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Abstract—Indoor localization based on signal strength fin-
gerprinting has received significant attention from the com-
munity. This method is attractive because it does not require
complex hardware beyond a simple radio transmitter. However,
its main limitation is the inaccuracy caused by the variability
of the signal strength. When applied to the localization of
people, the signal variability can be attributed to three main
sources: environmental dynamics (movement of people or ob-
jects), movement of transceiver (changes in the position and/or
orientation of the transceivers) and body effects (distortion
of the wireless signal due to body absorption). Our work
focuses on the impact of the last two sources and provides
two important contributions. First, we present an analysis to
quantify the effects of antenna disorientation and transmitter
misplacement. For the RFID system used in our work, these
effects can decrease the localization accuracy by up to 50%.
Motivated by these results, we identify parts of the human
body where tags are less affected by unintentional movements.
Second, we describe how multiple transmitters can be used to
overcome the absorption effects of the human body. Our results
indicate that four transmitters provide a reasonable trade-off
between accuracy and hardware cost. We validate our findings
through an extensive set of measurements gathered in a home
environment. Our tests indicate that by following the guidelines
proposed in this paper, the localization accuracy can improve
from around 20% up to 88%.

I. INTRODUCTION

The limitations of GPS [1] technology on obstructed

environments has motivated a large body of research on

indoor localization [2], [3]. A significant number of these

efforts have focused on fingerprinting techniques based on

the received signal strength (RSS) of wireless radios, e.g.,

[4], [5], [6], [7], [8].

Fingerprinting is an attractive solution due to its low cost

and complexity. Compared to other methods, fingerprinting

does not require any specialized hardware beyond an in-

expensive radio transceiver which can be easily integrated

into a small, lightweight, wearable tag. Unfortunately, the

sole reliance on signal strength implies that fingerprinting is

exposed to the well known variability of wireless channels

[9]. For any fixed coordinate (x, y), the signal strength of a

tag can be highly variable in time. This signal variance leads

to inaccurate fingerprints, which in turn leads to localization

errors that can be in the order of meters or tens of meters.

When radio tags are placed on people, localization is

particularly challenging because several factors influence the

variance of signal strength: Dynamics in the environment

(i.e. movement of people or objects), absorption and diffrac-

tion of the human body, slight misplacements of tags and

the antenna design. To cope with these undesired effects,

most evaluations are performed under controlled settings –

where individual radio tags are placed at various predefined

coordinates without disturbances in their location, e.g. [5],

[10], [11], [12]. These controlled experiments minimize the

variance of the signal strength. Such evaluations are valuable

because they provide upper bounds on the accuracy, but they

do not address the impact of (i) body effects, in particular ab-

sorption, and (ii) the natural disorientation or misplacements

that tags may have when placed on the human body. Previous

research has reported these pernicious effects, e.g. [13], [4];

but this paper is the first that quantifies these two effects

and leverages the insights to derive guidelines on how to

systematically enhance the accuracy of indoor localization.

We argue that minimizing both effects is necessary before

fingerprinting techniques, based on signal strength, can be

applied to accurately localize persons in indoor environ-

ments. For instance, one of the goals of WebDA, one of

the Ambient Assisted Living projects running in our group,

is to enable low-cost indoor localization of elderly people

suffering from dementia. The gathered location is then used

to provide assistance for both, the elderly and care takers.

During the initial tests, we found that ordinary body actions

can cause transmitters to move, rotate or to be shadowed by

the body. All these effects reduce the localization accuracy.

In this paper, we describe a systematic study of the issues

arising when localizing persons in an indoor environment.

Using an off-the-shelf active RFID system, we quantify

the effects of tag disorientation, tag misplacement and the

absorption of human bodies. The following paragraphs sum-

marize the key findings, guidelines and results of the study:

• Slight mismatches in tag orientation and tag placement

have a similar negative effect. Each of them can reduce

the localization accuracy by 50%. Consequently, tags

should be placed on parts of the body that experience

little changes over time. From a practical perspective,

our findings show that the waist line is an ideal part.

• Adding more tags overcomes the effects of body ab-

sorption and increases the localization accuracy. We

find that the highest accuracy improvement is obtained



Figure 1. BN208 active RFID tags

with four tags - two of them at the front and the other

at the back.

• Following our guidelines improves the localization ac-

curacy significantly. We performed extensive measure-

ments in a home environment and found that accuracy

improves by a factor of 4 compared to scenarios where

single tags are placed carelessly.

II. PRELIMINARIES

To put our work in context, we now present some prelim-

inary information. First, we describe the hardware platform

used in our experiments. Then, we provide an example

that highlights the impact of signal variance on localization

accuracy. Finally, we describe the methodology and metrics

used in our study.

A. Hardware Platform

We use the LogiSphere RFID system from Sensite Solu-

tions which operates at a frequency of 868 MHz. The system

consists of readers (HBL100) and active tags (BN208). The

reason for this choice is that the tags are small (Figure 1),

lightweight (14 gr) and have a long lifetime. These char-

acteristic make them ideal for embedding them in clothes.

