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Abstract—Online collaboration tools such as Google+, Face-
book or Dropbox have become an important and ubiquitous
mediator of many human interactions. In the virtual world,
they enable secure interaction by controlling access to shared
resources. Yet relying on them to support synchronous direct
interactions, such as face-to-face meetings, might be suboptimal
as they require reliable online connectivity and even then often
introduce delays. A much more efficient way of co-located
resource sharing is the use of local communications, such
as ad-hoc WiFi. Yet setting up the necessary encryption and
authentication mechanisms is often cumbersome. In this paper,
we present PIKE, a key exchange protocol that minimizes this
configuration effort. PIKE piggybacks the exchange of keys on
top of an existing service infrastructure. To support encryption
or authentication without Internet connection, PIKE relies on
triggers for upcoming personal interactions and exchanges keys
before they take place. To evaluate PIKE, we present two
example applications and we perform an experimental as well
as an analytical analysis of its characteristics. The evaluation
indicates that PIKE is broadly applicable, scales well enough
to support larger events and provides a level of security that
is (at least) comparable to the one provided by the underlying
service.
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I. INTRODUCTION

Online collaboration tools such as Google+, Facebook or
Dropbox have become an important and ubiquitous mediator
of many human interactions. In the virtual world, they enable
secure remote interaction by supporting restricted sharing of
resources such as documents, photos or calendars between
users. Users are typically identified with a unique identifier
and they authenticate themselves by means of passwords or
similar mechanisms1. The shared resources can then be tied
to different sets of identifiers such as friend lists in Facebook
or circles in Google+. To control the access to resources,
the collaboration tools use encrypted communication such as
TLS and they require authentication upon resource access.
Using web-based interfaces, users can access their infor-
mation from different machines. In addition, many services
also provide mobile applications to support access on-the-go
and an API for third-party tools to access their resources.
Besides providing optimized visualizations, most mobile
applications and third-party tools make use of local caching
and synchronization to enable disconnected operation.

1Examples are two-factor authentication or client-specific certificates.

The success of these collaboration tools indicates that
this mediation model can effectively support secure remote
interaction. Yet, using them for personal interactions that
take place in the physical world such as collaboration in a
face-to-face meeting can be suboptimal. The main reason
for this is that such interactions involve multiple partners
that interact with each other at the same time and place.
Thus, the issues arising from a remote connection such as
higher response times or intermittent connectivity cannot be
hidden by caching and synchronization. To mitigate this,
it is possible to support personal interactions by means
of local communication. However, to provide a similar
level of security, this requires encryption and authentication
mechanisms that must be configured. Without the mediating
online tool, this requires the interaction partners to manually
exchange authentication or encryption keys which does not
scale and is too cumbersome to be used in practice.

To avoid this problem, we have designed PIKE, a key-
exchange protocol that aims at seamlessly extending the
support provided by online collaboration tools to enable non-
mediated personal interaction. The basic idea behind PIKE
is to piggyback the exchange of keys on top of the existing
service infrastructure in a proactive manner. Thereby, we
eliminate the need for manual configuration as well as
Internet connectivity when the interaction takes place.

A prototype application scenario for PIKE is a business
meeting for which invitations are shared securely using
Google Calendar. When detecting the invitations, PIKE
automatically exchanges keys over the Internet using the
Google infrastructure and stores them. When the meeting
takes place, the keys can be used to establish secure commu-
nication among the participants’ devices or to authenticate
participants without requiring any Internet connectivity.

The contribution of this paper is threefold. First, we
introduce PIKE as an approach for enabling non-mediated,
secure and configuration-free personal interactions. Second,
we describe its implementation as an extensible Android
library that integrates with wireless tethering to enable the
fully automatic establishment of a secure wireless LAN.
Third, we present several applications and an analytical as
well as an experimental evaluation indicating that PIKE is
broadly applicable and (at least) as secure as the underlying
online service.



II. APPROACH

Our goal with PIKE is to support local collaboration in a
configuration-free and secure manner that does not require
Internet connectivity during the time the interaction takes
place. To achieve this, PIKE exchanges keys piggybacked
on an existing service infrastructure before the interaction
takes place. This key exchange is typically triggered by a
virtual representation of the upcoming interaction such as a
meeting entry in a calendar. The exchanged keys can then
be used by applications to secure the local communication,
e.g. by means of encryption or message authentication.

