
Internet of Things Success Stories #1

INTERNET OF THINGS • SUCCESS STORIES • SERIES#1-June 2014 74

Users context-aware

Users
context-aware

The GAMBAS Middleware for
Smart City Applications

Marcus Handte 1, Stefan Foell 2 , Gregor Schiele 3, Umer Iqbal 1 ,
Wolfgang Apolinarski 1, Josiane Xavier Parreira 3, Pedro Marrón 1 , Gerd Kortuem 2

1 Unversity of Duisburg Essen, Germany firstname.lastname@uni-due.de

2 The Open University, UK
firstname.lastname@open.ac.uk

3 National University of Ireland, Galway, Ireland firstname.lastname@deri.org

ABSTRACT : The concept of smart cities envisions IoT services that provide distraction-free support for citizens. To realize this vision,
the services must adapt to the citizens’ situations, behaviors and intents. This requires them to gather and process the context of
their users. Mobile devices provide a promising basis for determining context in an automated manner on a large scale. However,
despite the wide availability of mobile platforms, there are only few examples of smart city applications. One reason for this is that
existing software platforms only provide limited support for common high-level tasks such as efficient data acquisition, secure and
privacy- preserving data distribution or interoperable data integration. As shown by the Bus Navigator
– a mobile transport application that has been deployed in the city of Madrid – the GAMBAS middleware can flexibly support such
tasks and thus, reduce the development effort for a broad spectrum of smart city applications.
KEYWORDS: IoT, middleware, smart city, context acquisition, semantic data models

Internet of Things Success Stories #1

INTERNET OF THINGS • SUCCESS STORIES • SERIES#1-June 2014 75

Users context-aware

1. Introduction

With the advent of powerful mobile devices an increasing
number of people have constant access to information on
the Internet. Nowadays, these devices are causing a drastic
paradigm shift in the way people deal with information.
Yet, the technical means to access information have only
changed marginally. In most cases, information is accessed
via the web which requires persons to memorize long URLs,
click through web pages or browse through search results.
In contrast, the concept of smart cities envisions IoT services
providing distraction-free support. To realize this vision,
the services themselves must adapt to the user’s situation,
behavior and intents at runtime. This requires services to
gather and process the user’s context.

Mobile devices provide a promising basis for determining
user context in an auto- mated manner on a large scale.
The vision of smart cities, however, extends beyond the
boundaries of a single service as many city-wide applications
will require the coopera- tion between multiple data
providers and the citizens to exploit their full potential. As a
consequence, developers that create applications for smart
city settings are facing a broad range of challenges that are
typically not addressed by widely available mobile platforms
such as Android or iOS. Since these platforms primarily
focus on low-level resource management, they only provide
limited support for high-level tasks such as efficient data
acquisition, secure and privacy-preserving data distribution
or interop- erable data integration. As a result, application
developers must manually tackle the resulting challenges.

The GAMBAS middlware with its associated software
development kit (SDK) ad- dresses these challenges by
simplifying these high-level tasks by means of a) models
and infrastructures that support the interoperable
representation and city-wide pro- cessing of (context)
information, b) frameworks and methods to enable
resource- efficient data acquisition using the mobile devices
carried by the citizens, and c) pro- tocols and tools to derive,
generalize, and enforce privacy-policies allowing citizens to
control the sharing of their information. In the following, we
describe the GAMBAS middlware and its SDK in more detail
and we describe the Bus Navigator – a mobile transport
application for the public bus network in the city of Madrid
that has been developed and deployed successfully.

2. Smart Cities
GAMBAS envisions a smart city as a cloud of intelligent
digital services that pro- vides adaptive and dynamic
information to citizens. Conceptually, these services and
their data can be grouped into so-called layers that cover
different aspects of people’s life in the city. A shopping layer
might encompass services that manage store lo- cations
and experience reports on different stores. Similarly, a
mobility layer might encompass services that manage bus
routes, subway stations, or traffic information. A social layer
might manage relationships between citizens, events that
take place in the city, etc. An environmental layer might
manage information related to water or air quality in the
city or it might capture the noise levels at different places.
C l e a r l y, some of the services found in these layers can apply
to multiple layers as some pieces of information and some of
the services might be applicable to multiple aspects.