The output power was set to -10 dBm, which provides a

transmission range of approximately 50 meters (sufficient to

cover most apartments). With this transmission power, the

batteries can send approximately 16 million transmissions.

The beacon interval is configurable, but for the experiments

described hereinafter the rate is set to 1 beacon every second.

The tag has an accelerometer sensor which can detect (the

lack of) movement, and hence, the tag can stop sending

beacons when it is still. Given these settings, and considering

that in most cases elderly users are not active more than 50%
of the day, the tag has a lifetime of roughly one year.

B. Problem Description

In order for fingerprinting to be accurate, there are two

desirable characteristics that the environment should have.

First, each coordinate should be uniquely identified by a

fingerprint(s). Second, the signal strength should not change

significantly over time. In practice, none of these conditions

apply, and hence, fingerprinting methods could be – from

the start or become with time – inaccurate.
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Figure 2. Signal strength variability example

Figure 2(a) depicts the radiation pattern of a tag, and

Figure 2(b) depicts its signal strength at different distances

in an aisle. As it has been reported for other hardware [14],

the radiation pattern is highly anisotropic1. The pattern in

Figure 2(a) was obtained for a distance of 1m, and we can

observe that the highest signal strength is 1600 µV (≈ 65

dBµV) and the lowest is 700 µV (≈ 55 dBµV) 2. Notice that

this change on signal strength can be obtained by modifying

the orientation of the antenna by 90◦. A tag positioned on

a limb, or over loose pieces of clothes on the torso, can

easily lead to this level of disorientation. In Figure 2(b) we

observe that a signal strength of 65 dBµV maps to a distance

of 1m, while a signal strength of 55 dBµV could map to

distances around 2.0, 3.0, 4.5 and 9.5 meters. Henceforth,

slight movements of tags can lead to localization errors in the

order of several meters. As we show later on, the absorption

of a human body can have a similar effect which increases

the overall error.

1We measured the radiation pattern of 12 tags along their three different
axis (X, Y and Z), and all the plots showed a highly anisotropic behavior.

2For voltage or current ratios: dBµV = 20 log10

(

Vx

1µV

)



C. Evaluation Methodology

As most studies in the area, our evaluation relies on

well-known machine learning techniques. In the following,

we outline these techniques and how we apply them. We

also provide a rationale for the approach used for tag

misplacement and disorientation.

Gathering Feature Vectors. Let fi(c) be a fingerprint

assigned to coordinate c by reader i. We utilize four readers

in all experiments, and hence, the feature vectors are given

by (f1(c), . . . , f4(c)). Due to the high variance in RSS

measurements, fi(c) is usually computed as the average RSS

of n consecutive packets. Unfortunately, the average can be

severely biased by deep fades or high peaks caused by multi-

path effects and hardware variance. To obtain a more robust

fingerprint, we combine ideas from [4] and [15]. From [4]

we use the concept of fingerprinting the highest values of

RSS to filter deep fades, and from [15] we use the concept of

trimmer-filters to filter high peaks. As a result, considering a

sequence of n RSS samples, we define the fingerprint fi(c)
as the RSS value corresponding to the 80th percentile of

that sequence 3. As for the number of samples n to be

considered in the sequence, we evaluated different values. In

theory, the higher n, the more accurate the fingerprint but

the less responsive the system. In practice, we found that

n > 25 did not provide significant improvements. Hence,

we consistently use n = 25 hereinafter.

Capturing Signal Variance. Following the proposal in [4],

we use euclidean distances to capture the difference between

two vectors in the feature space. Capturing this difference

is important because it is a metric for the signal variance,

which provides insights on the limitations of the localization

system.

Measuring Accuracy. Similar to other studies [4], [5], [6],

[7], [8], we use a k nearest neighbor (kNN) classifier for

localization. In our case we use k = 1, a single training

fingerprint for each coordinate, in order to capture the worst

case behavior4. The accuracy of the system is measured

as the percentage of testing samples whose classification

correctly matches their location.

Misplacement and Disorientation. To study the effects of

tag placement and orientation systematically, we used the

following approach. To modify the placement, we move the

tags 10 cm from their original position while keeping their

orientation steady. The reason behind this choice is that

misplacements of 10 cm can easily be caused by placing

tags on limbs or by carelessly attaching tags to the torso.

The rotation of the tags is set to 90 degrees while keeping

the same position. In this case, the reason is twofold. First,

3Alternatively, the median of the sequence can be used (as it is also a
robust statistic), but our experiments on the RFID system showed better
results for the 80th percentile. This is a hardware-specific issue.

4Some studies report that k = 3, 4 provide better results [4], but our goal
is to stress the system and capture the relative performance of the different
effects.
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Figure 3. Laboratory layout with readers (Ri) and coordinates (Ci)

when tags are placed on limbs, as proposed in other studies

[16], a 90 degree rotation can be easily caused by normal

body actions. Second, and more important, a 90 degree

rotation leads to the largest variance in signal strength, as

shown in Figure 2(a). To capture the combined effects of

placement and orientation, we perform both modifications

simultaneously.

