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Abstract. Indoor localization is a key component in context-aware ap-
plications and assisted-living technologies. In prior work, we presented
the design and implementation of the LOCOSmotion indoor person track-
ing system that uses Wireless LAN fingerprinting and accelerometer-
based dead-reckoning [5]. In this paper, we analyze the optimization
potentials of the previous implementation LOCOSmotion and propose
modifications and enhancements which address them. In particular, we
focus on reducing the time and cost of deployment, as well as on a number
of refinements to improve the localization precision. Aside from optimiza-
tion of the calibration tools and underlying localization algorithms, the
refinements also encompass the use of feedback provided by the domes-
tic robotics (domotics) in the Living Lab to improve the overall system
performance.
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1 Introduction

Pervasive computing envisions seamless and distraction-free support for tasks by
means of context-aware applications. In many of these applications, knowledge
about the user’s location is a key requirement. However the use of the Global
Positioning System for location determination is limited by the unavailability of
its signals in indoor environments. Hence, in recent years, much attention has
been focused on developing alternative solutions for indoor localization. Rapid
advances in wireless communication technologies and the miniaturization of con-
sumer electronics have led to an increase in the deployment and accessibility of
wireless local area networks (WLAN) and WLAN-capable mobile devices. This
presents an opportunity to leverage and reuse the existing infrastructure for the
development of localization systems without incurring extra costs for setup and
maintenance. Also, most of the mobile devices today come packed with a plethora
of other sensors such as accelerometers and gyroscopes which make them ideal
for use as location sensing platforms.
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In previous work [5], we described the design and implementation of LO-
COSmotion, a WLAN-based indoor localization system. The basic operational
principle of LOCOSmotion is similar to RADAR [2] in that it uses WLAN-
based fingerprinting for location estimation. However, in contrast to RADAR,
LOCOSmotion additionally performs accelerometer-based dead-reckoning in or-
der to improve the localization precision while guaranteeing a minimum location
update rate of 2Hz.

In this paper, we describe the implementation of several optimizations to the
LOCOSmotion system based on our experiences during the EvAAL 2012 com-
petition. To evaluate the optimizations, we present the results of a number of
experiments that we performed in our laboratory at the University of Duisburg-
Essen. The optimizations focus on a significant reduction of the calibration ef-
fort by providing better tools for the initial training, as well as improvements
to the robustness of the dead-reckoning algorithm. Furthermore, we enhance
the LOCOSmotion system to intelligently take advantage of any domotic event
notifications which may be provided in order to increase the accuracy of the
system.

The rest of this paper is broken down as follows; in the next section, we
discuss related work in the field of indoor localization and then briefly outline
the basic architecture of LOCOSmotion system in the Section 3. In Section 4,
we outline the potential optimizations and propose enhancements which address
them. Section 5 presents an evaluation of the impact of the optimizations on the
performance of the system. Finally, we conclude the paper with a short summary.

2 Related Work

Many different systems have been developed for indoor localization and they em-
ploy different technologies to perform location estimation. Vision-based systems
make use of cameras and computer vision for location estimation [6]. Other in-
door localization systems have been developed on the basis of infrared light [19],
ultrasound [20], or magnetic signals [9]. However, since LOCOSmotion is using
RF technology as basis for localization, we are focusing on RF-based systems in
the following.

One of the earliest systems that uses WLAN fingerprinting for indoor local-
ization is RADAR [2]. In RADAR, a fingerpint is a tuple of location coordinates
and signal strengths of visible WLAN networks. In a training phase, WLAN
fingerprints are collected at all locations in the target area to form a radio map.
During localization, WLAN scans are matched against this radio map to estimate
the location of the user. As described in [5], LOCOSmotion can be thought of as
an extension of RADAR with accelerometer-based enhancements for tracking.

Building a radio map by means of fingerprinting can be labor-intensive, hence
there have been several approaches which seek to reduce the mapping effort by
performing simultaneous localization and mapping [14] or using signal propaga-
tion models[12][22]. ARIADNE [12] proposes to collect only a single measure-
ment and together with a two-dimensional construction floor plan, generates a
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radio map for localization. Xiang et al [22] use a signal distribution training
scheme and achieve an accuracy of 5m with 90% probability for moving devices.
The main limitations of indoor localization using propagation models are that
due to the complexity of signal propagation in indoor environments, they ei-
ther result in a high modeling effort or they only consider some of the variables
affecting the signal distribution which reduces their precision.