A. System Model and Assumptions
The technical basis for PIKE are mobile devices, such as

phones, tablets or laptops, used to share resources with each
other remotely through a network, mediated by a service.
Regarding these four building blocks we assume:

• Services: The service enables secure restricted sharing
of resources. This means that the service authenticates
its users, models relationships between different users
with respect to resource usage and enables the speci-
fication and enforcement of access rights. The service
performs its access control to resources properly. Mean-
ing that a) it protects the resources from being accessed
by illegitimate users and b) it allows access from legiti-
mate users. Yet, beyond proper service operation, we do
not assume that the service is necessarily trustworthy.
Examples may be Facebook, Google+ or Dropbox.

• Network: A network such as the Internet enables de-
vices to access the service regularly. The network may
be insecure and, occasionally, it may be unreliable or
unavailable, e.g. due to a network outage, an incomplete
coverage or intolerable international roaming fees.

• Devices: The device of the user is able to access the
service regularly through the network. For this, the
service uses a mobile application that synchronizes the
changes to the resource or provides an API that can be
used for resource synchronization.

• Resources: Some of the resources shared between users
can be read and edited not only by the creator but
also by the interaction partners. In addition, we assume
that some resources are used to plan an upcoming
personal interaction and thus, provide time information.
Examples for such resources are a calendar entry or a
message indicating an upcoming meeting2.

B. Design Rationale and Goals
Besides achieving the functional goal of exchanging keys,

the desire to maximize PIKE’s applicability for various types
of personal interactions defines the following design goals.

2It is noteworthy that this assumption can be dropped. However, if the
shared resources do not indicate the timing of an upcoming interaction, the
key usage cannot be fully automated. Instead, the creator of a resource will
have to initiate the usage manually (e.g. by pressing a button) so that the
collaborators will be able to benefit from automation.

Figure 1. Shared Trigger Resource in Facebook

• Full Automation: To minimize the time required by
interaction partners to set up secure communication,
PIKE should not require manual configuration. Instead,
the key exchange performed by PIKE should be fully
automated such that it becomes transparent to them.

• High Security: In order to truly protect the interactions
between the devices, the key exchange with PIKE must
be secure. Given that the partners are already using
the service through remote interaction in order to share
resources in a secure manner, the use of PIKE to secure
personal interaction should result in (at least) the same
level of security as the mediation through the service.

• Low Latency: To avoid situations in which keys are not
available for partners, the exchange of keys with PIKE
must not introduce a high latency. Specifically, PIKE
should be able to provide the exchanged keys quickly
after a personal interaction has been planned. The key
should therefore be exchanged within a few seconds.

• High Scalability: As the personal interaction may in-
volve groups of different sizes, PIKE should be able to
support typical group sizes. This means that it should
not only be able to provide keys for office scale meet-
ings, but it should also support larger events such as
scientific conferences with a few hundred participants.

C. Key Exchange Protocol

As explained in Section II-A, the mobile application pro-
vided by the service contacts the service and synchronizes
recent resource changes regularly onto the user’s device. If
the mobile application is not present, the API provided by
the service is used for resource synchronization. Every time
the resources change, PIKE starts to analyze the resources
to detect changes that trigger a key exchange. An example
could be the creation of an event on Facebook that has been
shared with a set of friends (c.f. Figure 1). Once a change



has been found, the key exchange takes place. For this,
each partner shares a key with the creator of the resource.
The creator of the resource shares his key with each of
the partners. For this, all partners use the secure resource
sharing capabilities that are already provided by the service.
To do this, PIKE performs either a local modification on
the triggering resource or, if this is not possible due to a
limitation of the mobile application, it uses the API of the
service. Once the changes have been made, PIKE waits for
the next resource synchronization at which point all partners
will receive the key of the resource creator and the resource
creator will receive all keys from all other partners. Once
the interaction takes place, these keys can be used to enable
secure communication among the devices of the partners.
To do this, PIKE extracts the keys from the resource and
makes them available during the interaction.