To enable the creation of dynamic mash-ups of services,
the services export (parts of) their information. Thereby,
the information is represented using an interoperable data
representation that allows automatic linking of different
pieces of information. This makes the information accessible
to other services which can then add additional value by
providing, for example, a better experience for a specific
group of citizens. In order to simplify the integration of
services, a distributed query processing system enables the
execution of queries across different information sources.

For providing up-to-date information and adaptive
information to users, the layers capture information
from different sensors embedded in various Internet-
connected objects. Thereby, the objects may belong either
to a particular service provider or they may belong to a
citizen. The devices in the first category, may, for example,
encompass sensors embedded in a taxi or a bus or they
may be deployed at specific positions such as a bus stop
or a metro station. The devices in the second category may
encompass the personal mobile devices of the citizens such
as their smart phones but they also may contain traditional
systems such as their desktops at home, for example.

Internet of Things Success Stories #1

INTERNET OF THINGS • SUCCESS STORIES • SERIES#1-June 2014 76

Users context-aware

To protect the privacy of the citizens, they can control the collection and sharing of data with services in different layers.
Towards this end, behavioral data is stored and processed on the devices that belong to the citizen. Optionally, in order
to access additional services, they may share their information with specific service providers or other citizens. In order to
avoid the expensive task of manually controlling the shar- ing process, automatic proposals for different settings can be
computed automatically based on social relationships that are formalized by means of existing policies that the citizens
created for similar contexts.

As a consequence, developers of applications in the smart city domain will typ- ically face the following three challenges.
First, to provide up-to-date information in an adaptive manner, applications must be able to acquire (parts of) the context of
the citizens using the mobile devices of the citizens. As mobile devices are typically battery powered, the acquisition of data
must be resource-efficient. Second, to en- able services to leverage the acquired data, it must be shared. Intuitively, this
sharing must be performed securely and it must respect the user-specific privacy requirements. Third, to enable devices
and services to interact with each other, they must establish a common understanding of their respective data such that
it can be linked to each other in an interoperable and extensible manner. Our GAMBAS middleware provides the tools to
simplify these tasks, as described next.

3. GAMBAS Middleware
In the following, we describe the different components of the GAMBAS middle- ware and detail how they support data
acquisition, data distribution and data integration.

Figure 1 shows the overall system architecture. Conceptually, a GAMBAS deployment consists of different systems. The
mobile systems of the citizens are act- ing as both data sources and data sinks. The city systems from different layers are
managing data and providing services to the mobile systems. To do this, they may rely on information provided by other
services as well as data provided by the mobile systems. Furthermore, they may integrate data from legacy systems and
they may be receiving data from other systems through existing means. For example, a transport system might already be
collecting information through sensors deployed in a city or in vehicles. Similarly, it may already have access to geographic
data describing the different roads in the city.

F igure 1. GAMBAS System Architecture

Internet of Things Success Stories #1

INTERNET OF THINGS • SUCCESS STORIES • SERIES#1-June 2014 77

Users context-aware

Intuitively, it is impractical to assume that the existing
systems and data sources are likely to be replaced by
any middleware. Instead, GAMBAS embraces existing
systems and provides ways to simplify the sharing of the
information hosted by them. To do this, the GAMBAS
middleware introduces three system components, namely
the distributed registry, the Android runtime and the J2SE
runtime. In the following, we briefly outline their functions.
Targeted at mobile devices, the Android runtime enables
developers to acquire data using the built-in sensors.
Furthermore, it allows secure sharing of data with services
while enforcing the privacy requirements of the user.
Finally, it simplifies the dynamic retrieval of data provided
by services. Targeted at systems that provide services, the
J2SE runtime enables application developers to capture data
provided by mobile devices and to offer service-specific
data in a way that enables dynamic discovery and simplifies
linking. Finally, to support dynamic in- teraction, the
distributed registry enables mobile devices and services to
publish meta data. This enables devices and services to find
each other and to establish commu- nication channels. The
Android and the J2SE runtime are the core subsystems that
application developers interact with. In contrast to this, the
distributed registry is pro- viding the glue in order to enable
interaction. For the sake of brevity, we focus our following
descriptions on the different runtime systems. To avoid
repetitions, we first discuss the individual components.
Thereafter, we discuss how they are integrated in the
Android and the J2SE runtime.

3.1. Runtime Components

Conceptually, the runtime system consists of four main
components, namely com- munication, data acquisition,
data processing and privacy and security.

