordinates over
WLAN (935 mW) with a lower total consumption of 1595 mW.

5. Evaluation

In the following, we evaluate PIKE and its variant P2PIKE along the four
design goals that we introduced in Section 2.2. These are full automation,
high security, low latency and high scalability. Next, we discuss each of them.

5.1. Full Automation

The key-exchange with PIKE does not require manual interaction. Nev-
ertheless, to establish a key using PIKE, it is necessary for all participants
to use a third-party service (e.g., Facebook). Also, the initiator needs to
create the shared trigger condition (i.e., event) using this service and adds
the guests or group of guests manually using for example the service’s web
interface. However, managing events and inviting guests are necessary steps
that always need to be performed by an event creator, even when not using
PIKE.

5.2. High Security

As discussed before, the security of PIKE depends on the security of
the service provider. The service provider needs to implement the resource
sharing in such a way that resources which are shared with a limited number

4Created using a Galaxy Nexus smartphone running Android 4.2.2, 600 aggregated
measurements (1 every 100ms) per point.
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of users are properly secured. The resources should not be accessible for
any other users than the ones that are specified by the event creator. Many
service providers (e.g., Facebook and Google Calendar) support this type of
resource sharing. In these cases, PIKE does not lower the security provided
by the service providers, i.e., the security level is as high as the security level
of the used service provider.

Of course, one possible attacker that could tamper the key-exchange is
the service provider (e.g., Facebook) itself. When using PIKE, all exchanged
keys are stored in the service provider’s database, it would be easy to retrieve
them from there. When P2PIKE is used, the performed key exchange can
only be intercepted by the service provider before the execution of Step 2 (c.f.,
Figure 2(b)). Here, an active man-in-the-middle attack must be performed
by the service provider to be able to decrypt messages during the face-to-
face collaboration. Nevertheless, the service provider itself is not physically
present during the face-to-face collaboration. As a result, it cannot use the
exchanged key(s) of PIKE and P2PIKE since the interaction triggered by the
devices is not spread through the Internet or any other publicly accessible
network.

To further mitigate this attack, e.g., if a service provider also deploys
hotspots or similar devices so that it might be possible to be physically
present during the interaction, service providers can be combined. The trig-
ger condition resource is then distributed to several service providers, all of
them must be supported by all participants and the initiator. For enhanced
security, the exchanged shared key on the service is different, if the service
provider differs. The combination (e.g., XOR) of the exchanged shared keys
from all the service providers will then be used by the participants. As
a result, one service provider cannot overhear the face-to-face collaboration,
because it only knows parts of the key. The interaction of all involved service
providers is then necessary to retrieve the whole key.

Possible attacks that do not involve the service provider as an attacker are
attacks from devices that take part in the collaboration (i.e., have received
the key for secure communication) or attacks from devices that do not possess
the exchanged key, but are just in the vicinity of the interacting partners.
For the latter devices, it is not possible to attack the interaction as long as
the communication is always encrypted, using a secure encryption protocol
(e.g., AES). Any kind of attack is then not based on the security of PIKE,
but on the security of the mechanism that is used for encryption.

Additionally, the user-level keys can be used to establish an encrypted
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private communication channel between two users in the collaboration group
(e.g., to remove threats from malicious users or devices). If one of the users
that wants to open a private channel to another user is the initiator, the
user-level key can be used directly. If two participants want to open a private
channel, either the initiator’s device can be used as a trusted third party that
verifies the authentication of the other users or a key that was exchanged by
P2PIKE can be used. The exchange of a shared peer-to-peer key will then
enable the devices to communicate with each other using encryption.

If the initiator of a face-to-face collaboration group is malicious, the whole
communication is compromised. From the participant’s view, this can only
be avoided by not taking part at the face-to-face collaboration at all. In the
end, this results in ignoring trigger resources coming from malicious devices or
users, i.e., not starting a face-to-face collaboration with malicious initiators.
PIKE will not protect the participants’ communication, if the initiator of the
key-exchange is malicious.