In addition to WLAN, there are several indoor localization systems based
on RFID technologies. RFID has been developed for automated identification of
objects and people [13]. An RFID system usually comprises a tag and a reader.
There are both active - where the tag has a battery - and passive - where the tag
is induced by the reader - RFID based localization systems. LANDMARC [17] is
an RFID-based localization system which uses multiple reference tags instead of
multiple readers to mitigate cost. SpotON [10] is another RFID based localization
system which uses custom RFID readers to detect the tag and triangulate its
position using signal strength measurements. RFID systems can produce sub-
meter precision levels, but have the downside of requiring extra hardware and
infrastructure to be acquired and installed.

Aside from WLAN and RFID, many other RF technologies have been used
for indoor localization. For example, there are IEEE 802.15.4-based [4] systems,
Bluetooth-based indoor localization systems [1], Ultrawideband [11], and hy-
brid systems which use a combination of multiple RF technologies for indoor
positioning. One such system is proposed by Baniukevic et al in [3]. It uses a
combination of Bluetooth and WLAN signals for positioning. A good overview of
possible approaches and technologies can be found in [15] and [7]. Most of these
systems differ from LOCOSmotion in that they require extra infrastructure to
be purchased which can be sometimes expensive.

3 LOCOSmotion

LOCOSmotion relies on a dense deployment of off-the-shelf wireless access points
that continuously broadcast WLAN signals and provide good coverage of the
target area. As with every other system that is based on RF fingerprinting,
there are two phases involved in deployment; the training phase and localiza-
tion phase. In the first phase — the training phase — we calibrate the system by
performing WLAN scans with an Android-based mobile phone to capture and
store WLAN fingerprints for several known locations. In the second phase — the
localization phase — we run a background service on the mobile phone that con-
tinuously performs WLAN scans and matches the resulting fingerprint against
the stored ones. The location of the closest matching fingerprint is returned as the
estimated location. In between consecutive WLAN scans, accelerometer-based
dead-reckoning is used to extrapolate intermediate locations using the phone’s
previous movement vector.

As described in [5], the LOCOSmotion system was specifically built to ad-
dress the five goals set out by the EvAAL competition which are to provide a
high accuracy, a low installation complexity, a high user acceptance, a high avail-
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ablilty as well as enabling interoperability. In the following, we briefly explain
how LOCOSmotion addresses these goals.

— High Accuracy — To ensure a high accuracy, LOCOSmotion relies on WLAN
fingerprinting as this approach is known to exhibit better performance than
systems which use simple forms of signal propagation modeling [7].

— Low Installation Complezity — To ensure a low installation complexity, LO-
COSmotion relies on off-the-shelf hardware with customized software. To
enable a speedy deployment in different environments, LOCOSmotion pro-
vides an Android application with a graphical user interface that allows the
on-site collection of fingerprints for different locations.

— High User Acceptance — To ensure a high user acceptance, LOCOSmotion
only requires the user to carry a mobile phone which performs all measure-
ments and computations. Consequently, it is easy to integrate in the daily
activities of users since many users will be already carrying a phone anyway.

— High Awailability — Due to measurement imprecision, WLAN fingerprinting
usually requires several measurements to accurately determine the location
of the user. Thus, in order to achieve the location update rate goal of 2
Hz, LOCOSmotion combines fingerprinting with acceleration-based dead-
reckoning.

— Interoperability — To enable and ease interoperability, LOCOSmotion relies
solely on unmodified off-the-shelf hardware. To facilitate extensibility and
to ease software integration, LOCOSmotion is using the NARF component
system [8] developed by members of our research group. The NARF compo-
nent system is a generic framework for personal context recognition which
facilitates modularity and software reuse.

More technical details and a more thorough description of LOCOSmotion
including a detailed analysis of the results of deploying and using the system
during the EvAAL 2012 competition can be found in [5]. In the following sections,
we focus primarily on several enhancements that we implemented and tested to
improve overall performance of the system.

4 Enhancements

The LOCOSmotion system was designed to achieve a high accuracy, a low instal-
lation complexity, a high user acceptance, a high availability and interoperabil-
ity. As demonstrated by the results of the EvAAL 2012 competition, the system
largely fulfills the last four design goals. Yet, the results also indicate that there is
considerable optimization potential with respect to installation complexity and
accuracy. In the following, we discuss three enhancements to the original system
that address this potential.

4.1 Training Effort

With the original implementation of LOCOSmotion, the training phase was per-
formed by a person (the trainer) performing scans with one phone at discrete
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points in a grid defined on top of the target area. The scans were performed in
multiple orientations to account for signal attenuation induced by the trainer.
This improves accuracy, but is also time-consuming.

