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Abstract. An important basis of many smart city applications is knowl-
edge about the location of persons and objects. In outdoor environments,
this knowledge can be acquired reliably on a global scale using the well-
known Global Positioning System (GPS). In indoor environments, both
the availability and reliability of GPS is significantly limited. This, in
turn, has led to active research on approaches and systems to enable
indoor localization using various cooperating objects technologies. A key
challenge during the development of any of these indoor localization ap-
proaches and systems is the systematic evaluation of their performance.
To do this, developers have to perform extensive and time-consuming
measurements at different locations over an extended period of time. In
this paper, we discuss how the time requirements can be reduced by
means of automation. Furthermore, based on our experiences with both,
manual and automatic evaluation, we discuss the achievable benefits and
possible limitations.
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1 Introduction

An important basis of many smart city applications is knowledge about the
location of persons and objects. In outdoor environments, this knowledge can
be acquired reliably on a global scale using the well-known Global Positioning
System (GPS) [5]. In indoor environments, both the availability and reliability
of GPS is typically limited. Over the past decade, researchers and practitioners
have spend a significant amount of resources to develop various indoor localiza-
tion systems and approaches with different technologies. Example technologies
include camera systems [8], infrared light [13], (ultra-) sound [3] and a broad
spectrum of RF technologies such as Bluetooth [9] or WLAN [1] to name a
few. Due to its scalability and wide availability, RF-based indoor localization is
considered to be favorable in many application scenarios.

As discussed in depth in [7], existing approaches for RF-based indoor local-
ization can be broadly classified into four categories:
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— Proximity analysis: Proximity analysis uses connectivity information as a
basis for localization. However, to provide a sufficiently high accuracy, prox-
imity analysis requires a comparatively dense deployment of devices. Conse-
quently, it cannot be considered cost effective for large scale deployments.

— Angulation: Angulation uses the angle of arrival of a particular signal in order
to determine a location. For this, however, it is necessary to use specifically
designed antennas that are able to determine the angle and thus, it cannot
be realized with off-the-shelf hardware that is readily available.

— Lateration: Lateration approaches such as TOA, TDOA or RTOF rely on es-
timates of the signals flight time in order to determine a location. As a result,
they typically require precise synchronization or time measurements. Usu-
ally, this results in expensive hardware setups that include special wiring. To
avoid such costs, lateration can also be done on the basis of signal strength.
However, due to the multi-path effects of most indoor environment, this is
likely to cause significant inaccuracy.

— Scene analysis: To avoid both, the increased hardware cost of time-based
lateration approaches as well as the error caused by distance estimation, it is
possible to rely on scene analysis. The basis for scene analysis is calibration
in the target environment that is used to overcome the non-linear signal
behaviour caused by multi-path effects.

Especially, when considering the popular category of systems based on scene
analysis, a key challenge during the development is the systematic evaluation of
their performance. To do this, developers have to perform extensive and time-
consuming measurements in order to calibrate and test the system. Typically,
this involves the repeated positioning of objects at different locations. In addi-
tion, to gather meaningful metrics, it is often necessary to repeat the process
over an extended period of time. Consequently, researchers have used simplified
processes to study the performance of their systems. However, this limits the
insights that can be gathered from their results.

In this paper, we discuss how the time required to evaluate the performance
of RF-based indoor localization systems can be reduced by means of automation.
To do this, we outline the typical evaluation process for such systems in Section
2. Thereafter, in Section 3, we introduce two localization systems that we have
built and evaluated as part of WebDA [11], one of our ambient assisted living
projects. Based on our experiences with the manual and automated evaluation
of these localization systems, we discuss the achievable benefits and possible
limitations in Section 4. Finally, we conclude the paper with a summary and an
outlook in Section 5.

2 Process and Challenges

Typically, the design of an RF-based indoor localization system starts with the
selection of an appropriate RF technology and a suitable localization approach.
In the past, researchers have studied a multitude of technologies including main-
stream communication technologies such as FM-Radio [10], DECT [6], Bluetooth
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[9] or WLAN [1, 14, 4] as well as identification technologies such as RFID [12]
or specialized technologies such as UWB [17]. As hinted in the introduction,
there are a number of different localization approaches with varying strengths
and weaknesses. Due to its simplicity, low cost and potentially high accuracy a
widely adopted approach is scene analysis.

