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ABSTRACT : The concept of smart cities envisions IoT services that provide distraction-free support for citizens. To realize this vision, 
the services must adapt to the citizens’ situations, behaviors and intents. This requires them to gather and process the context of 
their users. Mobile devices provide a promising basis for determining context in an automated manner on a large scale. However, 
despite the wide availability of mobile platforms, there are only few examples of smart city applications. One reason for this is that 
existing software platforms only provide limited support for common high-level tasks such as efficient data acquisition, secure and 
privacy- preserving data distribution or interoperable data integration. As shown by the Bus Navigator
– a mobile transport application that has been deployed in the city of Madrid – the GAMBAS middleware can flexibly support such 
tasks and thus, reduce the development effort for a broad spectrum of smart city applications.
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1. Introduction

With the advent of powerful mobile devices an increasing 
number of people have constant access to information on 
the Internet. Nowadays, these devices are causing a drastic 
paradigm shift in the way people deal with information. 
Yet, the technical means to access information have only 
changed marginally. In most cases, information is accessed 
via the web which requires persons to memorize long URLs, 
click through web pages or browse through search results. 
In contrast, the concept of smart cities envisions IoT services 
providing distraction-free support. To realize this vision, 
the services themselves must adapt to the user’s situation, 
behavior and intents at runtime. This requires services to 
gather and process the user’s context.

Mobile devices provide a promising basis for determining 
user context in an auto- mated manner on a large scale. 
The vision of smart cities, however, extends beyond the 
boundaries of a single service as many city-wide applications 
will require the coopera- tion between multiple data 
providers and the citizens to exploit their full potential. As a 
consequence, developers that create applications for smart 
city settings are facing a broad range of challenges that are 
typically not addressed by widely available mobile platforms 
such as Android or iOS. Since these platforms primarily 
focus on low-level resource management, they only provide 
limited support for high-level tasks such as efficient data 
acquisition, secure and privacy-preserving data distribution 
or interop- erable data integration. As a result, application 
developers must manually tackle the resulting challenges.

The GAMBAS middlware with its associated software 
development kit (SDK) ad- dresses these challenges by 
simplifying these high-level tasks by means of a) models 
and infrastructures that support the interoperable 
representation and city-wide pro- cessing of (context) 
information, b) frameworks and methods to enable 
resource- efficient data acquisition using the mobile devices 
carried by the citizens, and c) pro- tocols and tools to derive, 
generalize, and enforce privacy-policies allowing citizens to 
control the sharing of their information. In the following, we 
describe the GAMBAS middlware and its SDK in more detail 
and we describe the Bus Navigator – a mobile transport 
application for the public bus network in the city of Madrid 
that has been developed and deployed successfully.

2. Smart Cities
GAMBAS envisions a smart city as a cloud of intelligent 
digital services that pro- vides adaptive and dynamic 
information to citizens. Conceptually, these services and 
their data can be grouped into so-called layers that cover 
different aspects of people’s life in the city.  A shopping layer 
might encompass services that manage store lo- cations 
and experience reports on different stores. Similarly, a 
mobility layer might encompass services that manage bus 
routes, subway stations, or traffic information. A social layer 
might manage relationships between citizens, events that 
take place in the city, etc.  An environmental layer might 
manage information related to water or air quality in the 
city or it might capture the noise levels at different places. 
C l e a r l y, some of the services found in these layers can apply 
to multiple layers as some pieces of information and some of 
the services might be applicable to multiple aspects.

To enable the creation of dynamic mash-ups of services, 
the services export (parts of) their information. Thereby, 
the information is represented using an interoperable data 
representation that allows automatic linking of different 
pieces of information. This makes the information accessible 
to other services which can then add additional value by 
providing, for example, a better experience for a specific 
group of citizens. In order to simplify the integration of 
services, a distributed query processing system enables the 
execution of queries across different information sources.

For providing up-to-date information and adaptive 
information to users, the layers capture information 
from different sensors embedded in various Internet-
connected objects.  Thereby, the objects may belong either 
to a particular service provider or they may belong to a 
citizen.  The devices in the first category, may, for example, 
encompass sensors embedded in a taxi or a bus or they 
may be deployed at specific positions such as a bus stop 
or a metro station. The devices in the second category may 
encompass the personal mobile devices of the citizens such 
as their smart phones but they also may contain traditional 
systems such as their desktops at home, for example.
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To protect the privacy of the citizens, they can control the collection and sharing of data with services in different layers. 
Towards this end, behavioral data is stored and processed on the devices that belong to the citizen. Optionally, in order 
to access additional services, they may share their information with specific service providers or other citizens. In order to 
avoid the expensive task of manually controlling the shar- ing process, automatic proposals for different settings can be 
computed automatically based on social relationships that are formalized by means of existing policies that the citizens 
created for similar contexts.

