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ABSTRACT
Fingerprinting-based indoor localization involves building a
signal strength radio map. This map is usually built manu-
ally by a person holding the mapping device, which results in
orientation-dependent fingerprints due to signal attenuation
by the human body. To offset this distortion, fingerprints are
typically collected for multiple orientations, but this requires
a high effort for large localization areas. In this paper, we
propose an approach to reduce the mapping effort by model-
ing the WLAN signal attenuation caused by the human body.
By applying the model to the captured signal to compensate
for the attenuation, it is possible to generate an orientation-
independent fingerprint. We demonstrate that our model is
location and person independent and its output is compara-
ble with manually created radio maps. By using the model,
the WLAN scanning effort can be reduced by 75% to 87.5%
(depending on the number of orientations).

Author Keywords
Indoor Localization; Signal Attenuation; Signal Modeling

ACM Classification Keywords
I.6 Simulation and Modeling: Model Development—Model
Validation and Analysis

INTRODUCTION
Many WLAN-based indoor localization [1] [6] systems rely
on the characteristic received signal strength indicator (RSSI)
of the propagated signal throughout a building to estimate a
location. For fingerprint-based systems, deployment usually
consists of a training phase and a localization phase. A fin-
gerprint of a location in a building comprises the list of visi-
ble access points at that location and their corresponding sig-
nal strengths. During the training phase, fingerprints are col-
lected by a person - the trainer - at multiple locations across
the building and assigned unique coordinates corresponding
to the location where the fingerprint was created. This col-
lection of fingerprints is known as the training radio map. In
the localization phase, a scan is again performed to capture a
fingerprint which is then compared to the fingerprints in the
training radio map to find the closest match. The correspond-
ing location coordinates for the matching fingerprint are then
retrieved as the estimated location.
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WLAN signals are predominantly transmitted in the 2.4 GHz
frequency band, which is also the resonance frequency of
water [13]. The human body is made of up to 72% water
[19], therefore the WLAN signals are significantly absorbed
by the trainer during the training phase. This absorption con-
sequently distorts the received signal strength for the access
points in the radio map [15]. Considering only one measure-
ment per location results in a radio map where the RSSI mea-
surements are skewed in one orientation due to the presence
of the trainer. The error thus introduced by the trainer is sys-
tematic and leads to a general degradation in localization per-
formance due to the fact that the users of the system may face
any arbitrary orientation during the localization phase.

One of the earliest WLAN-based indoor localization sys-
tems employing WLAN fingerprinting was RADAR [1]. To
counter the effects of the attenuation, the authors collected
training fingerprints in multiple orientations for each location.
This helped to build a more orientation-independent finger-
print by collecting the RSSI values for multiple orientations
and combining them to take the signal attenuation by the body
into account. Through this technique, they achieve localiza-
tion accuracy improvements of up to 67% (in the worst case).
As a result, other systems, e.g. [8], have followed this ap-
proach.

Unfortunately, creating multiple fingerprints per location sig-
nificantly increases the training effort. Especially for large ar-
eas, like conference venues or storage facilities, the resulting
increase in training effort can be prohibitively high. To avoid
this, we propose a signal attenuation model which is able to
generate the fingerprints for multiple orientations given the
fingerprint for just one orientation, while compensating for
signal attenuation due to the human body. With this model,
it is possible reduce the WLAN scanning time for creating a
multiple-orientation radio map by up to 75% to 87.5% (de-
pending on the number of orientations), while maintaining
overall signal quality characteristics of the localization area
and accounting for signal attenuation due to the human body.
We demonstrate that our model is location and person inde-
pendent and can be used to improve localization performance
in deployed systems with minimal effort.

The remainder of this paper structured as follows. The next
section discusses related work in the area of indoor localiza-
tion and WLAN signal propagation modeling. Thereafter,
we propose our approach to modeling the signal attenuation
caused by the human body. Then in the subsequent sections,
we experimentally evaluate the signal attenuation model and
finally conclude the paper with a summary and directions for
future research.



RELATED WORK
Several WLAN-based indoor localization systems have been
developed in recent years, and these systems can be broadly
categorized into either fingerprinting-based systems or sys-
tems which rely on signal propagation modeling for location
estimation. The model-based systems typically seek to re-
duce the effort for creating the training radio map.