To implement this approach for a given technology, it is necessary to de-
sign and fine-tune signal aggregation and comparison functions based on the
underlying hardware characteristics. This involves the collection of base mea-
surements, for example, to determine the radiation pattern of antennas, the
impact of distance between a sender and receiver on the signal characteristics
or the dampening factors of certain materials. Once the design and fine-tuning
is complete, it is necessary to evaluate the performance of the resulting system.
Again, this involves the collection of measurements using the chosen hardware
and the computation of the desired performance metrics on top of the tuned
algorithms.

During both, the initial measurements for fine-tuning as well as the final
measurements for evaluation, the following four factors play an important role:

— Number of positions: Since approaches based on scene analysis can degrade
based on the complexity of the underlying scene, it is usually necessary to col-
lect measurements for a large number of different positions. This ensures that
the initial algorithm design and tuning is not hampered by specific effects
of the test environment. Furthermore, it ensures that the final evaluation
results provide a strong indication of the system’s achievable performance.

— Number of samples: Since most RF technologies are not able to measure sig-
nal characteristics perfectly, it is usually necessary to collect multiple sam-
ples for each position. This ensures that both the tuning as well as the final
evaluation are not significantly distorted through measurement outliers.

— Positioning precision: Since scene analysis requires a training phase in which
the system is adapted to a particular scene, it is usually necessary to perform
2 consecutive measurements, i.e. one for training and one for validation.
When performing these measurements, it is necessary to reposition the signal
sources and sinks precisely at the same location twice. Intuitively, in order
to ensure that the quality of the data is high, it is necessary to ensure that
the repositioning is accurate.

— FExperiment time frame: Last but not least, it is usually not advisable to
perform the training and validation measurements in a short time frame.
Instead, it is necessary to stretch out the experiments over a longer period
of time. This ensures that temporal effects, e.g. signal fluctuations due to
temperature or humidity changes, are represented adequately in the collected
measurements.

When trying to minimize the impact of all four factors, it becomes apparent
that in many cases, both, the design as well as the evaluation of an RF-based
indoor localization system require a considerable amount of precise measure-
ments. Consequently, the measurement process consumes a significant part of
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the system developer’s time. While it may seem possible to reduce the time con-
sumption by not considering some of the factors, the impact of doing so is hard
to judge and may complicate the design, e.g. due to non-representative measure-
ments, or worsen the expressiveness of the performance evaluation, e.g. due to
highly variable and non-reproducible results. In this paper, we argue that it is
preferable to reduce the time required by the developer by automating the col-
lection process instead. To clarify this, we present two localization systems that
we have built as part of WebDA, one of our ambient assisted living projects, in
the following. Thereafter, we describe our experiences with the manual as well
as the automatic evaluation of the systems.

3 Indoor Localization in WebDA

The goal of the WebDA [11] project is to prolong the duration during which
elderly persons suffering from dementia can be treated at home. For this, the
project has developed a platform that provides a number of web-based services to
both, the elderly persons as well as their family members or care takers. The goal
of these services is to compensate for the ongoing loss of capabilities by providing
assisting services that reduce the need for frequent personal (emergency) visits
which are often cited as a main reason for moving the elderly to a nursing home
and to improve the comfort of the elderly by reducing stressful situations. Among
the most important services provided by WebDA are the following two:

— Contezt-aware notifications: By interpreting the movement patterns of the
elderly, this service is able to issue context-aware reminders to the elderly,
for example, to drink some water when going to the kitchen. Furthermore,
it can notify the family members about abnormal and potentially dangerous
behavior, for example, the elderly being on the balcony at night.

— Misplaced object finder: By automatically gathering the location of impor-
tant objects in the home, the service allows the elderly to search for misplaced
objects. The elder can, for example, make a phone call to his care taker who
then performs a remote search in response to the request via a web-interface
provided by the object finder service. Also, a key finder module can remind
the dement person to take the key when leaving home.

Obviously, both services require accurate and detailed location information.
To gather this information in an unobtrusive and automated fashion, we have
been working on the development of two low-cost localization systems that rely
on active and passive RFID technology. In the following, we briefly describe the
requirements on these systems, the details on the hard- and software that we
used to realized them as well as their integration with the remaining software.
In the next section, we describe our evaluation experiences.