5.3. Low Latency

Using two Samsung Galaxy Nexus (2x1.2 GHz ARM CPU, 1 GB RAM)
mobile phones that were connected to the Internet via WLAN, we measured
the latency of our approach. The mobile phones were running Android OS
version 4.1.1. To perform the measurements, we were using the prototypical
implementations presented in Section 3. All values represent the average of
100 measurements performed by one smart phone.

The minimum latency of the overall approach depends on the synchroniza-
tion interval t. A typical value for t is 60 minutes, i.e., the service is checked
every hour. We now describe the performance of PIKE and P2PIKE.

5.3.1. PIKE

As depicted in Figure 6, there are two possible scenarios: After the cre-
ation of the shared trigger, it is either picked up by the initiator’s device
(a) or by a participant’s device (b) after a maximum time of t. For (a), the
initiator picks up the shared trigger and adds the shared key to the trigger.
It cannot retrieve the user-level keys, since they are not yet available. It then
waits for the next synchronization interval. In the meantime, the participants
synchronize the trigger resource, retrieve the shared key and attach their in-
dividual user-level keys to the trigger. Fulfilling this combined step, they
have finished the PIKE message exchange and do not need to synchronize
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Figure 6: Time needed to perform PIKE, with synchronization interval t

this trigger, again. After the synchronization interval, the initiator synchro-
nizes the trigger resource, now retrieving all user-level keys. Since the first
pick up time is not higher than t and the second wait time is exactly t, the
PIKE message exchange is finished after a maximum time of 2t. Similar to
that, in (b), the total time to execute PIKE also results in 2t.

Depending on the used service, this can be further improved by retrieving
the created time (if existing) of the shared trigger. The initiator can then
retrieve the created time and reschedule the synchronization interval such
that the next PIKE synchronization takes place at the time created time+ t.
Since between the created time and created time+t all participants will have
submitted their user-level keys, the initiator is able to retrieve all user-level
keys (and finish the PIKE message flow) after a time of only t.

Regarding our implementations, the actual message flows are similar to
the logical protocol flow presented in Figure 2(a). The numbers of messages
per step in the implementations differ from that, because one logical step
might include several API calls. Using our implementation based on Google
Calendar, we find that for the initiator, the minimum number of messages
(and Google API calls) is 3 (leaving out step 1); for a participant it is always
3. We also measured the average time that is needed to perform the PIKE
protocol flow (σ depicts the standard deviation). We assume that the user
creates the event using Google Calendar (either using a mobile phone or the
web-interface) manually (i.e., performed step 1). Steps 2 and 3 took 535ms
(σ = 43ms), since the initiator needs to perform step 5 (255ms (σ = 59ms)
with 2 participants) as well, this gives a total number of 790ms (σ = 73ms)
for the API calls. Each participant needs to execute steps 2 and 4 which takes
583ms (σ = 170ms). As a result, we see that the prototypical implementation
of PIKE with Google Calendar exhibits a latency of less than a second.
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Depending on t, also spontaneous meetings can be supported. However, a
typical value for t like 60 minutes constrains this to meetings known two
hours in advance.

In Facebook the number of messages changes, because the initiator has to
retrieve the user-level keys from each participant’s wall. Also, the Facebook
Graph API does not give as many detailed information on the events as the
Google Calendar API with only one API call. The minimum number of
messages (and API calls) for the event initiator is therefore 4 + (n− 1) (also
performing the steps 2, 3 and 5, with n being the number of participants),
while the number for each participant is still 4 (performing step 2 and 4).
Using the Facebook batch API, n increases only every 50 participants. As
discussed before, we assume that the user creates the event from within
Facebook (step 1). The average time necessary to perform the API calls for
steps 2 and 3 is 2193ms (σ = 394ms). Step 5 is discussed in the Section
Scalability. The participants need to perform step 2 and 4, this takes 3067ms
(σ = 354ms). We conclude that the Facebook API has a higher latency, but
is still within reasonable limits, with a latency of less than 30 seconds for 200
participants.