Systems which rely on signal propagation modeling do not
require a training phase involving manually creating a radio
map, and therefore require less on-site effort to set up. Seidel
et al [21] present a model for the path loss at 914 MHz and
other articles [20] have shown that WLAN signals follow a
similar log-normal distribution [3]. Consequently, several lo-
calization systems [16] [17] have been built based on WLAN
signal propagation models. The propagation of WLAN sig-
nals indoors is difficult to model accurately due to the dense
multi-path effects in the environment as well as reflection,
diffraction and scattering of the signal [13]. The high num-
ber of variables involved in signal propagation modeling in
indoor environments results in a high modeling effort or lim-
itation of the model variables which can reduce the precision
of the model. Many propagation models seek to capture the
attenuation and distribution of a signal over distance in an
area, whereas our approach focuses on the attenuation caused
by the human body at any given position.

Besides model-based systems, there are several systems using
WLAN fingerprinting for indoor localization [1] [26] [4] [12].
In RADAR [1] the authors build a signal fingerprint radio
map which is used for training and localization. Their find-
ings show that effects of user orientation can cause significant
degradation in localization performance. To remedy this, they
collect fingerprints for 4 orientations and show that they thus
achieve up to 67% improvement in localization accuracy (in
the worst case). They also demonstrate that fingerprint-based
localization methods provide better performance than signal
propagation model based methods. However, the fingerprint-
based methods usually have higher deployment effort and
training costs. COMPASS [14] is another system that tries to
mitigate the effects of the user orientation by using a digital
compass to select only the training fingerprints for the user’s
orientation during localization. They collect several measure-
ments per location for multiple orientations which indicates
a high time and effort investment for mapping large areas.
SpinLoc [22] requires users to spin around in order to cap-
ture a more characteristic fingerprint during localization and
improve accuracy. This places the burden of compensating
for the signal attenuation on the end-user of the system and
might be cumbersome. To reduce the mapping effort, ARI-
ADNE [9] uses a floor construction plan and only a single
measurement to dynamically generate the radio map while
the system is being used. Other systems such as ARIEL [10]
and Calibree [23] as well as simultaneous localization and
mapping (SLAM) systems [5] [2] reduce the mapping effort
by collecting very little data during deployment and progres-
sively improving the radio map as the users use the system.
The downside to this approach is that the localization perfor-
mance immediately after deployment of the system is poor
and only increases with time and more users.

Surveys [6] [18] of localization systems indicate that WLAN
fingerprinting-based systems generally achieve high localiza-
tion accuracy. Our approach seeks to maintain or improve the
performance of fingerprint-based WLAN localization while
simultaneously reducing, but not completely eliminating, the
effort for training the localization system.

APPROACH
In this section, we present our approach to building the sig-
nal attenuation model starting with an analysis of the signal
strength distribution around a human body and then proceed-
ing onto the construction of the model based on the results.

RSSI Distribution Analysis
In RADAR [1], the authors noticed that the WLAN RSSI at
any position varied depending on the orientation of the per-
son measuring it. During experiments with localization we
observe the same effect, that depending on the orientation of
the trainer with respect to the access point, there are signif-
icant variations in the RSSI values measured. This effect is
consistent irrespective of the device used, the access point
or location where the radio map was being created. Kae-
marungsi et al [11] demonstrate that the attenuation on the
signal due to the human body is stronger when closer to the
signal source (in this case, the access point) than when further
away from it. We observe a similar pattern in our data and set
out to better understand the effect by systematically measur-
ing the RSSI at varying distances and orientations from an
access point. We collect a series of fingerprints using a mo-
bile phone with increasing distance from the access point in 1
meter increments, up to 10 meters from the access point. The
mobile device was consistently held in front of the trainer for
all the measurements since the maximum body area is in the
path of the signal and mobile devices are typically held in
this position during use. At each position, we measure the
RSSI in multiple orientations (8 in total) starting with the 0◦

orientation facing the access point and progressing in 45◦ in-
crements. 5 scans are performed per orientation in order to
get a stable characteristic signal due to normal fluctuations in
the RSSI value. The measurements for each orientation are
aggregated using the median function and plotted in a radar
chart. Figure 1 shows samples of the results of obtained from
the data collected.