3.1 Requirements

The two primary application areas of indoor localization in WebDA are the real-
time tracking of the elderly persons as well as the on-demand localization of
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objects. When putting these application areas in the context of ambient assisted
living, we can identify the following general requirements which are also often
targeted by other systems in this application domain:

— Low cost: To be suitable for many elderly persons, the localization system
must be inexpensive to deploy and operate. Beyond the cost of the hard-
ware, this also includes factors such as installation cost, the configuration
cost as well as the cost for maintaining both, the hard- and the software
configuration over an extended period of time.

— Low obtrusiveness: To increase the acceptance of the overall system, the
localization system should be as unobtrusive as possible. This has a major
impact on the hardware form factors that can be used. Moreover, it also
has an impact on the actual technology that is used to enable localization,
especially when dealing with less technically versed persons.

— High accuracy: In order to be usable for the intended purposes, the localiza-
tion system must be highly accurate. Due to the structure of typical home
environments achieving room-level accuracy will not be sufficient for many
scenarios. As a simple example, consider that in order to return useful results,
the object finder service should be able to differentiate between different lo-
cations such as ”"the shelf” or "the coffee table” even if they are in a single
room.

— High reliability: Last but not least, the localization system must also be reli-
able. This does not merely refer to reliability with respect to the localization
results, but also implies high reliability with respect to small short-term
changes in the environment. Such changes may include the movement of
furniture such as chairs or the opening and closing of windows, for example.

3.2 Hardware

In order to support the localization of persons while fulfilling the requirements
described above, we chose to use an active RFID system that consists of battery-
powered tags and readers. The reason for this choice is the fact that when com-
pared to passive RFID systems, active systems typically exhibit a significantly
higher range and thus, this technology requires a lower number of readers. As
the readers are typically more expensive than the tags and we are aiming at
localizing a single person with dementia, this reduces the overall hardware cost.

To support the localization of objects, however, we chose to use a passive
RFID system that consists of passive tags which are powered through an active
reader. The rationale for this decision is that passive tags are significantly smaller
and cheaper than active tags. Consequently, it is possible to tag a large number
of objects of different sizes with little additional cost. Furthermore, due to the
fact that passive RFID tags receive their energy through the reader, there is no
need to replace or recharge the batteries of the tags that are attached to objects.

Figure 1 shows a picture of the main components of the active as well as the
passive RFID system. Both systems consist exclusively of comparatively low-cost
off-the-shelf components. In the following, we briefly describe each of the main
components of these systems in more detail.
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(a) passive antenna  (b) passive tag (c) active tag  (d) active antenna

Fig. 1: WebDA Localization Hardware

Active RFID System: For person localization, we use the LogiSphere system
from Sensite Solutions [15] which consists of readers (HBL100) and active
tags (BN208). The system operates at a frequency of 868 MHz which pro-
vides coverage for a typical home environment with more than 100m? easily.
Given the overall cost of the system components as well as the range that
can be covered by each reader, we expect that a typical installation can con-
sist of four readers per home. The readers can automatically form a wireless
multi-hop network which drastically reduces the deployment cost and time
since only one RFID reader must be connected via RS-232 to a PC. The
remaining readers solely need to be connected to power. Besides from iden-
tifying individual tags, the readers are also able to estimate the power of the
received signals broadcast periodically by the tags whereby the periodicity
can be configured.

Passive RFID System: For object localization, we use a long range passive
RFID system from Feig Electronic [2] consisting of OBID i-scan UHF LRU
3500 readers that are connected to up to 4 antennas. Similar to the active
system, the passive system operates at a frequency of 868 MHz. Based on
the specification, the readers can read tags at a distance of up to 16m and
when reading the tag, the reader can estimate the received signal strength.
However, with our combination of antennas we can typically cover a rage of
up to 7m with one antenna. For a typical mid-sized room of about 50m?,
this usually results in one reader with 4 antennas per room. Each reader can
be equipped with a USB stick to connect itself to a wireless LAN. Just like
with the active readers, this allows us to reduce the deployment cost and
time since there is no need to run cables from one room to another.