3.1.1. Communication

To enable communication between different devices
using different technolo- gies, the GAMBAS runtime
system relies on the BASE communication middleware
(Handte et al., 2010b). BASE enables the spontaneous
interaction between different devices, while supporting

many communication technologies through a plug-in
archi- tecture. Additionally, BASE bridges between different
communication technologies, whenever necessary. Using
a gateway that is integrated into the distributed registry,
BASE is able to establish communication channels, even if
devices are behind a cor- porate firewall or a NAT router -
which is commonly the case in mobile or home networks. In
addition to communication, BASE provides a simple service
abstraction which is used by GAMBAS to export system
services that are used, for example, to execute distributed
queries over the data provided by services or to establish
secret keys. From an application developer’s perspective,
however, the GAMBAS runtime hides all details related to
communication and BASE. Consequently, we would like to
refer to (Handte et al., 2010b) for more details on BASE.

3.1.2. Data Acquisition

Besides from communication, another capability of the
GAMBAS runtime is its ability to capture data on behalf of
the user or a service provider. For this it encom- passes a
data acquisition component that is capable of running on
different devices. Internally, the data acquisition component
is using the NARF activity recognition framework (Handte et
al., 2010a). NARF is a component-based, extensible activ-
ity recognition framework that integrates with different
types of physical sensors such as an accelerometer or GPS
as well as with virtual sensors such as the user’s calendar,
for example. It provides an existing toolkit of reusable
components such as preprocessors in the time and
frequency domain, classifiers, etc. Furthermore, it has been
used to build various context recognition applications. When
multiple context recognition applications are executed
simultaneously on a single device, NARF optimizes the data
acquisition with respect to energy consumption by removing
redundant sampling and redundant computation (Iqbal et
al., 2012). Using a visual editor that is integrated into the
Eclipse development environment, an application developer
can compose compo- nent configurations via drag-and-
drop to recognize a particular piece of context. Once the
composition is completed, the developer can export the
configuration into Java code that can be interpreted and
executed by the data acquisition component.

Internet of Things Success Stories #1

INTERNET OF THINGS • SUCCESS STORIES • SERIES#1-June 2014 78

Users context-aware

3.1.3. Data Processing

To store and manage data of services as well as data
generated by devices, the GAMBAS runtime encompasses
a data processing component. Internally, the data
processing component itself is structured in three sub-
components that (a) store the data, (b) query for data
and (c) discover data. To store the data of the user on
a lo- cal device or remotely at a particular service, the
runtime uses a semantic data storage (SDS) component.
Similar to the data acquisition component, the SDS is
primarily tar- geted at resource-constrained devices. The
data that is stored in the SDS component follows the
linked data principles (Bizer et al., 2009) and makes use
of interoperable data representations, storing data using
RDF (RDF Working Group, 2004). Further- more, the data
storage is able to interface with different types of query
processors, depending on the resources available on the
device. To make the data stored in the SDSs available to
services and applications, two types of query processor
components are used. The query processors are capable
of executing queries on top of the storages. As query
language, SPARQL (RDF Data Access Working Group, 2008)
is used. Since SPARQL queries can be heavyweight, on
resource-constrained environments such as smart phones,
queries are executed using RDF-on-the-go (Le-Phuoc et
al., 2010). It is compatible to other, full-fledged semantic
web frameworks like Jena (Apache Jena project team,
2013), but runs on Android devices. To enable transparent
distributed query processing, the query processors must
be able to discover the data sources that are available
on the network. To make the data discoverable, a device
may announce the data available in the SDS to the data
discovery registry which in turn will typi- cally use a semantic
data storage component to manage the announcements.
In case of personal devices, the announcement may be
limited or modified depending on the privacy preferences
of a certain end user. To enable this, the semantic data
storage and the data discovery registry are interfacing with
the privacy and security component.