As expected, we observe that the signal strength in the di-
rection of the access point is strongest when closest to the
access point. Correspondingly, the signal attenuation due to
the human body is also strongest when closest to the access
point but facing away from it. The highest drop in RSSI is
observed at 1m, going from -20 dBm when facing the access
point to about -62 dBm when facing the opposite direction to
the access point. This is a drop of over 40 dBm, as opposed to
the drop of only about 5 dBm when at 10m distance from the
access point. With increasing distance from the access point,
the level of attenuation also reduces progressively. This is
consistent with results obtained in [11] which shows greater
skewing of RSSI distributions for stronger signals. We re-
peated the experiment several times using different access
points and mobile devices, as well as with and without ob-
structions between the access point and mobile device and



Figure 1. Signal distribution (in dBm) with distance

obtained consistent results. We also performed the same ex-
periment with the access point being at a diagonal from the
person and not in a straight line. We noticed that when we ro-
tated our orientations such that the one facing the access point
was at 0◦, the same pattern emerged. Looking at the distribu-
tion of the signal strength around the trainer, we could deduce
that the RSSI distribution pattern was circular for weak val-
ues and that expanded into an oval shape for strong values.
By examining the proportions of the RSSI values when the
trainer is facing towards or away from the access point, we
conclude that the distribution of the signal strength around
the trainer can be approximated with a degenerating elliptical
regression with the trainer at one focus of the ellipse. The
elliptical regression starts closest to the access point and de-
generates into a circular regression with increasing distance.
An overlay of the regression on the RSSI values is depicted in
Figure 1. Based on these observations, we proceed to model
the signal strength distribution around a person based on a
degenerating elliptical regression pattern.

Signal Attenuation Modeling
In the following, we express the degenerating elliptical re-
gression pattern using mathematical statements.

We begin by introducing the basic properties of an ellipse
which is a closed loop curve that is symmetric about its hori-
zontal and vertical axes. The parametric equation of an ellipse
with respect to the focal point at the origin is given as:

r(θ) =
a ∗ (1− ε)

1− ε ∗ cos(θ)
(1)

where ε is the eccentricity of the ellipse, ε =
√
1− b2

a2 . The
variables a and b are the semi-major and semi-minor axes of
the ellipse respectively as shown in Figure 2 which depicts
the basic properties and proportions of an ellipse. The ellipse
has two foci f1 and f2 which are equidistant (with distance

Figure 2. Properties of an ellipse

f ) from the center of the ellipse. If we transpose the ellipse
to signal space considering that the trainer is standing at one
focus of the ellipse, then the distance in signal space from the
focus to the circumference is the RSSI for that given orienta-
tion. As we move further away from the access point, the foci
move towards the center, eventually merging with it to form
a circle. R, the RSSI when facing the access point depicted
in Figure 2 is therefore the maximum RSSI (all other factors
being equal) which can be received for that particular access
point at a particular location. The RSSI for the different ori-
entations correspond to the distance from the focus f2 to the
different points along the circumference of the ellipse, with
the minimum value for the RSSI, n, occurring when facing
opposite the signal source.

Given the parametric equation of the ellipse, we can find the
RSSI, r(θ) for any given orientation θ. However, we need to
determine the values for the semi-major and semi-minor axes,
a and b respectively, which describe the ellipse. Since we
have one measurement, R in the ellipse, we need to express
values for a and b in terms of this known quantity. From the
Figure 2, we can express a using the following equation:

a =
1

2
∗ (R+ n) (2)

In order to express n in terms of the known quantity R, we
need empirically determine the relationship between the two
variables R and n.

Empirical Determination of Coefficients
The mathematical expression of the relationship between the
RSSI, R when facing the access point and the RSSI, n when
facing the opposite direction to the access point is required
in order to properly describe the signal distribution due to at-
tenuation in terms of an elliptic regression. Our observations
(c.f. Figure 1) indicate that the value of n varies for different
values of R. To experimentally determine the relationship
between R and n, we carried out the following experiment.