Software

The localization approach used for persons and objects in WebDA is based on
scene analysis. To be more specific, we use a fingerprinting technique that is
similar to RADAR [1]. However, in contrast to RADAR which is based on IEEE
802.11 we use RFID technology. As a consequence, there are several significant
differences between the approach presented in [1] and the one taken by WebDA.
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In the following, we briefly explain the overall approach as well as these differ-
ences.

Localization (Online) Training (Offline)

— ID 1 TRS | TR,S | RS |— Location X| Fingerprintx

—> ID2 | 1Rs | RS | TRS |— Location Y| FingerprintY

— ID3 | tRs | RS | TRS |— Location Z | Fingerprintz

— ID4 | TrRs | TRS | TRS |—

T (time), R (reader), and S (strength) ‘ Localization Algorithm I

RFID System l
| Person A: Location Y Object B: Location Z |

Object B Person A

Fig. 2: WebDA Localization Approach

In general, fingerprinting-based localization is done in two phases that are
depicted in Figure 2. During the first phase the so-called training phase, mea-
surements are made at different locations in the target environment. These mea-
surements are then processed - resulting in so-called fingerprints - and the fin-
gerprints are stored together with their respective locations. During the second
phase the actual localization phase, runtime measurements are made and these
are then compared to the fingerprints made during the training phase. The lo-
cation of the persons or objects is then determined by choosing the location
of the most similar fingerprint captured during the training phase. Thus, using
the environment-specific calibration done in the training phase, it is possible to
account for the variances induced by multi-path effects.

However, in order for this approach to work in our setting using RFID tech-
nology for person and object localization, we introduce the following modifica-
tions to traditional fingerprinting approaches:

— Time-based aggregation: As the RSS values computed by our RFID read-
ers exhibit a considerable variance (due to measurement imprecisions) we
aggregate several readings over time. To account for outliers, we use the
80th percentile measurement as the true value for the interval. To be more
specific, we aggregate readings in a 20 second interval as we experimentally
determined this to be a suitable trade-off between accuracy and latency.
Intuitively, for the real-time tracking of persons, 20 seconds of latency is
already high. To further reduce this, we use a sliding window during the
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localization phase which typically results in a latency of about 10 seconds.
This latency can be tolerated by our services.

Measurement comparisons: To compare measurements of the localization
phase with the measurements made during the training phase, RADAR pro-
poses the use of the Euclidean distance. To do this, the readings of a single
tag made by each reader are represented in a vector Ry where k denotes
one of the readers. We rely on the same basic approach. However, to reduce
the number of comparisons, RADAR proposes to further aggregate mul-
tiple measurements made at the same location using the component-wise
maximum. Since we did not find this to be necessary in order to achieve a
satisfying performance, we are refraining from using this step.

Multiple tags: In the past, researchers have showed that by introducing more
readers, it is possible to improve the resulting localization accuracy. How-
ever, as the readers are typically much more expensive than tags, we are
proposing to use multiple tags instead. In [18], we have shown that this can
dramatically improve the localization accuracy when applied to person lo-
calization, so we are taking the same approach for object localization as well.
The idea thereby is to attach multiple tags to the same person or object.
The fingerprints are then constructed as a so-called wide fingerprint by com-
bining the measurements of all tags belonging to the same person or object
from all readers. This results in a vector R;; where i denotes one of the tags
and k denotes one of the readers. Then we apply the comparison as described
above. Through experimentation with our concrete hardware, we found that
4 tags per person and 3 tags per object provide a suitable balance between
hardware cost and accuracy.

Specific placement: The last specific component to our localization approach
is tag placement. As discussed in [18], for person localization, tag placement
has a significant impact on the resulting accuracy. Consequently, for person
localization, we attach the 4 tags to a belt of the person so that their ori-
entation stays relatively stable. For object localization, the same argument
can be made due to the fact that objects can be rotated. Consequently, in
order to account for different rotations, the three tags are attached to each
object. When performing the comparison between training fingerprints and
the localization phase fingerprints, we can then construct different rotations
by swapping the individual components in the vector R;;. As the result-
ing location, we then use the location that exhibits the minimum Euclidean
distance among all locations and all rotations.