3.1.4. Privacy and Security

As some data processed within smart city applications,
such as the user location, might be sensitive from a privacy
perspective, it is necessary to limit the data acqui- sition and
the data sharing such that it respects the privacy preferences

of different entities. Achieving this is the primary task of the
privacy and security component. The component interacts
with the SDS as well as the data acquisition component that
is deployed on each personal device over a privacy manager
interface. In addition, the privacy and security component
may also be used to limit the access to information that is
provided by a particular service. For this, it is integrated into
the device that is offering the service. Using a privacy policy
that can be generated automatically by means of plug-
ins that access proprietary data sources, the privacy and
security component takes care of exporting sensitive data
in a way that it can only be accessed by legitimate entities.
Furthermore, depending on the user preferences, it may
apply obfuscation in order to limit the data precision and
it may anonymize the data in order to unlink the data from
a particular user. Envisioning the use of mobile devices as
primary sources of data, the privacy and security component
is supporting not only traditional laptops and PCs, but also
resource-constrained devices as its execution platform. In
the runtime system, the privacy and security component
is divided into a key-exchange mechanism, policy-based
access control and encryption protocols.

3.2. Runtime Integration

As depicted in Figure 2, the integration of the components
of the runtime sys- tem described previously is realized
by: (1) a set of interfaces, support libraries and tools called
the software development kit (SDK), and (2) the GAMBAS
CoreService which provides the accompanying runtime
environment. The SDK in turn consists of two parts. The
service programming interface (SPI) is used to develop
middleware functions. The application programming
interface (API) is used to develop GAMBAS apps. The
CoreService sets up the GAMBAS runtime and manages
the lifecycle of runtime components. Furthermore, the
CoreService realizes the SPI by linking each component to
all other components that they use in their own execution
via interfaces from the SPI. This effectively provides a tight
and efficient integration between the components without
inducing dependencies to their actual implementation.
Finally, the CoreService implements the GAMBAS API
towards GAMBAS applications both on Android and J2SE
platforms. It receives calls, forwards them to the right
compo- nent and delivers results back to the original caller.

Internet of Things Success Stories #1

INTERNET OF THINGS • SUCCESS STORIES • SERIES#1-June 2014 79

Users context-aware

The J2SE version of the runtime system specializes and implements the generic middleware architecture described before
for server systems running J2SE. This al- lows service providers to integrate their services into the GAMBAS platform. The
J2SE version of the runtime system is implemented as a library that is linked to an ap- plication using it. To start using
the middleware, an application has to first import and instantiate the CoreService. To use functionality of the GAMBAS
middleware, e.g. to store data, applications can call a number of methods on the CoreService. The Core- Service in turn
forwards this request to the corresponding local system component, retrieves results from it and forwards them to the
calling application. On Android the runtime system is realized as a stand-alone Android app instead of a linkable library.
This design allows us to efficiently share a single instance between all 3rd party apps, reducing the needed resources and
thus allowing the OS to keep more apps active in memory for a longer time. As a side effect, direct calls are no longer
possible. Instead, we use Android intents which are small messages that a process can publish and that can be received
by other processes. The user interface of the middleware application enables the user to configure a multitude of aspects
such as the used data discovery registry and communication gateway, the user’s pseudonym, known friends, their keysand
privacy policies. This allows users to inspect and adapt the current system state in one integrated place and makes it easier
for them to understand what data is currently made available to whom.

Figure 2. GAMBAS Runtime System for J2SE (left) and Android (right)

Internet of Things Success Stories #1

INTERNET OF THINGS • SUCCESS STORIES • SERIES#1-June 2014 80

Users context-aware

4- Mobile Transport Application

The Bus Navigator (c.f. Figure 3) is a mobile transport application prototype for the public bus system in the city of Madrid.
It represents one of the two proto- type applications used to validate the GAMBAS middleware and it has been deployed and
tested successfully for several months in Madrid. As a common feature of mo- bile transport applications, the Bus Navigator
provides up-to-date information on bus schedules and routes. In contrast to existing applications, however, the Bus Naviga-
tor provides several innovative and powerful features built on top of the capabilities provided by the GAMBAS middleware
to help travelers find their way through large, city-scale transport networks. Most importantly, the Bus Navigator is designed
as a continuous navigation service that can take advantage of the sensors built into the smart phones carried by travelers.
These sensors capture context and activity informa- tion, which is then interpreted and processed on the smart phone to
provide and update real-time transport information relevant to the traveler’s current transport behaviour. The key features
enabled by the GAMBAS middleware include responsive and pre- cise speech input, advanced trip tracking and information
visualization as well as bus ride detection and crowd-level estimation bundled into interoperable behavior-driven services
provided by GAMBAS.