In our lab, we used 8 access points and placed them equidis-
tant from each other along the circumference of a circle of
radius 3m. We then collected fingerprints for 8 different ori-
entations in 45◦ steps at 9 positions in a 3x3 grid within the
circle. For each orientation, we scan 5 fingerprints with the
mobile device held in front of the trainer and then take then



Figure 3. RSSI variations with respect to strongest RSSI

median of the RSSI in order to get a stable fingerprint read-
ing. The arrangement of the access points in a circle guar-
antees that each time we move to or away from one access
point, we correspondingly move away or to another access
point. This setup speeds up the collection of data and ensures
that we have an equal number of measures both facing and in
the opposite direction of each access point for different RSSI
values.

We then repeated the experiment with circles of radius 5m,
7m and a partial circle of radius 18m in order to get broad
range of signal strength values ranging from very strong to
very weak signals. The position and size of the location grid
was also adjusted to suit each of the different experiments.
After collecting the data, we extracted the signal strengths for
each access point across all locations for both the 0◦ and 180◦

angles with respect to the access point position. To achieve
this, we rotated the orientations in such a way that the orien-
tation in which the trainer was facing the given access point
was considered 0◦ and the orientation where the trainer faces
away from the access point was considered 180◦. For each
location, a different orientation has to be considered as the
0◦ and 180◦ measurements with respect to the position of the
access point under consideration. By repeating this process
for all the access points along the circumference of the circle,
it is possible to obtain for each access point the RSSI values
both facing it and facing away from it for all locations in the
grid.

After extracting all the RSSI values for 0◦ and 180◦ per ac-
cess point, we plot a graph in order to observe how strongly
the RSSI r(180◦) is attenuated for different values of RSSI
at r(0◦). At this point, we need to convert the values for the
RSSI into positive values in the first quadrant of the Cartesian
plane by adding a constant, 100. Using the negative values for
RSSI would result in inaccurate representations of the ellipse
due to the inversion of the magnitude of the absolute values
of a and b when the signs canceled out. The resulting graph
and the corresponding best fit regression for the data points
are shown in Figure 3. It can be observed that the higher the
r(0◦) RSSI value, the stronger the attenuation of the r(180◦)
value. It can be seen that from RSSI values of -70 dBm or
lower in the direction facing the access point, the signal at-
tenuation in the opposite direction is insignificant, resulting

in an almost linear fit. This is due to the fact that the dis-
persal of the signal at such distances from the access point
is already so great that the presence of the human body does
not influence the RSSI significantly. The ellipse is therefore
degenerated into a circle for all values of R < −70dBm.

By applying different polynomial regressions to the data tak-
ing the best fit, we determine that the relationship between R
and n matches a quadratic regression which can be generally
expressed as

n = p ∗R2 + q ∗R+ s (3)

From the data, we can obtain the equation for the best fit
quadratic regression as:

y = −0.007316 ∗ x2 + 1.261967 ∗ x− 1.363591 (4)

The coefficients of the quadratic relationship between R and
n can now be determined as:

p = −0.007316, q = 1.261967, s = −1.363591
Having determined the coefficients of the quadratic relation-
ship between the RSSI value at 0◦ (R) and the one at 180◦
(n), we can now apply that relationship to the ellipse proper-
ties to express the equations for a and b solely in terms of R.
By substituting the value for n in Equation 2, we can express
a solely in terms of R as follows:

a =
1

2
∗ (p ∗R2 + (1 + q) ∗R+ s) (5)

Similarly, we can express the semi-minor axis b in terms ofR
and a (which is now likewise expressed in terms of R). The
focus of an ellipse is described by

f2 = a2 − b2 ⇒ b2 = a2 − f2 (6)

However, from Figure 2 it can be seen that

f = R− a (7)

If we substitute Equation 7 in Equation 6, we get

b =
√
a2 − (R− a)2 (8)

Given the expressions for a and b in terms of R, we can use
the parametric equation of an ellipse (Equation 1) to gener-
ate the signal strength values for any orientation at a given
location. Next, we discuss the process for using the model to
enhance a radio map.