As a consequence, developers of applications in the smart city domain will typ- ically face the following three challenges.  
First, to provide up-to-date information in an adaptive manner, applications must be able to acquire (parts of) the context of 
the citizens using the mobile devices of the citizens. As mobile devices are typically battery powered, the acquisition of data 
must be resource-efficient. Second, to en- able services to leverage the acquired data, it must be shared. Intuitively, this 
sharing must be performed securely and it must respect the user-specific privacy requirements. Third, to enable devices 
and services to interact with each other, they must establish a common understanding of their respective data such that 
it can be linked to each other in an interoperable and extensible manner. Our GAMBAS middleware provides the tools to 
simplify these tasks, as described next.

3. GAMBAS Middleware
In the following, we describe the different components of the GAMBAS middle- ware and detail how they support data 
acquisition, data distribution and data integration.

Figure 1 shows the overall system architecture. Conceptually, a GAMBAS deployment consists of different systems. The 
mobile systems of the citizens are act- ing as both data sources and data sinks.  The city systems from different layers are 
managing data and providing services to the mobile systems.  To do this, they may rely on information provided by other 
services as well as data provided by the mobile systems. Furthermore, they may integrate data from legacy systems and 
they may be receiving data from other systems through existing means. For example, a transport system might already be 
collecting information through sensors deployed in a city or in vehicles. Similarly, it may already have access to geographic 
data describing the different roads in the city.

F igure 1. GAMBAS System Architecture
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Intuitively, it is impractical to assume that the existing 
systems and data sources are likely to be replaced by 
any middleware.  Instead, GAMBAS embraces existing 
systems and provides ways to simplify the sharing of the 
information hosted by them. To do this, the GAMBAS 
middleware introduces three system components, namely 
the distributed registry, the Android runtime and the J2SE 
runtime. In the following, we briefly outline their functions.  
Targeted at mobile devices, the Android runtime enables 
developers to acquire data using the built-in sensors. 
Furthermore, it allows secure sharing of data with services 
while enforcing the privacy requirements of the user. 
Finally, it simplifies the dynamic retrieval of data provided 
by services. Targeted at systems that provide services, the 
J2SE runtime enables application developers to capture data 
provided by mobile devices and to offer service-specific 
data in a way that enables dynamic discovery and simplifies 
linking. Finally, to support dynamic in- teraction, the 
distributed registry enables mobile devices and services to 
publish meta data.  This enables devices and services to find 
each other and to establish commu- nication channels.  The 
Android and the J2SE runtime are the core subsystems that 
application developers interact with. In contrast to this, the 
distributed registry is pro- viding the glue in order to enable 
interaction. For the sake of brevity, we focus our following 
descriptions on the different runtime systems. To avoid 
repetitions, we first discuss the individual components. 
Thereafter, we discuss how they are integrated in the 
Android and the J2SE runtime.

3.1. Runtime Components

Conceptually, the runtime system consists of four main 
components, namely com- munication, data acquisition, 
data processing and privacy and security.

3.1.1. Communication

To enable communication between different devices 
using different technolo- gies, the GAMBAS runtime 
system relies on the BASE communication middleware 
(Handte et al., 2010b). BASE enables the spontaneous 
interaction between different devices, while supporting 

many communication technologies through a plug-in 
archi- tecture. Additionally, BASE bridges between different 
communication technologies, whenever necessary. Using 
a gateway that is integrated into the distributed registry, 
BASE is able to establish communication channels, even if 
devices are behind a cor- porate firewall or a NAT router - 
which is commonly the case in mobile or home networks. In 
addition to communication, BASE provides a simple service 
abstraction which is used by GAMBAS to export system 
services that are used, for example, to execute distributed 
queries over the data provided by services or to establish 
secret keys. From an application developer’s perspective, 
however, the GAMBAS runtime hides all details related to 
communication and BASE. Consequently, we would like to 
refer to (Handte et al., 2010b) for more details on BASE.