Figure 3. Bus Navigator for the Public Bus Network of Madrid

To support bus detection and trip tracking, the bus navigator ties into the Wifi access points that are already deployed
in the buses and provide Internet connectivity to the travelers. Using this deployment, advanced algorithms running on
the smart phone determine autonomously when the travelers enter and leave a bus – even if they are not connected to
the access points. This enables the application to display relevant information such as the next bus stop, the number of
remaining bus stops on the traveler’s current route or the fact that the traveler has accidentally missed the stop. When a
bus ride has been completed by the traveler, it is stored locally on the smart phone in a SDS. The resulting history of bus
rides is used to determine the regular trips made by the traveler, thereby, enabling the automatic prediction of future trip
destinations. If a future destination cannot be predicted, travelers can configure voice commands to speed up and optimize
the interaction with the Bus Navigator – resulting in a more efficient and more enjoyable user experience. Besides enabling
bus detection, the Wifi access points in the buses are also able to determine the number of passengers in the bus. This
crowd-level information is collected and anonymized on the access point and transmitted to a remotely located SDS. To the
benefit of the travelers, the information is aggregated and displayed as part of the routing data. This enables travelers not
only to optimize their trips with respect to timing but also with respect to comfort. In addition, the bus operator may use
this information to dispatch additional buses and to optimize the bus network schedules.

Internet of Things Success Stories #1

INTERNET OF THINGS • SUCCESS STORIES • SERIES#1-June 2014 81

Users context-aware

5 -Conclusions

Despite the wide availability of versatile programmable
mobile platforms, there are only few examples of smart
city applications. One reason for this is that existing
software platforms primarily focus on low-level resource
management which requires application developers to
repeatedly tackle high-level tasks. The GAMBAS middle-
ware simplifies the development of smart city applications
focusing on three common tasks, namely efficient data
acquisition, secure and privacy-preserving data distribu-
tion as well as interoperable data integration. As indicated
by the Bus Navigator ap- plication, with the current
implementation of the GAMBAS middleware, it is possible
to develop and successfully deploy a smart city application
in the transport domain. As a next step, we are working on
extending this application to encompass several additional
domains such as environmental monitoring and social
activities. Towards this end, we are refining the data models
and optimizing the middleware performance with respect
to data acquisition and data processing. More details on the
GAMBAS middleware, SDK and applications can be found at
http://www.gambas-ict.eu.

Acknowledgment

This work is supported by UBICITEC e.V. (European Center for
Ubiquitous Technologies and Smart Cities) and GAMBAS (Generic
Adaptive Middleware for Behavior-driven Autonomous Services) funded
by the European Commission under FP7 with contract FP7-2011-7-
287661. The authors would like to thank the remain- ing members of
the GAMBAS consortium for their work on and support for this paper.

6. References
Apache Jena project team, « Jena, a Java framework for building
Semantic Web applications », http://jena.apache.org, 2013.

Bizer C., Heath T., Berners-Lee T., « Linked Data - The Story So Far »,
International Journal on Semantic Web and Information Systems, vol.
5, n‐ 3, p. 1-22, 2009.

Handte M., Iqbal U., Apolinarski W., Wagner S., Marron P. J., « The
NARF Architecture for Generic Personal Context Recognition », Sensor
Networks, Ubiquitous, and Trustworthy Computing (SUTC), 2010 IEEE
International Conference on, p. 123-130, 2010a.

Handte M., Wagner S., Schiele G., Becker C., Marron P. J., « The BASE
Plug-in Architecture Composable Communication Support for Pervasive
Systems », 7th ACM International Conference on Pervasive Services, July,
2010b.

Iqbal U., Handte M., Wagner S., Apolinarski W., Marron P. J.,
« Configuration folding: An energy efficient technique for context
recognition », Pervasive Computing and Communi- cations Workshops
(PERCOM Workshops), 2012 IEEE International Conference on, 2012.

Le-Phuoc D., Parreira J., Reynolds V., Hauswirth M., « RDF on the Go:
An RDF Storage and Query Processor for Mobile Devices », Posters and
Demos of the ISWC 2010, 2010.

RDF Data Access Working Group, « SPARQL Query Language for RDF »,
http://www.w3.org/TR/rdf-sparql-query/, 2008. RDF Working Group,
« Resource Description Framework (RDF) », http://www.w3.org/RDF/,
2004.