Multiple Signal Sources
Kaemarungsi et al in [13] demonstrate that the RSSI from
multiple access points are independent of each other and ex-
hibit the same statistical properties. Consequently, the model
developed for one signal source can be extended to multiple
signal sources (access points). At any given location, there
are multiple signals arriving from different sources with dif-
ferent angles of incidence. However, the trainer only faces a
single orientation when performing the scan meanwhile the
access points may be situated at very different locations. This
implies that we will not be able to observe R - the strongest
signal possible for each access point visible at that location
- since we cannot directly face all access points at the same
time.



R = 0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦

−30 -34 -41 -47 -49 -47 -41 -34
−40 -43 -48 -51 -53 -51 -48 -43
−50 -52 -54 -56 -57 -56 -54 -52
−60 -61 -62 -63 -63 -63 -62 -61
−70 -70 -70 -70 -70 -70 -70 -70

Table 1. Excerpt of the Ellipse Lookup Table (in dBm)

However, to generate the signal strengths for all orientations,
we need the value of R = r(0◦) for every access point. We
can refactor the parametric equation of the ellipse (Equation
1) in terms of a and b, and again in terms of R (since we
have already expressed a and b in terms of R). The result-
ing equation enables us to compute the value for R for any
given r(θ) and θ. Yet, solving the equation for R results in a
multi-page equation with complex numbers which is difficult
to work with. Instead, we pre-compute the possible values for
a and b of the ellipses which describe all possible signal dis-
tribution patterns given different values of R = r(0◦). This
is easy since for all practical purposes, the values for R occur
in R ∈ {0, ...,−99}, which is a small finite set.

The data set of all possible values for a and b is used as a
lookup-table for generating the RSSI for different orienta-
tions. Given any known RSSI value and the orientation at
which it was received as an input tuple {r(θ), θ}, we can find
the ellipse in the look-up table containing the point {r(θ), θ}
and retrieve the corresponding a and b values of the ellipse.
The matching ellipse is then used compute the RSSI values
for all other orientations. Table 1 shows an excerpt of the
look-up table, with the generated values for 8 orientations for
different values of R = r(0◦).

Application to Localization System Deployments
We now have all the parts of the model required for enhanc-
ing any single-orientation radio map into one with multiple
rotations to improve localization performance. We first con-
sider the case of applying the model to new deployments of
indoor localization systems and then follow up with treatment
of existing deployments.

New Localization System Deployments
When considering the deployment of an indoor localization
where the model is to be applied, the required inputs are:

• A radio map with fingerprints of the form

V = (X,Y, θ, {RSS(AP1), .., RSS(APN )})

θ is the orientation in which trainer was facing when the
radio map was built. This can be gotten from a compass or
manually recorded when creating the fingerprints.

• Locations (Xap, Yap) of the access points in the area

Assuming that the access point is located at θ = 0◦ for the
measurement in the Cartesian plane, we can use the values
for θ andRSS(APi) for each access point to look-up the cor-
responding ellipse (from the pre-computed ellipse data set)
describing the signal distribution for that particular location.

However, the orientation at which the fingerprint was cap-
tured is not necessarily the same as the orientation with re-
spect to each access point. This is due to the fact that the
semi-major axis of each ellipse is considered to be facing the
direction θ = 0◦ for each access point. Hence, each access
point visible at a location can be considered to be within its
own virtual plane which is rotated by a given angle φ from
the Cartesian plane considered for measurements. Thus, we
transpose the angle θ from the measurement Cartesian plane
to its angle in the signal space plane for each access point.

This is achieved by computing the angle φ between the ver-
tical vectors through the fingerprint location (Xi, Yi) and
the access point location (Xap, Yap) using Cartesian geom-
etry. This gives us the plane offset between the measurement
Cartesian plane and the signal space plane with respect to the
access point under consideration at that location. Using this
offset, we can then transpose the angle θ into the correspond-
ing angle θAP using the formula:

θAP = ((360− φ) + θ) (9)

Now we can look-up the signal distribution ellipse which has
a point matching {θAP , r(θAP )}. If no exact match is found,
we take the ellipse with the closest RSSI match for r(θAP ) at
θAP . The ellipse is then used to populate the RSSI values for
the different orientations at the location. Any variable number
of orientations can be computed, although at least 4 orienta-
tions is recommended [14]. This is repeated for all access
points APi in the fingerprint and in turn for all fingerprints
Vi in the radio map to yield an enhanced radio map which
has fingerprints for multiple orientations per fingerprint. The
output is a radio map with multiple orientations per location
considering the trainer’s signal attenuation.