3.1.2. Data Acquisition

Besides from communication, another capability of the 
GAMBAS runtime is its ability to capture data on behalf of 
the user or a service provider. For this it encom- passes a 
data acquisition component that is capable of running on 
different devices. Internally, the data acquisition component 
is using the NARF activity recognition framework (Handte et 
al., 2010a).  NARF is a component-based, extensible activ- 
ity recognition framework that integrates with different 
types of physical sensors such as an accelerometer or GPS 
as well as with virtual sensors such as the user’s calendar, 
for example. It provides an existing toolkit of reusable 
components such as preprocessors in the time and 
frequency domain, classifiers, etc. Furthermore, it has been 
used to build various context recognition applications. When 
multiple context recognition applications are executed 
simultaneously on a single device, NARF optimizes the data 
acquisition with respect to energy consumption by removing 
redundant sampling and redundant computation (Iqbal et 
al., 2012). Using a visual editor that is integrated into the 
Eclipse development environment, an application developer 
can compose compo- nent configurations via drag-and-
drop to recognize a particular piece of context. Once the 
composition is completed, the developer can export the 
configuration into Java code that can be interpreted and 
executed by the data acquisition component.
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3.1.3. Data Processing

To store and manage data of services as well as data 
generated by devices, the GAMBAS runtime encompasses 
a data processing component.  Internally, the data 
processing component itself is structured in three sub-
components that (a) store the data, (b) query for data 
and (c) discover data.  To store the data of the user on 
a lo- cal device or remotely at a particular service, the 
runtime uses a semantic data storage (SDS) component. 
Similar to the data acquisition component, the SDS is 
primarily tar- geted at resource-constrained devices. The 
data that is stored in the SDS component follows the 
linked data principles (Bizer et al., 2009) and makes use 
of interoperable data representations, storing data using 
RDF (RDF Working Group, 2004). Further- more, the data 
storage is able to interface with different types of query 
processors, depending on the resources available on the 
device.  To make the data stored in the SDSs available to 
services and applications, two types of query processor 
components are used. The query processors are capable 
of executing queries on top of the storages. As query 
language, SPARQL (RDF Data Access Working Group, 2008) 
is used. Since SPARQL queries can be heavyweight, on 
resource-constrained environments such as smart phones, 
queries are executed using RDF-on-the-go (Le-Phuoc et 
al., 2010). It is compatible to other, full-fledged semantic 
web frameworks like Jena (Apache Jena project team, 
2013), but runs on Android devices. To enable transparent 
distributed query processing, the query processors must 
be able to discover the data sources that are available 
on the network. To make the data discoverable, a device 
may announce the data available in the SDS to the data 
discovery registry which in turn will typi- cally use a semantic 
data storage component to manage the announcements. 
In case of personal devices, the announcement may be 
limited or modified depending on the privacy preferences 
of a certain end user. To enable this, the semantic data 
storage and the data discovery registry are interfacing with 
the privacy and security component.

3.1.4. Privacy and Security

As some data processed within smart city applications, 
such as the user location, might be sensitive from a privacy 
perspective, it is necessary to limit the data acqui- sition and 
the data sharing such that it respects the privacy preferences 

of different entities.  Achieving this is the primary task of the 
privacy and security component. The component interacts 
with the SDS as well as the data acquisition component that 
is deployed on each personal device over a privacy manager 
interface. In addition, the privacy and security component 
may also be used to limit the access to information that is 
provided by a particular service. For this, it is integrated into 
the device that is offering the service.  Using a privacy policy 
that can be generated automatically by means of plug-
ins that access proprietary data sources, the privacy and 
security component takes care of exporting sensitive data 
in a way that it can only be accessed by legitimate entities. 
Furthermore, depending on the user preferences, it may 
apply obfuscation in order to limit the data precision and 
it may anonymize the data in order to unlink the data from 
a particular user.  Envisioning the use of mobile devices as 
primary sources of data, the privacy and security component 
is supporting not only traditional laptops and PCs, but also 
resource-constrained devices as its execution platform. In 
the runtime system, the privacy and security component 
is divided into a key-exchange mechanism, policy-based 
access control and encryption protocols.