3.4 Integration

In order to make the previously described localization hardware and algorithms
usable by the user-facing services implemented in WebDA, we have integrated

them. Furthermore,to speed up the adaptation of these services to different home

environments, we have developed a number of tools. In the following, we briefly
describe the resulting architecture as well as the provided tool support.
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Architecture The web-based services implemented by the WebDA project rely
on the OSGI component model for modularization. Consequently, we used the
same framework to implement the localization system. The building blocks of
the resulting localization system are depicted in Figure 3a.

=
I —— e e P B
(e.g. notifications, object finder) :

Retrieve locations

Configure and
retrieve model
information

Initiate
localization
and retrieve

changes
y/4 N

PP U -
[ history ] [ Algorithm model ]

Observe changes

SGI Service Interfaces

Initiate scans and Import Interface

process results -
Environment

modeling

Hardware Interface

Localization Modeling Tool
hardware (Eclipse Plug-in)
(active/passive)

(a) Architecture (b) Tools

Fig. 3: WebDA Architecture and Tools

At the lowest level, a number of drivers provide access to the active and pas-
sive RFID systems. On top of that, the localization algorithm is implemented as
an OSGI service. Using this service, other services can subscribe to localization
events which indicate the location of persons and objects. Furthermore, they can
trigger passive scans in order to start searching for objects. By subscribing to
all localization events, a localization history service can store all location infor-
mation persistently over time. Furthermore, it can make the history of locations
available to other services, for example, to perform long-term pattern recogni-
tion or to facilitate testing and debugging. In order to abstract from the concrete
geometric properties of a particular home environment and in order to generate
user interfaces that are meaningful for the users of the system, the localization
events are expressed in terms of a symbolic location model. The location model
encompasses relevant ”zones” such as rooms and other areas, e.g., closets, tables,
etc. Furthermore, it models the geometrical containment relationships between
the zones. This enables the user interface related services to display, for example,
hierarchical menus and refined outputs such as ”the object is in the living room
close to the couch”. Intuitively, this model has to be adapted specifically for each
environment as the geometrical properties change between environments.

Tools In order to configure the localization system for a particular home en-
vironment, it is necessary to a) model the environment and b) perform the
calibration required as part of the training phase of the localization algorithm.
To support both tasks, we developed a simple tool on the basis of the Eclipse
platform. A screenshot of this tool is depicted in Figure 3b.
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Using a graphical editor, a user can model different areas which constitute
the environment. Based on the Eclipse Graphical Editor Framework, the editor
supports all common actions such as insertion, movement by dragging, dele-
tion, etc. and it is also possible to specify exact coordinates by means of an
Eclipse Property View. The modeled areas may refer to different concepts such
as different types of rooms or zones within them. By providing an approxi-
mate geometry of the areas, the tool can automatically gather the containment
relationship. By clicking an export button, the modeled environment can be ex-
ported to a database format which is then used by the localization system. In
order to calibrate the system, the Eclipse tool can also be used to pinpoint the
current location at which a measurement for a fingerprint is taken. The resulting
fingerprints and their locations can then be fed into the localization algorithm
which can then a) compute the location and b) attach the location to an area
in the location model. From our experience, this tool significantly speeds up the
overall deployment process as the visual representation of areas and locations
speeds up the database configuration and reduces the potential for attaching
false locations to the measurements during calibration.

4 Experiences

To evaluate WebDA'’s person localization system, we have performed an exten-
sive manual evaluation. Furthermore, to evaluate the object localization system,
we have recently started with an automated evaluation using our TrainSense
testbed. In the following, we describe our experiences during both types of eval-
uations. Thereafter, we highlight the benefits and limitations of each approach.