Figure 2 depicts the resulting logical protocol flow which
is executed remotely by all partners before the personal
interaction takes place. Conceptually, PIKE involves three
entities, namely the device of the interaction partners creat-
ing the resource (the initiator), the devices of the remaining
partners (the participants) and the service. To establish keys,
these three entities interact with each other using five steps.

1) Initiation: The initiator creates the resource that trig-
gers the key exchange. Thereby, the initiator specifies
the set of users (participants) that should be able to
access the resource and sets the appropriate access
restrictions. The resource is then added to the service
which makes it available to the specified users.

2) Synchronization: After the resource has been added
and shared by the service, the devices of all partners
will eventually retrieve the change as part of their
normal synchronization process. At that point, the
device of the initiator as well as the devices of the
participants can access the triggering resource.

3) Trigger Recognition - Initiator: The initiator’s device
recognizes the trigger resource retrieved from the
service. Then, a key is created and shared with all
participants simply by attaching it to the resource
which will be synchronized with the service again.
This key can later be used to protect the communi-
cation between the devices of the partners from other
entities that are not participating in the interaction.

4) Trigger Recognition - Participants: After the initiator
has attached its key, it will eventually be synchronized
with the participants. At this point, each of them
retrieves the key and stores it for later use. In order to
enable user-level authentication, the participants create
a new key on their own and share it with the initiator.
Depending on the service, this can be either done by
attaching it to the triggering resource or by creating a
new resource that is only shared with the initiator.

5) Trigger Synchronization: Every time a participant
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Figure 2. PIKE Logical Protocol Flow

shares a new key (by means of attaching it or by
creating a new resource for it), the initiator will
eventually receive it on his device. At this point, the
initiator takes the key and stores it for later use.

After the completion of these steps all interaction partners
possess the key generated by the initiator and the initiator
shares a key with each of the participants. Once the personal
interaction takes place, these keys (or a derived key) can
be used to enable group communication as well as private
communication and user-level authentication between the
initiator and the participants. The latter can then be used
to bootstrap further keys (e.g. using Kerberos), however, the
applications described later on do not require this.

To speed up the sequential logical protocol flow described
previously, it is possible to execute the steps 3 and 4 in
parallel. For this, the participants share their keys with the
initiator immediately after detecting the triggering resource
(without waiting for the initiator to share a key). As part of
step 5, they then check for updates on the trigger resource
in order to detect the initiator’s key as soon as it has been
shared. As we describe later on, this simple parallelization
can provide a significant speed up.

III. IMPLEMENTATION

To validate the concepts of PIKE, we have implemented it
on top of the Android operating system. The implementation
consists of activities (i.e., user interfaces) and services (i.e.,
background tasks) that not only perform the key exchange
but also facilitate secure communication and user-level au-
thentication. As depicted in Figure 3, our implementation
of PIKE is modular and can support arbitrary services
that exhibit the characteristics described in Section II-A
by means of a simple plug-in model. To demonstrate this,
we have developed two plug-ins for popular services. The
first one taps into the Google infrastructure and uses shared
calendar entries as trigger. The second plug-in taps into
Facebook and uses Facebook events as triggers. Both plug-
ins presented here use the API of their respective services.
They are independent of any app provided by the service
provider (like the Facebook app).
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A. Core Library

The mechanisms of PIKE used commonly across different
services are implemented as an Android library (apklib).
This core library is responsible for managing the interaction
with different plug-ins and it provides functionality to create
keys. The latter is used for both the exchanged key for the
group (on the initiator’s device) as well as the user-level
keys. Keys are created using a secure pseudo random number
generator that creates 128 bit keys (to support common
ciphers such as AES). To further simplify application devel-
opment, the signaling of an upcoming personal interaction
is also implemented as part of the core library. For this, the
library manages the meta data such as the list of participants,
prospective start and end time, keys, etc. The meta data is
represented as parcelable object which can be passed to the
scheduler provided by Android (i.e. the AlarmManager) that
fires a notification (a so-called Intent) when the start time has
passed - even if the device has been gone to sleep. With this
meta data, the Android scheduler can automatically trigger
further applications.