Fig. 1. Training Path and Markers

Instead of using discrete scans, we have enhanced the system to continuously
perform scans while the trainer moves around. To do this, we first define a path
through the area by specifying a sequence of points as shown in Figure 1. The
path is chosen to maximize coverage of the areas in the building where people
are likely to be found. During the training phase, the trainer then follows the
path and marks his current position whenever he reaches one of the pre-defined
points.

In addition, the trainer is equipped with multiple devices that are put into
the left and right, front and back pockets. Multiple devices enable the coverage
of different orientations to account for signal attenuation due to the human
body. Taking different orientations into consideration has been shown to provide
performance improvements of up to 67% [2]. In order to enable the correlation of
measurements from different phones, we synchronize their clocks shortly before
the training using Network Time Protocol (NTP).

Once the data collection is complete, the fingerprints from the different
phones are aggregated and the (X,Y") coordinates are computed for each finger-
print by interpolating the intermediate locations based on timing information.
The resulting output is a radio map with a dense distribution of the fingerprints
collected from multiple devices facing different directions. Using this technique
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results in time savings of 75% to 83 % for training, while maintaining the accu-
racy of the original implementation.

4.2 Dead-reckoning

The LOCOSmotion system uses the accelerometer of the Android phone to de-
termine its speed and extrapolate locations between WLAN scans using its pre-
vious movement vector. This enables the system to guarantee an update rate
that exceeds the WLAN scanning rate. However, our original implementation
used a simple algorithm that estimated the steps taken by a person by simply
counting events during which the acceleration exceeded a given threshold. De-
spite our positive experimental laboratory evaluation, this turned out to be not
very robust in the EvAAL 2012 setting as the person performing the test was
following a pace-setter. This, in turn, resulted in an atypical acceleration pattern
which caused imprecise intermediate estimates.

To address this issue, we completely redesigned the fundamental algorithm
to determine the speed of the phone [16]. Instead of the simple threshold-based
approach, the new implementation uses a tiered approach to determine the num-
ber of steps and the resulting distance covered. As a first step, we differentiate
between 4 typical classes of movements, namely no movement, slow walk, normal
walk and running. To do this, we determine the minimum and maximum accel-
eration as well as the variance over a 1 second frame using a simple tree classifier
that we trained with data gathered from 5 persons. If a movement is detected,
we apply a low pass filter over the signal which we parameterize with a cut-off
frequency of 2, 3 or 4 Hz depending on the modality (i.e. 2 Hz for slow walking
speed and 4 Hz for running). As a last step, we count the number of maximas
in the frame and use this as our number of steps. Finally, in order to determine
the distance covered we apply the formula described in [21]. We consistently use
a k-value of 0.55 in order to avoid personalization effort.

4.3 Domotic Events

Domestic robotic (domotic) systems in home automation typically comprise au-
tomated systems that control the heating, entertainment and energy consump-
tion and more in a home. The Living Lab in Madrid is equipped with a domotic
bus which provides notifications for events in the home such as a light switch
being triggered (as well as the position of the switch) and other such events. The
notification typically includes the location of the triggered sensor or event.

In order to leverage this potentially valuable information, we have enhanced
LOCOSmotion to enable the integration with external event providers such as
a domotic bus. The provider can increase the confidence level in the location
estimate or it can correct the estimate. However, we realize that in cases where
multiple persons are present in the target area, purely relying on external event
notifications can reduce the accuracy of the system. Thus, we only allow location
corrections in cases where the distance between the estimated and the corrected
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location is less than the average system error. If the distance is greater than
that, the external event provider is ignored.

5 Evaluation

In this section, we evaluate the performance of the enhanced LOCOSmotion
system. We first look at the performance of the improved algorithm for step
detection and distance estimation which forms the basis of our dead-reckoning.
Then we describe the results of an experimental evaluation of the improved
system in our lab and compare it to the performance of the system without any
of the optimizations made in this paper. Since our laboratory is not equipped
with domotic systems, we do not evaluate the potential gains, however, it should
be clear that they are heavily dependent on the accuracy of the available events.