4.1 Manual Evaluation

In order to measure the performance of WebDA’s person localization system,
we performed a manual evaluation the results of which are described in [18].
The goal was to show the impact of antennas on the localization result when
localizing a human. Since we wanted to test the system under real conditions it
was necessary to attach the active RFID tags to a person since the absorption
of the human body also has a high influence on the signals. For this evaluation
we performed a measurement at 34 different positions in four directions for one
minute each. This means that the pure measurement time is 138 minutes. Since
the person wearing the tags needs to turn and move between measurements this
time is prolonged. Also due to human nature the person executing the experiment
needs some rest during the experiments. From performing these experiments, we
learned that for such a measurement it is realistic to assume that it takes about
five to six hours. Since we wanted to collect a training and a testing set we
needed to repeat the experiment two times. Overall the experiments therefore
took about two days.
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4.2 Automated Evaluation

To test the accuracy of object localization, we have performed further experi-
ments. However, in order to reduce the time requirements induced by manual
evaluation, we tried to automate the data collection process. As the experiments
required us to place the tags at a number of positions in a repeatable manner, we
decided to use our TrainSense testbed for automation. TrainSense uses miniatur-
ized model trains to simulate the nomadic movement of cooperating objects. In
the following, we briefly outline this testbed before we describe our experiences.

TrainSense The TrainSense testbed [16] uses digitally controlled model trains
to carry on various kinds of wireless experiments involving stationary as well as
mobile elements. However, for the evaluation of our indoor localization system,
we used it as an automated system to position the RFID tags at several locations
in a precise and repeatable manner. For our experiments, the passive RFID tags
are attached to a train that is moved automatically to each desired location.
This system allows us to position a tag within a range of less than 2 centimeters,
which is precise enough to obtain valid measurements in an automated fashion.

Figure 4a illustrates the basic hardware architecture of TrainSense. The sys-
tem is based on off-the-shelf model trains and it consists of a computer host, a
controller, train detectors, tracks and locomotives. This setup is similar to what is
commercially available. The tracks, detectors and trains are bought off-the-shelf.
The tracks are mounted on wooden plates which can be combined arbitrarily in
order to create different layouts for different experiments. The wiring required
among the different components of the train control is exactly the same as the
one required for standard model trains and it is built into the modules. Similarly,
the communication protocols used in our system are standard, to allow the reuse
of existing, low-cost hardware components (Maerklin/Motorola I for the train
control and S88-N for the train detection).

e W

Train
. Tracks Train
Train  \&—
controller
decoder
detection

Train infrastructure

T E
:| Detectors  |eprmans -
[ETE o Host
Wireless \«—| — A =
Radio mote
mote S~ |— — — — — — M\ control
TinyOS

(a) TrainSense Hardware Architecture (b) Software Architecture

Fig. 4: TrainSense
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However, the hardware and software of the controller and the detection mech-
anism have been re-designed to satisfy the needs of precise and repeatable wire-
less experiments. The controller is a real-time system, which means it reacts to
the perceived events, such as the detection of a train at a particular location,
within a bounded amount of time. Beyond providing the ability to detect the
passage of the train at a detector, this also enables us to let it run for a pre-
cisely determined duration and to stop the train quickly. If we do not consider
extremely rare mishaps like stalling or derailment, this allows us to place the
train with a guaranteed precision.

For most of our evaluations, we use basic dead reckoning to position the tag-
carrying train. For this, the train is set to run at a constant speed. When it crosses
a detector, the controller is instructed to let it run for a programmed amount of
time (proportional to the distance from the detector to the targeted position).
After that time has elapsed, the controller stops the train. Once the train has
reached its destination, the host starts the code that performs a measurement
for the current position.

The resulting overall software architecture is depicted in Figure 4b. The
figure shows the three main components of the testbed, which are the train that
is able to move to a position (left), the real-time controller that controls the
movement of the train and the host computer (right) that runs the experiment
by performing the following steps:

1. Move the train to the first position and signal the arrival to the software on
the host computer.

2. Once the arrival is signaled, start the measurement software and wait for its
completion.

3. If there are more positions, go to the next one, signal its arrival and repeat
from step 2.

4. Else signal the end of experiment and run the measurement software to
compute the results.

5 meters m

20 e T T
P1 P2 b3 M P5 P6

1 meter

Fig. 5: Experimental setup

el
N

50 cm

Experiences For the evaluation of the passive RFID system we were interested
in how the radio signals behave over time for certain positions. We therefore
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set up the experiment with a five meter long testbed shown in Figure 5 making
measurements every meter. This results in six different positions marked as P1-
P6. TrainSense offers the possibility to send the Trains to fixed positions in the
testbed with a precision of less than 2 cm. Due to the nature of the track layout
this error can also only occur in one dimension. In our experiment this gives a
upper bound for misplacements by 2%. For the capturing of the signals we used
four antennas connected to the passive RFID reader. Two of those antennas
(R1,R2) were placed 50cm from the beginning of the tracks and 50 cm to the
side while the other two were placed in a similar fashion on the other side of
the tracks. In order to be able to measure the signals of the tags at different
positions we attached three RFID tags to the train. These tags were arranged in
a triangle to expose different angles to the readers antennas. The photo in figure
6 shows the real setup as we have taken the measurements.