In addition, the core library also enables applications to set
up secure wireless communication among all devices of the
interaction partners and it provides the capability for user-
level authentication. For the latter, it uses a key derivation
function and a challenge-response mechanism using an
HMAC (Keyed-Hash Message Authentication Code). For the
former, the core library is capable of establishing a WLAN
using the tethering capabilities of the Android operating
system3. If this service is requested by an application, the
group key exchanged via PIKE is used to setup a WPA2
protected network. To do this, all devices taking part at
the personal interaction generate an SSID as well as a
passphrase from the group key. The device of the initiator
then uses this key to automatically configure and start the
tethering mode. The devices of the participants automatically
add the configuration to the list of preferred networks,
such that the device will automatically join, if the network
is in the vicinity. While the interaction takes place, the
devices can use this network to interact securely. After its
completion, the devices automatically remove the network

3The tethering capabilities are not part of the official Android API. Yet,
the required functions are available on many devices running Gingerbread
or higher and they can be invoked via Java reflection.

Figure 4. User-level keys, posted in the event in Google Calendar

configuration and the tethering mode is deactivated.
Using this functionality, it is easy to build further appli-

cations. However, in order to be useful, the core must be
integrated with an online service. To do this, the core relies
on plug-ins which realize the recognition of triggers and the
attachment of keys.

B. Google Calendar Plug-in

Google Calendar is one of the most used business services
for the management of shared calendars. At work, the
calendars can be used to be informed about the absence and
availability of co-workers. Meetings can then be planned
efficiently and co-workers can be invited to join via the
service. Additionally, the Google Calendar is automatically
deployed on most Android phones making it a perfect
candidate for PIKE.

To access Google Calendar, we use its API to regularly
synchronize events between devices and the service. Intu-
itively, we use shared meetings - that is appointments with
multiple guests - as a trigger for the key exchange. In
order to distribute the key generated by the creator of the
appointment (i.e. our initiator), we use a hidden, non-visible
field (shared extended properties). This field is automatically
synchronized with all guests (i.e. our participants) and, if the
event is set to private, only guests can see these properties.
To distribute the user-level keys, we use the comment field
of the appointment as shown in Figure 4. Again, if the
appointment is private and guests do not have the permission
to see the guest list, this field cannot be seen by others except
by the creator. So using this approach, the initiator can
retrieve all user-level keys and the participants can retrieve
the coordinator’s key by reading the associated fields of the
appointment.

C. Facebook Event Plug-in

Our second plug-in uses Facebook. This online social
network service is used mostly for private interaction. This
usually includes the planning of events or trips with multiple
persons. Facebook also provides clients for many different
mobile operating systems (e.g. iOS, Android, Windows
Phone), so users can stay connected as long as they have
network access.

For this implementation, we are using the Facebook Graph
API to access and modify data from the social network. As



Figure 5. Shared key, posted at the event’s wall

Figure 6. User-level key, posted at a participant’s wall

trigger for PIKE we use Facebook events. The participants
of events in Facebook can be constrained by the event’s
initiator. Each event has a private place for discussions, only
viewable by the event’s guests, the so-called wall. This wall
is used to post the initiators key that is then automatically
picked up by the participants’ devices. Since participants
cannot change the visibility of posts on the event’s wall,
the participant keys are posted to the participants’ profiles.
Each profile has a place for discussion (also called wall).
On this wall, posts can be created with a privacy setting
that constraints the access to the event’s initiator (see Figure
6). The initiator can then retrieve the participants’ keys by
going through their walls.

IV. APPLICATIONS

To validate the approach, we have developed a number of
applications that apply PIKE. In the following, we present
two of them. The first one performs cooperative context
recognition using the devices of the participants of a small-
to medium-sized meeting. To do this, it requires a low-
latency, reliable and private network. The second application
provides registration services for large scale events. For this,
the application requires secure user-level authentication but
it cannot rely on Internet connectivity. Both applications are
canonical examples that show the capabilities of PIKE in
different conditions.