5.1 Steps and Distance Estimation

To measure the effectiveness of our improved algorithm for step detection and
distance estimation, we asked three persons to walk several rounds on the park-
ing lot in front of the university building. Each person was walking three rounds
in total, each one at different speeds - representing our three movement cate-
gories (i.e. slow and normal walking and running). Before the experiment we
measured the distance of a single round and during the experiment we were
manually counting the steps taken by the different persons. After the experi-
ment, we contrasted the manually counted steps with the steps determined by
our algorithms. Depending on the person, the precision of the step detection
stage ranged between 85 and 95%. Furthermore, we contrasted the measured
distance with the computed distance which resulted in slightly lower accuracies
ranging between 80 and 85%.

5.2 LOCOSmotion Localization System

The evaluation of the system was carried out on the 5th floor of our university
office building. The path was traced through the pathways of the building and
the passable space in the office as shown in Figure 2. So basically, every place
where people are likely to be found was covered by the trainer and fingerprints
were collected. One lecture hall was not covered due to its unavailability at the
time of the measurements, hence no paths can be seen in in this room.

In total, we collected 1783 fingerprints from the 4 Galaxy Nexus Android
mobile devices which were used by the trainer. We also collected another set
of fingerprints to use for the evaluation of the system. We principally evaluate
the enhancements to the system, particularly the accuracy and precision of the
enhanced LOCOSmotion localization system and the time for initial calibration.
Due to lack of domestic home automation infrastructure at the office building,
we do not include any evaluation of the impact of considering domotic events
during localization.
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Fig. 2. Office Building Trace Path
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Accuracy and Precision The accuracy measures the average error distance of
the system. The fingerprints for the evaluation were collected in the same manner
as the training fingerprints, with the user walking around the office building with
the mobile device. The true location of the user was again interpolated from the
markers in the path and then this was compared to the location estimated by
the LOCOSmotion system. Figure 3 shows the results of the evaluation.
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Fig. 3. Probability Distribution of Errors

The average error from the evaluation is 1.6m, the median error is 1.5m and
the maximum error is 7m. The curve is a Gaussian distribution which is shifted
by 1m. This is a result of the fact that for localization, we do not collect a
single fingerprint for localization, but rather multiple scans are performed and
smoothed and the result is used to generate a location estimate. The resulting
fingerprint at each point is therefore not an absolute fingerprint at that position,
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but rather an aggregation of a multiple fingerprints depending on the speed at
which the user is moving. We are therefore not always localizing the person
where they are, but rather where they were approximately 2 seconds ago (average
human walking speed is 1.4 m/s). For a user who would be running, the shift
would be even greater.
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Fig. 4. Cummulative Probability Distribution of Errors

Likewise, the precision measures the success probability of location estimates
with respect to the accuracy. Figure 4 shows the cumulative probability distri-
bution of the localization system. From the figure, we can read that 60% of the
location estimates have an error of 2m or less which increases to 90% at 3m.
Only 10% of the values are between 3m and 7m. This is an improvement over
the results from the first LOCOSmotion paper where only 34% of the time the
result was within 2 neighboring cells (each of dimension 2x2m), and 83.8% of the
time within 4 neighboring cells. It is obvious that the new fingerprinting method
leads to dense fingerprinting which improves accuracy and precision.

Calibration Effort The total time needed for the calibration of the entire 5th
floor of our office building was 11.5 minutes. In the first iteration of LOCOSmo-
tion, we overlaid a grid over the floor resulting in 90 locations where fingerprints
were to be collected for 8 different orientations. The IEEE 802.11 standard re-
quires that all channels be scanned during a WiFi scan. There are typically 14
WLAN channels in use and with most commercial access points broadcasting
for 100ms on each channel[18], it requires a total of 1.4 seconds to perform a
complete WLAN scan. Combining this with the 8 orientations and 90 points in
the building, it took a total of 1.4 hours to create a complete scan of the whole
floor using the previous implementation.
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The new mapping system represents an over 86% reduction in (pure scanning)
time required to create a fingerprint radio map. The new system also has the
advantage of eliminating unnecessary points which result from a grid system and
focusing on the areas and paths where people are usually found in the first place.
This leads to better coverage of the areas and faster deployment times for the
LOCOSmotion system.

6 Conclusion

In this paper, we presented improvements to the LOCOSmotion indoor local-
ization system. LOCOSmotion enables indoor localization by combining WLAN
fingerprinting with speed estimations gathered from acceleration measurements
and relies on standard off-the-shelf hardware which makes it very cost-efficient.
The improvements proposed to the system increase its accuracy while simultane-
ously reducing the installation effort. Consequently, we think that it is a suitable
candidate for supporting the development of many pervasive computing appli-
cations that require person tracking. At the present time, we are investigating
further drive down the cost of installation and increase accuracy by making use
of signal transmission properties and propagation modeling.
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