Existing Localization System Deployments
The previously described process for applying the model
works well when we know where all the access points are and
the creation of the initial training radio map is under our con-
trol. However, in existing localization system deployments,
it may not be known where all access points are deployed, or
there may be more visible access points in the location area
than are setup, for example signals from other nearby build-
ings. In such a scenario, we lack an important input required
to apply the model to a radio map.

However, the lack of knowledge about the access points’ lo-
cations can be compensated by dynamically computing them.
To do this, we use the approach proposed by Han et al [7] for
determining the locations of the access points given a finger-
print radio map. For each access point, we go through all the
fingerprints in the radio map where the access point was vis-
ible and select the top 2 locations with the highest RSSI for
the particular access point. We then take the average of the
two locations as the location of the access point.

This simple process enables us to apply the model to the sys-
tem as previously described. Being able to compute the lo-
cation of the access points reduces the required inputs for the
algorithm to just the radio map. It is thus easy to apply the
signal attenuation model to already deployed indoor localiza-
tion systems.



Figure 4. RSSI Deviation for Office Building

Generated from 0◦ 90◦ 180◦ 270◦

Correlation Coefficient 0.927 0.925 0.927 0.923
Table 2. Correlation of model-generated RSSI to Measured RSSI

EVALUATION
In this section, we evaluate the performance of the model in
terms of its precision with respect to measured fingerprint ra-
dio maps, as well as the general applicability of the model to
different environments. Furthermore, we compare the local-
ization performance of the model-generated radio maps with
manually measured radio maps and single-orientation radio
maps. Finally, we discuss how much of a reduction in effort
can be achieved by using the model.

Precision
To evaluate the precision of the model-generated RSSI values,
we compute the difference in the RSSI between the measured
radio map and the generated radio map and then analyze the
distribution of the differences. The following describes in de-
tail how this is done.

We use an Android Galaxy Nexus device to create two ra-
dio maps for our office building on two different days, which
we label the training and evaluation radio maps respectively.
We use only one type of device in this evaluation to elim-
inate effects of differences in device radios and focus solely
on the attenuation caused by the human body. We placed 9 ac-
cess points at known locations throughout the building. The
building has dimensions of 36x15m and we collected finger-
prints at 90 locations within the building. At each location,
we collected fingerprints for 8 orientations starting from 0◦

in 45◦ increments. Then, for each of the orientations in the
set {0◦, 90◦, 180◦, 270◦}, we remove all other orientations
except that one, resulting four single-orientation radio maps
(one for each of the 4 orientations). The signal attenuation
model is then applied to each of the single-orientation radio
maps to generate fingerprints for all other orientations. The
differences between each signal in the generated radio map
and the original measured radio map are then computed to
give the signal variation distribution across all locations.

The RSSI values for WLAN signals at any location are not
constant, but vary slightly over consecutive measurements.

Therefore in order to qualify the results of the generated radio
map, we also compute the differences between two manually
measured training and evaluation radio maps. We compute
the deviation in RSSI value for each access point per orienta-
tion per location. The distribution of the overall deviation for
the generated radio maps and the physical radio map in our
office building can be seen in Figure 4.

The distribution of the error for two different manually mea-
sured radio maps follows the same pattern as that for the radio
maps generated using the model. We further quantify the per-
formance of the model by computing the Pearson correlation
coefficient between the generated radio maps and the physi-
cal radio map, taking into account the RSSI for each access
point at each location. Table 2 shows the correlation for the
generated radio maps and the physical radio map.

We observe that there is a strong positive correlation between
the generated RSSI values and the measured RSSI values
(> 0.9). Moreover, the starting orientation for applying the
model has no significant impact on the precision of the out-
put. No matter what orientation is used as the base measure-
ment for generating the radio map, the results are comparable.
This indicates that for already deployed indoor localization
systems, the signal attenuation model should be applicable
regardless of the orientation in which the measurements were
taken.