A. Privacy-preserving Speaker Recognition

As an example for using PIKE during typical personal
interactions at work, we developed a cooperative context
recognition application using our context recognition system
for mobile devices [22]. The goal of this application is
to continuously identify the speaker during a meeting for
example, to annotate meeting minutes automatically. While
this can also be done on a single device by means of voice
profiles [23], cooperative recognition is significantly simpler.
Under the assumption that all participants of the meeting

are carrying a mobile device, we can determine the speaker
by analyzing the different audio streams recorded by the
participant’s devices. For this, a mobile application running
on each device continuously captures sound samples and
computes the relevant features like the RMS power value.
The features are then transmitted to the initiator’s device
which uses them to determine the (most likely) speaker for
the interval. Once the speaker has been determined, the ini-
tiator’s device broadcasts the result to the participants which
can then use them for annotation and live visualization.

Clearly, for an application like the one described above,
the samples and results that are exchanged between the
participants of the meeting may contain private information,
i.e. the recording of the meeting should not be overheard
by eavesdroppers. By automatically exchanging keys via a
calendar entry and using them to set up a private wireless
LAN during the meeting, we can effectively limit the dis-
tribution of samples and results to the actual participants.
Similarly, by using local communication as opposed to
indirect Internet-based communication, we can rely on the
fact that the network will be reliable and fast. This can
drastically simplify the application since we do not have
to consider issues such as time-synchronization between the
devices or retransmissions of high-volume data. Instead, we
can simply assume that data will be received quickly and
data loss will be infrequent and thus, insignificant.

B. Configuration-free Conference Registration

As an example for using PIKE in a large-scale event
such as a scientific conference, we developed a registration
application. At a registration desk for a scientific conference,
users register themselves by giving their names, which are
then looked up in a list. Using PIKE, this time-consuming,
error-prone and insecure process can be automated and se-
cured appropriately. To do this, all participants are invited to
a Facebook event of the organizers as part of the participant’s
payment process. When PIKE detects the event, the creator
of the event (i.e. the organizer) will provide a key to all
participants and the participants will share their user-level
keys with the organizer.

At the start of the conference, each participant uses its
mobile device to identify itself at the registration desk. To
detect the presence of the registration desk, the mobile de-
vices can use the automatic WLAN configuration described
previously. On top of that, in order to identify themselves in
a secure manner, they send a verifiable message containing
their name to the device of the organizer. To create this ver-
ifiable message, they compute an HMAC over the message
using their individual user-level key which was distributed
by PIKE. The organizer can then validate the key and mark
the user as registered.

To perform this process, neither the participants nor the
organizers need to perform any manual configuration at the
conference site. PIKE detects the shared event days before



the start of the conference and exchanges the keys. The keys
are then used to provide a user-level authentication at the
start of the conference in a fully automated process without
the need for an Internet connection.

V. EVALUATION

In the following, we evaluate PIKE along the four design
goals that we introduced in Section II-B. These are full
automation, high security, low latency and high scalability.
Next, we discuss each of them.

A. Full Automation

The key-exchange with PIKE does not require manual
interaction. Nevertheless, to establish a key using PIKE, it
is necessary for all participants to use a third-party service
(e.g. Facebook). Also, the initiator needs to create the shared
trigger condition (i.e. event) using this service and adds
the guests or group of guests manually using for example
the service’s web interface. However, managing events and
inviting guests are necessary steps that always need to be
performed by an event creator, even when not using PIKE.
Thus, PIKE does not add any additional manual step to this
process and is therefore fully automatic.

B. High Security

As discussed before, the security of PIKE depends on
the security of the service provider. The service provider
needs to implement the resource sharing in such a way that
resources which are shared with a limited number of users
are properly secured. The resources should not be accessible
for any other users than the ones that are specified by the
event creator. Many service providers (e.g. Facebook and
Google Calendar) support this type of resource sharing. In
these cases, PIKE does not lower the security provided by
the service providers, i.e. the security level is as high as the
security level of the used service provider.

Of course, one possible attacker that could tamper the
key-exchange is the service provider (e.g. Google) itself.
Since all exchanged keys are stored in the service provider’s
database, it would be easy to retrieve them from there.
Nevertheless, the service provider itself is not physically
present during the personal interaction. As a result, it cannot
use the exchanged keys since the interaction triggered by
the devices is not spread through the Internet or any other
publicly accessible network.