5.3.2. P2PIKE

In contrast to PIKE, P2PIKE executes all steps automatically, including
the initial first step. As can be seen in Figure 7, P2PIKE needs a time
of t to perform the key exchange with another peer (assuming that their
synchronization interval is not completely time-synchronized). At first, Peer
A creates a resource and executes the first step of the key exchange and waits
then the time of t before synchronizing the resource, again. During that time,
Peer B retrieves the resource and executes Step 2 of the key exchange. Peer
B now already has computed the shared secret key. Then Peer A accesses
the resource, receives the public key attached by Peer B during the second
step of the key exchange and computes the shared secret key. The total time
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Figure 8: Retrieving user-level keys from Facebook

for the execution of P2PIKE is therefore t.
The measurements of our prototypical implementation are based on 100

Facebook test users and show that Peer A (the initiating peer) needs 3823ms
for the execution of step 1 and 4 (1378ms (σ = 531ms)+2445ms (σ =
430ms)), i.e., the two API calls. Similarly, Peer B only needs 2336ms (σ =
185ms) for the execution of Step 2 and 3. All measurements include the ex-
ecution time for an ECDH key exchange (160 bit) to obtain a common key.
We conclude that the prototypical implementation of P2PIKE exhibits a low
latency.

5.4. Scalability

The execution time of P2PIKE fully depends on the latency of the proto-
col execution. Since each execution of the P2PIKE protocol flow will create
one shared key between two peers, the costs (in time and resources) in-
crease quadratically with the group size. As shown in Section 5.3, this would
result in a latency of less than 4 seconds for each peer. For PIKE, scalabil-
ity depends on the used service. If PIKE is used with Google Calendar, an
event contains all information, including user-level keys (comments). A single
API call returns the necessary information. The message’s length increases
slightly with each participant since a comment is added. Nevertheless, this
results in high scalability.

Using Facebook, the number of requests from the event initiator to the
service depends heavily on the number of participants. Therefore, we mea-
sured PIKE with an increasing number of participants, using single requests
(Figure 8(a), showing a clear linear increase, 100 measurements per point,
error bars show the standard deviation (±σ)) or batch requests (Figure 8(b),
10 measurements per point, error bars show ±σ). Batch requests bundle
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50 requests (i.e., one for each participant) in one. Both measurements indi-
cate a linear increase from 1765ms (1 participant) to 7526ms (15 p.) for the
single requests and from 1935ms (10 p.) to 21453ms (200 p.) using batch
requests. Although the implementation based on Facebook is slower, it still
achieves a high scalability using batch requests. In summary, PIKE reaches
the scalability goal of supporting a few hundred participants.

6. Related Work

When compared with other approaches, PIKE exhibits three main differ-
ences. First, it can easily scale to hundreds of collaboration partners. Second,
it provides user-level as opposed to device-level authentication. Third, it does
not require Internet connectivity during the face-to-face collaboration.

To provide user-level authentication, some approaches use server-based
context-detection as the mechanism to allow or deny access to resources
[1, 2]. PIKE is not based on a central server, but uses third-party infras-
tructure (i.e., online services) to establish shared and user-level keys. In [3]
and [4] the authors describe how context, such as microphone recordings,
can be used directly to create a shared key between devices. According to
them, this works well inside buildings, but ceases to work properly if used
outside. In contrast to that PIKE can be used both indoors and outdoors.
Using context data from the smartphone’s sensors also exhibits scalability
issues. Imagine sensor data from an accelerometer which needs devices to be
shaken together (up to a duration of 20s) such that the accelerometer detects
(almost) identical data. Smart-Its friends [5] and similar approaches [6, 7]
generate a key based on this data. However, this approach is only feasible
for a small amount of devices. The combination of different context features
for key-exchanges is presented by PINtext [8] or Mayrhofer et al. [9]. While
enhancing security by combining context features, this combines their dis-
advantages, e.g., using the accelerometer and the microphone at the same
time requires shaking the devices and constrains the key-exchange to indoor
locations. Although these approaches do not need an Internet connection,
context dependent key-exchanges need precise time synchronization between
devices. For PIKE, a time-shift of several minutes is still acceptable.