We further break down the deviation per location to observe
the effects (if any) of positional dependencies in the observed
deviations. The deviation between generated and observed
RSSI value for each location in the building is aggregated
and plotted using a candlestick representation as seen in Fig-
ure 5. The plot shows the minimum, 10th percentile, 90th
percentile and maximum deviation aggregated for all access
points visible at each location.

It can be observed that there is an even distribution of the
RSSI deviation per location for the generated radio map. 90%
of all the values typically lie within 0 dBm and 9 dBm. This
distribution is similar to the one observed between 2 manu-
ally created radio maps. There are also a few outliers which
go up to 23 dBm, but these are also observable in the dif-
ference distribution between two consecutive measurements
at the same location in the building. We can conclude from
the observations that the model is (at least) applicable to our
office environment.

General Applicability
To validate the independence of the model from other fac-
tors such as the localization area and the trainer, we collected
fingerprints in 2 other environments and by 2 different per-
sons. This brings the total tested environments (including the
office environment) to 3. The other two buildings were our
university library building and a home environment. Also,
we selected people of different weights - 90kg and 70kg -
to evaluate the attenuation for different body masses. Again
each of the trainers created two sets of fingerprint radio maps
for each building at two different times of the day. In these
environments, we do not know where the access points are
located and dynamically compute their locations using the ra-



Figure 5. RSSI Deviation per Location for Office Building

dio maps as mentioned previously. The same procedure for
evaluating the precision - using the differences between the
generated and a measured radio map - was then applied to the
data set from each of the environments. The results obtained
are illustrated in Figures 6 and 7.

The deviation between the two manually measured maps and
the generated maps is comparable. The breakdown of the to-
tal deviations per location (Figures 9 and 8) shows that al-
though the maximum deviations for the candlestick values
tend to be generally higher, the ranges for the deviations up
to the 90th percentile are comparable. The median value for
the measured radio maps and the generated radio maps follow
the same linear pattern for each of the positions and each of
the buildings and averages at 4 dBm. This indicates that the
model continues to work for other environments even if we
do not know the physical access point locations.

Localization Performance
To evaluate the localization performance, we collected two
sets of fingerprints at consecutive days (90 locations, 4 ori-
entations each) in our office building keeping the standard
WLAN deployment of 4 access points. One fingerprint set
was used as a training radio map and the other for localiza-
tion. As localization algorithm, we use the nearest neigh-
bor in signal space (NNSS) classifier whereby the distance
in signal space is computed using the Euclidean distance for-
mula. The reason for chosing this (rather basic) approach is
the more direct correspondence between differences in sig-
nal space and localization performance. It is noteworthy to
mention that other systems like HORUS [25], for example,
use more advanced techniques such as a correlation modeler
to mitigate the effects of temporal variations in RSSI. How-
ever, the model presented in this paper focuses on systematic
variations introduced by the trainer’s body.

Using the collected fingerprint data we create three configu-
rations of the training radio map:

• The full (measured) radio map with all orientations

• Four single-orientation radio maps, each with only finger-
prints in one orientation for each of the orientations in the
set {0◦, 90◦, 180◦, 270◦}

Figure 10. Localization cumulative error distribution

Orientation 0◦ 90◦ 180◦ 270◦

Single-orientation 3.2 2.9 3.1 3.0
Model-generated 2.8 2.7 2.8 2.9

Table 3. Total average error (cells) per orientation

• Four multiple-orientation radio maps generated by apply-
ing the model to each of the single-orientation radio maps

We then use the evaluation radio map to perform localization
against each of the training radio map configurations. The
resulting total average error from the localization across all
orientations is shown in Table 3, and Figure 10 shows the
cumulative error distribution for the 0◦ orientation.

The average error obtained when localizing with the full train-
ing map is 2.7 cells. We observe (c.f. Table 3) that using
only a single orientation results in a performance degradation
between 7% and 18%, depending on the chosen orientation.
The model-generated radio map consistently outperforms the
single-orientation radio map. Compared to the radio map
containing all measured orientations, the performance degra-
dation when using the model ranges between 0% and 7%.