To further mitigate this attack, e.g. if a service provider
also deploys hotspots or similar devices such that it might
be possible to be physically present during the interaction,
service providers can be combined. The trigger condition
is then distributed to several service providers, all of them
must be supported by all participants and the initiator. For
enhanced security, the exchanged shared key on the service
is different, if the service provider differs. The combination
(e.g. XOR) of the exchanged shared keys from all the

service providers will then be used by the participants. As a
result, one service provider could not overhear the personal
interaction, because it only knows parts of the key. The
interaction of all involved service providers is then necessary
to retrieve the whole key.

Possible attacks that do not involve the service provider as
an attacker are attacks from devices that take part at the inter-
action (i.e. have received the key for secure communication)
or attacks from devices that do not possess the exchanged
key, but are just in the vicinity of the interacting partners. For
the latter devices, it is not possible to attack the interaction as
long as the communication is handled encrypted only, using
a secure encryption protocol (e.g. AES). Any kind of attack
is then not based on the security of PIKE, but on the security
of the mechanism used by the actual implementation.

If one of the participants that is taking part in the personal
interaction is malicious, its malicious actions can (possibly)
be revealed by the initiator using the user-level keys. The
initiator can use them to distinguish the messages from each
participant which could result in the attacker’s identification.
The initiator can then establish a new key by using the user-
level keys of all non-malicious interacting partners using an
ordinary key distribution protocol. After the re-keying, the
group can continue to communicate securely.

Additionally, the user-level keys can be used to establish
an encrypted private communication channel between two
users in the personal interaction group (e.g. to remove threats
from malicious users or devices). If one of the users that
wants to open a private channel to another user is the
initiator, the user-level key can be used directly. If two
participants want to open a private channel, the initiator’s
device can be used as a trusted third party that verifies
the authentication of the other users. It can use the user-
level key to certify the identity of the users to each of
the participating devices. The exchange of a key over the
initiator will then enable the devices to communicate with
each other encrypted with this newly derived key.

If the initiator of a personal interaction group is malicious,
the whole interaction is compromised. From the participant’s
view, this can only be avoided by not taking part at the
personal interaction at all. In the end, this results in ignoring
trigger resources coming from malicious devices or users,
i.e. not starting a personal interaction with malicious initia-
tors. PIKE will not protect the participants’ communication,
if the initiator of the key-exchange is malicious.

C. Low Latency

Using two Samsung Galaxy Nexus (2x1.2 GHz ARM
CPU, 1 GB RAM) mobile phones that were connected
to the Internet via WiFi, we measured the latency of our
approach. The mobile phones were running Android OS ver-
sion 4.1.1. To perform the measurements, we were using the
prototypical implementations presented in Section III. All
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Figure 7. Time needed to perform PIKE, with synchronization interval t

measurements shown in this section represent the average
of 100 measurements, performed by one smart phone.

The minimum latency of the overall approach depends
on the synchronization interval t. A typical value for t
could be 60 minutes, i.e. the mobile app checks the service
every hour. As depicted in Figure 7, there are two possible
scenarios: After the creation of the shared trigger, it is either
picked up by the initiator’s device (a) or by a participant’s
device (b) after a maximum time of t. For (a), the initiator
picks up the shared trigger and adds the shared key to the
trigger. It cannot retrieve the user-level keys, since they are
not yet available. It then waits for the next synchronization
interval. In the meantime, the participants synchronize the
trigger resource, retrieve the shared key and attach their
individual user-level keys to the trigger. Fulfilling this com-
bined step, they have finished the PIKE message exchange
and do not need to synchronize this trigger, again. After
the synchronization interval, the initiator synchronizes the
trigger resource, now retrieving all user-level keys. Since the
first pick up time is not higher than t and the second wait
time is exactly t, the PIKE message exchange is finished
after a maximum time of 2t. Similar to that, in (b), the total
time to execute PIKE also results in 2t.