Other mechanisms to perform a key-exchange are based on near field
communication (NFC) technology. In the Bluetooth specification [10], NFC
is mentioned as a possible mechanism to pair devices. Suomalainen et al.
[11] show that NFC can be used for the negotiation of keys for other network
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types, mostly because direct proximity (usually 1-10 cm) is necessary for
successful communication in NFC. Some authors describe the inherent secu-
rity of NFC for man-in-the-middle attacks [12], but show that eavesdropping
can be done easily. Others point out possible security and privacy breaches,
for example by using a unique id [13]. Since NFC is usually used for short-
range communication, Francis et al. [14] describe a relay attack that can be
used to circumvent this limitation. PIKE does not establish security on a
device-to-device basis, but takes a user-centric approach. Since the keys are
already exchanged when the interaction takes place, it is immune to attacks
that rely on a specific communication technology. As a result, the shared
exchanged key created by PIKE can be used for any communication tech-
nology, including NFC. Nevertheless, establishing group keys using NFC still
needs physical interaction between devices which, as mentioned before, does
not scale. ProxiMate [15] is another key exchange protocol that retrieves a
shared key from RF signals. To obtain a key, it is necessary to put the pairing
devices into physical proximity, similar to NFC. According to the authors,
the protocol is resistant to attackers that are more than 6.2 cm away (at 2.4
GHz). The protocol could be used to exchange a shared key between devices,
but it might be impossible to put all users’ devices in the necessary proxim-
ity, if the number of devices is too large. PIKE does not have constraints on
the number of devices, also supports higher numbers, and is able to create
group and user-level keys in a completely automated fashion. In SPATE [16],
a small group of users is able to exchange a key by comparing hash codes
(the so-called T-Flags). This enables SPATE to establish a key for secure
interaction at additional costs, i.e., all users have to recognize and compare
the T-Flag images. To start the key exchange process, SPATE requires the
initiating device to scan a bar-code from all other devices’ displays (retriev-
ing the devices’ network addresses). Since SPATE also needs the number
of group members typed in manually, SPATE and related approaches like
Seeing-is-believing [17] and GAnGS [18] need manual configuration, while
PIKE enables an automatic key exchange, relying on the friend relationship
of online collaboration services.

Many existing key-exchange mechanisms need an Internet connection dur-
ing the key-exchange phase and they use a different service provider for au-
thentication purposes. Examples are OpenID [19] and OAuth [20, 21]. While
OpenID allows the user to use one account for several different services and
service providers, OAuth creates an access token, mostly used by applica-
tions that want to access a service on behalf of the user. A service that uses
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OpenID needs to trust the service that provides the account creation and
authorization. The latter is therefore a trusted third-party that is actively
involved in the authorization process. In contrast, using the OAuth process,
the user actively grants rights from a service to another one. Usually, the
granted rights are displayed to the user and must be confirmed manually.
PIKE does not need a third party for account verification during the in-
teraction, but uses a third-party service directly to exchange a shared key
beforehand. Thereby, it retrieves and stores the exchanged key and thus,
PIKE does not require an Internet connection later on.

7. Conclusion

Online services have become an important and ubiquitous mediator of
many human interactions. In the virtual world, they enable secure interac-
tions by mediating the access to shared resources. PIKE extends the support
provided by online services to enable non-mediated secure face-to-face col-
laboration. PIKE is configuration-free and broadly applicable to different
scenarios ranging from typical small-scale meetings up to large scale con-
ferences and events. As indicated by the results of our evaluation, PIKE
and its variant P2PIKE is (at least) as secure as the service used to enable
resource sharing and exhibits an acceptable latency of at most 2 synchro-
nization cycles. Finally, depending on the resource sharing API provided by
the underlying service, PIKE can scale well. Currently, we are integrating
PIKE as a security mechanism into the GAMBAS middleware. There, PIKE
is used to limit the access to context information that is gathered by mobile
devices.
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