3.2. Runtime Integration

As depicted in Figure 2, the integration of the components 
of the runtime sys- tem described previously is realized 
by: (1) a set of interfaces, support libraries and tools called 
the software development kit (SDK), and (2) the GAMBAS 
CoreService which provides the accompanying runtime 
environment. The SDK in turn consists of two parts.  The 
service programming interface (SPI) is used to develop 
middleware functions. The application programming 
interface (API) is used to develop GAMBAS apps. The 
CoreService sets up the GAMBAS runtime and manages 
the lifecycle of runtime components. Furthermore, the 
CoreService realizes the SPI by linking each component to 
all other components that they use in their own execution 
via interfaces from the SPI. This effectively provides a tight 
and efficient integration between the components without 
inducing dependencies to their actual implementation. 
Finally, the CoreService implements the GAMBAS API 
towards GAMBAS applications both on Android and J2SE 
platforms. It receives calls, forwards them to the right 
compo- nent and delivers results back to the original caller.
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The J2SE version of the runtime system specializes and implements the generic middleware architecture described before 
for server systems running J2SE. This al- lows service providers to integrate their services into the GAMBAS platform.  The 
J2SE version of the runtime system is implemented as a library that is linked to an ap- plication using it. To start using 
the middleware, an application has to first import and instantiate the CoreService. To use functionality of the GAMBAS 
middleware, e.g. to store data, applications can call a number of methods on the CoreService. The Core- Service in turn 
forwards this request to the corresponding local system component, retrieves results from it and forwards them to the 
calling application. On Android the runtime system is realized as a stand-alone Android app instead of a linkable library. 
This design allows us to efficiently share a single instance between all 3rd party apps, reducing the needed resources and 
thus allowing the OS to keep more apps active in memory for a longer time. As a side effect, direct calls are no longer 
possible. Instead, we use Android intents which are small messages that a process can publish and that can be received 
by other processes. The user interface of the middleware application enables the user to configure a multitude of aspects 
such as the used data discovery registry and communication gateway, the user’s pseudonym, known friends, their keysand 
privacy policies. This allows users to inspect and adapt the current system state in one integrated place and makes it easier 
for them to understand what data is currently made available to whom.

Figure 2. GAMBAS Runtime System for J2SE (left) and Android (right ) 
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4- Mobile Transport Application

The Bus Navigator (c.f.   Figure 3) is a mobile transport application prototype for the public bus system in the city of Madrid.  
It represents one of the two proto- type applications used to validate the GAMBAS middleware and it has been deployed and 
tested successfully for several months in Madrid. As a common feature of mo- bile transport applications, the Bus Navigator 
provides up-to-date information on bus schedules and routes. In contrast to existing applications, however, the Bus Naviga- 
tor provides several innovative and powerful features built on top of the capabilities provided by the GAMBAS middleware 
to help travelers find their way through large, city-scale transport networks.  Most importantly, the Bus Navigator is designed 
as a continuous navigation service that can take advantage of the sensors built into the smart phones carried by travelers. 
These sensors capture context and activity informa- tion, which is then interpreted and processed on the smart phone to 
provide and update real-time transport information relevant to the traveler’s current transport behaviour. The key features 
enabled by the GAMBAS middleware include responsive and pre- cise speech input, advanced trip tracking and information 
visualization as well as bus ride detection and crowd-level estimation bundled into interoperable behavior-driven services 
provided by GAMBAS.

Figure 3. Bus Navigator for the Public Bus Network of Madrid

To support bus detection and trip tracking, the bus navigator ties into the Wifi access points that are already deployed 
in the buses and provide Internet connectivity to the travelers.  Using this deployment, advanced algorithms running on 
the smart phone determine autonomously when the travelers enter and leave a bus – even if they are not connected to 
the access points.  This enables the application to display relevant information such as the next bus stop, the number of 
remaining bus stops on the traveler’s current route or the fact that the traveler has accidentally missed the stop. When a 
bus ride has been completed by the traveler, it is stored locally on the smart phone in a SDS. The resulting history of bus 
rides is used to determine the regular trips made by the traveler, thereby, enabling the automatic prediction of future trip 
destinations. If a future destination cannot be predicted, travelers can configure voice commands to speed up and optimize 
the interaction with the Bus Navigator – resulting in a more efficient and more enjoyable user experience. Besides enabling 
bus detection, the Wifi access points in the buses are also able to determine the number of passengers in the bus. This 
crowd-level information is collected and anonymized on the access point and transmitted to a remotely located SDS. To the 
benefit of the travelers, the information is aggregated and displayed as part of the routing data. This enables travelers not 
only to optimize their trips with respect to timing but also with respect to comfort. In addition, the bus operator may use 
this information to dispatch additional buses and to optimize the bus network schedules.
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5 -Conclusions

Despite the wide availability of versatile programmable 
mobile platforms, there are only few examples of smart 
city applications. One reason for this is that existing 
software platforms primarily focus on low-level resource 
management which requires application developers to 
repeatedly tackle high-level tasks. The GAMBAS middle-
ware simplifies the development of smart city applications 
focusing on three common tasks, namely efficient data 
acquisition, secure and privacy-preserving data distribu- 
tion as well as interoperable data integration. As indicated 
by the Bus Navigator ap- plication, with the current 
implementation of the GAMBAS middleware, it is possible 
to develop and successfully deploy a smart city application 
in the transport domain. As a next step, we are working on 
extending this application to encompass several additional 
domains such as environmental monitoring and social 
activities. Towards this end, we are refining the data models 
and optimizing the middleware performance with respect 
to data acquisition and data processing. More details on the 
GAMBAS middleware, SDK and applications can be found at 
http://www.gambas-ict.eu.
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