Regarding our implementations, the actual message flows
are similar to the logical protocol flow presented in Figure
2. The numbers of messages per step in the implementations
differ from that, because one logical step might include sev-
eral API calls. Using our implementation based on Google
Calendar, we find that for the initiator, the minimum number
of messages (and Google API calls) is 3 (leaving out step
1), for each participant, it is always 3. We also measured
the necessary time that is needed to perform the PIKE
protocol flow. We supposed that the user creates the event
in the Google Calendar (either using a mobile phone or
the web-interface) manually (i.e. performed step 1). Steps
2 and 3 took 535 ms, since the initiator needs to perform
step 5 (255 ms with 2 participants) as well, this gives a
total number of 790 ms for the API calls. Each participant
needs to execute the steps 2 and 4, this takes 583 ms.
As a result, we see that the prototypical implementation of
PIKE with Google Calendar exhibits a latency of less than a
second. Depending on t, also spontaneous meetings can be
supported, nevertheless, a typical value for t like 60 minutes
constraints this to meetings known 2 hours in advance.
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In Facebook, the number of messages changes, because
the initiator has to retrieve the user-level keys from each
participant’s wall. Also, the Facebook Graph API does not
give as many detailed information on the events as the
Google Calendar API with only one API call. The minimum
number of messages (and API calls) for the event initiator is
therefore 4 + (n− 1) (also performing the steps 2, 3 and 5,
with n being the number of participants), while the number
for each participant is still 4 (performing step 2 and 4).
Using the Facebook batch API, n increases only every 50
participants. As discussed before, we suppose that the user
creates the event from within Facebook (step 1). The average
time necessary to perform the API calls for the steps 2 and
3 is 2193 ms. Step 5 is discussed in the Section Scalability.
The participants need to perform step 2 and 4, this takes
3067 ms. We conclude that the Facebook API has a higher
latency, but is still within reasonable limits, with a latency
of less than 30 seconds for 200 participants.

D. Scalability

For PIKE, scalability depends on the used service. Using
Google Calendar, an event contains all information, includ-
ing user-level keys (comments). A single API call returns the
necessary information. The length of the returned message
increases with each participant slightly, since a comment is
added. Nevertheless, this results in high scalability.

Using Facebook, the number of requests from the event
initiator to the service depends heavily on the number of
participants. Therefore, we measured PIKE with an increas-
ing number of participants, using single requests (Figure

0
2,5
5

7,5
10

12,5
15

17,5
20

22,5
25

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

Ti
m

e 
in

 s

Number of Participants

Figure 9. Retrieving user-level keys using Facebook’s batch API



8, showing a clear linear increase, 100 measurements per
point, error bars show the standard deviation (±σ)) or batch
requests (Figure 9, 10 measurements per point, error bars
show ±σ). Batch requests bundle 50 requests (i.e. one
for each participant) in one. Both measurements indicate
a linear increase from 1765 ms (1 participant) to 7526 ms
(15 participants) for the single requests and from 1935 ms
(10 participants) to 21453 ms (200 participants) using batch
requests. Although the implementation based on Facebook
is slower, it still achieves a high scalability using batch
requests. In summary, PIKE reaches the scalability goal of
supporting a few hundred participants.

VI. RELATED WORK

When compared with other approaches, PIKE exhibits
three main differences. First, it can easily scale to hundreds
of interaction partners. Second, it provides user-level as
opposed to device-level authentication. Third, it does not
require Internet connectivity during the interaction.

To provide user-level authentication, some approaches use
server-based context-detection as the mechanism to allow
or deny access to resources [1], [2]. PIKE is not based on
a central server, but uses foreign infrastructure (i.e. online
services) to establish shared and user-level keys. In [3] and
[4] the authors describe how context, such as microphone
recordings, can be used directly to create a shared key
between devices. According to them, this works well inside
buildings, but ceases to work properly if used outside. In
contrast to that PIKE can be used both in- and outdoors.
Using context data coming from the smartphone’s sensors
also exhibits scalability issues. Imagine sensor data from an
accelerometer which needs devices to be shaken together
(up to a duration of 20s) such that the accelerometer detects
(almost) identical data. Smart-Its friends [5] and similar
approaches [6], [7] generate a key based on this data.
However, this approach is only feasible for a small amount
of devices. The combination of different context features
for key-exchanges is presented by PINtext [8] or Mayrhofer
et al. [9]. While enhancing security by combining context
features, this combines their disadvantages, e.g. using the
accelerometer and the microphone at the same time requires
shaking the devices and constrains the key-exchange to
indoor locations. Although these approaches do not need an
Internet connection, context dependent key-exchanges need
precise time synchronization between devices. For PIKE, a
time-shift of several minutes is still acceptable.