In actual localization deployments, the trainer and users of
the system are typically not the same person. To evaluate the
impact of differences between the trainer and the user, two
different persons (70kg and 90kg) collected two sets of fin-
gerprints in the office building (90 locations, 4 orientations



Figure 6. RSSI Deviation for Radio Maps in Library Figure 7. RSSI Deviation for Radio Maps in Home Environment

Figure 8. RSSI Deviation per Location in Library

Figure 9. RSSI Deviation per Location for Home Environment



Orientation 0◦ 90◦ 180◦ 270◦

Single-orientation 3.0 2.8 2.9 2.9
Model-generated 2.7 2.7 2.7 2.7

Table 4. Total average error (cells) per orientation (cross-person)

Figure 11. Localization cumulative error distribution with radio maps
from different persons

each) on consecutive days. We then used the set of finger-
prints collected by the first person for training and the other
one for localization. The total average error for the manually
measured radio map is 2.7 cells. The total average error for
the different single-orientation and generated radio maps is
shown in Table 4 and the cumulative error distribution for 0◦
is shown in Figure 11.

The numbers show a performance improvement of up to
11% when using model-generated radio maps as opposed
to single-orientation maps. The performance of model-
generated radio map is close to that of the full manually
measured radio map. This indicates that the model results
in a considerable improvement in localization accuracy even
when the trainer and users of the system are different persons.

Mapping Effort
WLAN signals are typically broadcast over multiple chan-
nels and each access point may use any one of the total 14
available channels. The IEEE 802.11 standard requires that
all the available channels be scanned in a search for WLAN
networks. With most commercial access points having a
100ms beacon interval [24], this means that it typically takes
100ms ∗ 14 = 1.4s to do a complete WLAN scan. Also, due
to the typical fluctuations in the WLAN signal measurements
even for consecutive measurements at the same position, it
is usually recommended to perform more than one WLAN
scan to increase the stability of the recorded RSSI value for
a given position. In our research, we typically collected 5
duplicate scans for each orientation. With 8 orientations and
90 positions in our office building, the total time required for
scanning is 1.4s∗5 scans∗8 orientations∗90 positions =
5040s or 1.4 hours to create a radio map of the building.

If we would instead collect just one fingerprint per orienta-
tion and apply the model to generate the other orientations,
we would need just 10.5 minutes of pure scanning time. This
represents an 87.5% reduction in the effort and even if we

would only collect 4 orientations we would still have a 75%
reduction in scanning time. Intutively, when considering the
time required for moving between locations and posturing for
multiple orientations, the percentual gains may vary. How-
ever, the absolute differences will still be significant, espe-
cially, when considering large localization areas.

CONCLUSION
In this paper, we have presented an approach to modeling sig-
nal attenuation caused by the human body during fingerprint-
ing as a means of generating orientation-independent finger-
prints for indoor localization. The model is used to enhance
WLAN radio maps which contain only fingerprints collected
in one orientation into radio maps with fingerprints for mul-
tiple orientations. Based on our experimental evaluation, the
model generates fingerprints which are comparable to those
obtained by manual measurement. In particular, the results
indicate the following:

• The generated radio maps are comparable to those obtained
by manual measurement of the signal strengths and exhibit
consistent minor variations across all locations. Further-
more, the localization performance of the generated radio
maps is close to a manually measured one and consistently
better than a single-orientation radio map.

• The performance of the signal attenuation model is inde-
pendent of the orientation used to create the base finger-
print set. It is possible to start with single-orientation fin-
gerprints in any orientation and then reverse generate a
multiple-orientation radio map. This makes it easy to apply
the model to already deployed localization systems.

• The signal attenuation model is generally applicable and is
independent of the physical location, or the person creating
the fingerprints. It depends only on the input RSSI which
has been manually measured for each location.

• By applying the signal attenuation model, it is possible to
save up to 75% to 87.5% WLAN scanning time in the train-
ing phase which is a significant gain especially for larger
deployments.

In the future we plan to study the effects of environmental
changes over longer periods of time with the goal of building
a dynamic model which can periodically re-calibrate the radio
map.
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