Fig. 6: TrainSense with RFID technologies

While setting up the experiment certainly takes a few hours because of the
placement of the rails, antennas and other hardware factors this is only needed
once before starting the real experiment. After the sensing software is connected
with the TrainSense platform and the required positions are programmed, the
experiment can run unattended. This is especially handy when things go wrong.
So when for example the cable of an antenna is not properly connected it is easy
to repeat the whole process. This also allows for repeating the same experiment
again later without wasting the system developer’s time.
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In our case we ran the experiment twice with some hours in between. We
then analysed the results of both sets as follows. In each set signals we collected
for a period of two minutes per position. We divided each of these sets in 8
consecutive bins resulting in 15 seconds long parts of the data. For each of
these sets we calculated the average signal strength and standard deviation for
each tag - antenna combination. We found that for these intervals the standard
deviation is close to zero in almost all cases so we continued our evaluation only
considering the average signal strength. We then did a cross-validation on the 8
sets per position measuring the differences in the average signal strength. Figure
7 shows the result of this evaluation depicting the number of occurrences of
certain signal differences within the single measurement runs and between the
two runs. The graph also depicts the number of sets where one tag was read at
one antenna in one set but not in the other set.

It can clearly be seen that when using only one measurement a cross-validation
the signal differences are only minimal and for the majority of the data well be-
low 1 db. While this is true for both single sets the same evaluation using both
sets shows very different results. Here it can clearly be seen that the majority of
differences are around 3db. When considering the number of sets that have one
tag-antenna combination in one bin of the first set but not in the bin to which
it is compared it becomes clear that the likelihood of such an event increases
with time. This experiment shows that for the evaluation of fingerprint based
systems it is essential to have two disjunct sets of data that are used for training
and testing. When such a system is tested with only one data set which is then
split into different bins for a cross-validation the results may not be accurate.
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Fig. 7: Differences in signal space within and across different measurements

4.3 Discussion

Evaluating localization systems with the TrainSense platform has shown high
potential. While it might require some time to set up the testbed and connect
the measuring software to the testbed controller the amount of time that can be
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saved during the actual experiments will pay off very fast. This is especially true
for large scale experiments where a lot of different positions need to be measured.
Running such an experiment manually would block the system developer for
the whole time whereas TrainSense makes it possible to run the experiment
unattended. This makes TrainSense a good choice for measuring signal-strengths
in the case of object localization or when trying to simulate the behaviour of the
senders without any interferences — which is a typical measurement during the
initial system design. On the other side TrainSense is not capable of simulating
dampening factors such as a human body. If such factors are needed for the
system it will still be necessary to do the measurements manually. As discussed
in detail above this can be a very time-consuming task and therefore it might
seam reasonable to use cross-validation on only one dataset to generate the
needed results. As shown in Figure 7 this might not lead to reasonable results.

5 Conclusion

Knowledge about the location of persons and objects is an important basis of
many smart city applications. The unavailability of GPS in indoor environments
has led to active research on approaches and systems to enable indoor localiza-
tion using various cooperating objects technologies. A key challenge during the
development of any of these indoor localization approaches and systems is the
systematic evaluation of their performance. In this paper, we described how the
time requirements can be reduced by means of automation. Furthermore, based
on our experiences with both, manual and automatic evaluation, we discussed
the achievable benefits and possible limitations. Based on this, we argue that in
cases where it can be applied, automation is preferable to simplified experiments
as these may lead to less expressive results. At the present time, we are complet-
ing our automated evaluation of the WebDA object localization system using our
TrainSense testbed. Simultaneously, we are working on several improvements to
the software as well as the hardware of the testbed in order to further increase
its applicability to other scenarios.
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