Other mechanisms to perform a key-exchange are based
on near field communication (NFC) technology. In the
Bluetooth specification [10], NFC is mentioned as a possible
mechanism to pair devices. Suomalainen et al. [11] show
that NFC can be used for the negotiation of keys for other
network types, mostly because direct proximity (usually 1-
10 cm) is necessary for successful communication in NFC.

Some authors describe the inherent security of NFC for man-
in-the-middle attacks [12], but show that eavesdropping can
be done easily. Others point out possible security and privacy
breaches, for example by using a unique id [13]. Since NFC
is usually used for short-range communication, Francis et al.
[14] describe a relay attack that can be used to circumvent
this limitation. PIKE does not establish security on a device-
to-device basis, but takes a user-centric approach. Since the
keys are already exchanged when the interaction takes place,
it is immune to attacks that rely on a specific communication
technology. As a result, the shared exchanged key created
by PIKE can be used for any communication technology,
including NFC. Nevertheless, establishing group keys using
NFC still needs physical interaction between devices which,
as mentioned before, does not scale. ProxiMate [15] is
another key exchange protocol that retrieves a shared key
from RF signals. To obtain a key, it is necessary to put
the pairing devices into physical proximity, similar to NFC.
According to the authors, the protocol is resistant to attackers
that are more than 6.2 cm away (at 2.4 GHz). The protocol
could be used to exchange a shared key between devices,
but it might be impossible to put all users’ devices in the
necessary proximity, if the number of devices is too large.
PIKE does not have constraints on the number of devices,
also supports higher numbers, and is able to create group and
user-level keys in a completely automated fashion. In SPATE
[16], a small group of users is able to exchange a key by
comparing hash codes (the so-called T-Flags). This enables
SPATE to establish a key for secure interaction at additional
costs, i.e. all users have to recognize and compare the T-Flag
images. To start the key exchange process, SPATE requires
the initiating device to scan a bar-code from all other
devices’ displays (retrieving the devices’ network addresses).
Since SPATE also needs the number of group members typed
in manually, SPATE and related approaches like Seeing-is-
believing [17] and GAnGS [18] need manual configuration,
while PIKE enables an automatic key exchange.

Many existing key-exchange mechanisms need an Internet
connection during the key-exchange phase and they use
a different service provider for authentication purposes.
Examples are OpenID [19] and OAuth [20], [21]. While
OpenID allows the user to use one account for several
different services and service providers, OAuth creates an
access token, mostly used by applications that want to
access a service on behalf of the user. A service that uses
OpenID needs to trust the service that provides the account
creation and authorization. The latter is therefore a trusted
third-party that is actively involved in the authorization
process. In contrast, using the OAuth process, the user
actively grants rights from a service to another one. Usually,
the granted rights are displayed to the user and must be
confirmed manually. PIKE does not need a third party for
account verification during the interaction, but uses a third-
party service directly to exchange a shared key beforehand.



Thereby, it retrieves and stores the exchanged key and thus,
PIKE does not require an Internet connection later on.

VII. CONCLUSION

Online services have become an important and ubiquitous
mediator of many human interactions. In the virtual world,
they enable secure interactions by mediating the access to
shared resources. PIKE extends the support provided by
online services to enable non-mediated secure personal inter-
action. PIKE is configuration-free and broadly applicable to
different scenarios ranging from typical small-scale meetings
up to large scale conferences and events. As indicated by
the results of our evaluation, PIKE is (at least) as secure
as the service used to enable resource sharing and exhibits
an acceptable latency of at most 2 synchronization cycles.
Finally, depending on the resource sharing API provided by
the underlying service, PIKE can scale well.

Currently, we are integrating PIKE as a core security
mechanism into the GAMBAS middleware. There, PIKE is
used to limit the access to context information that is gath-
ered by mobile devices. Thereafter, we plan to investigate
ways dealing with malicious initiators. A simple way is to
share additional keys between participants, however, without
further concepts, this approach does not scale well.
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