III. QUANTIFICATION OF VARIABILITY EFFECTS

In this section, we quantify the effects induced by tag

misplacements, disorientation and body absorption. Based

on this we propose a set of guidelines to minimize them. To

filter the effects of channel dynamics (movement of people

or objects), all experiments are conducted in a controlled

setting. The next section evaluates our approach in a realistic

scenario (a medium size apartment).

A. Laboratory Environment and Setup

The controlled experiments were performed in a room

with the layout shown in Figure 3. We utilized four coordi-

nates (Ci) located at the corners of a 4m×4m square. The

readers (Ri) were positioned close to each corner.

Before conducting the experiments, we obtained the ra-

diation pattern of each tag, 12 tags in total, in a similar

way to Figure 2(a). The radiation patterns allow us to

identify the main lobe of the antenna, that is, the direction

of the strongest signal strength. Identifying the main lobe is

important to quantify the rotation effects with respect to a

single point of reference5.

In these controlled experiments, our goal is to quantify

only the effects of tag movements and body effects. We

took care of minimizing the variability caused by dynamics

in the environment (movement of people or objects). The

test room remained closed and unchanged for the complete

duration of the experiments. Furthermore, the experiments

5For several types of antennas, the strongest and weakest lobe are
orthogonal (90◦).



were controlled remotely (outside the room) to further

minimize the dynamics.

B. Effects of Disorientation and Misplacement

In order to capture the effects of antenna disorientation

and tag misplacement, we performed two sets of experi-

ments. In the first set, we measured the signal variability

without the disturbing effects of the human body. To do this,

we placed the tags on top of wood stands at approximately

1m height. In the second set, the tags were attached to

the body. To guarantee for a stable tag placement and

orientation, we attached the tags to a tightly fitted belt and

asked the person not to move for the time of the experiments.

First Set of Experiments (Without Human Body). For each

one of the 12 tags, and for each coordinate, we collect three

different sets of measurements.

• Baseline: the main lobe of the tag faces North (with

respect to the compass in Figure 3)

• Disoriented: the tag is rotated 90◦ to the right with

respect to the baseline. The main lobe faces East.

• Misplaced: the tag is moved 10cm to the right with

respect to the baseline. The main lobe still facing North.

At each position we collected two minutes of data,

which leads from 100 to 120 samples (due to clock skew

and collisions). According to the methodology described in

section II-C, a sequence contains 25 samples, and hence,

two minutes of data lead to four fingerprints. The baseline

measurements are collected twice, one is used as a training

set and the other as a testing set. The disoriented and

misplaced measurements are collected once, and both are

used only as testing sets.

As indicated in Section II-C, the signal variance is cap-

tured by the euclidean distance among vectors. For each

coordinate, we have four training vectors and four testing

vectors. A cross product of these two sets leads to 16

comparisons that capture the variability in signal strength.

This process is repeated for the four coordinates and 12

tags, which leads to 768 comparisons. Figure 4 depicts

the distribution of these comparisons. The candlestick plots

show the minimal and maximal signal differences, as well as,

the interval between the 25th and 75th percentile (box). The

circles represent the mean. The plot provides two important

insights. First, the variability of the baseline comparison is

minimal. This is due to two reasons, the controlled settings,

which minimizes signal variance, and the robustness of the

fingerprints defined in Section II-C. Second, disorientations

and misplacements have a similar effect on signal variance,

and this effect is large. As explained earlier in the paper,

large variances in signal strength are the main reason for

inaccurate localization.

Figure 5 depicts the localization accuracy of this simple

scenario. The accuracy is calculated using a nearest neighbor

classifier. As explained in section II-C, we set k = 1 and we

divide the Baseline training set into four smaller sets (each

set with a one fingerprint per coordinate). The accuracy is

presented in two ways: on a per-tag basis (candlesticks)

and in an overall basis i.e. all-tag performance (connecting

line). First, let us analyze the overall accuracy. We have 192

sample vectors for each testing set (192 = 4 fingerprints×4

coordinates×12 tags) and, as explained earlier, each testing

set is evaluated 4 times (once with each training subset).

The overall accuracy is hence represented by the fraction of

correct localizations out of 768 attempts. The accuracy of

the baseline is one because the variance in signal strength

is not high enough to confuse neighboring coordinates. On

the other hand, misplacements and disorientations decrease

the accuracy by 20% and 30% respectively.

The overall accuracy hides an important characteristic:

hardware variance. Not all tags are born equal. Given the

same output power, the shape and strength of their radiation

patterns are different6. This implies that tags may have

different performances. The candlestick plots in Figure 5

capture the per-tag performance. The plot shows the tags

with best, worst and average performances (tags between

the 25th and 75th percentile). The per-tag accuracy is

calculated based on 64 unlabeled vectors (4 fingerprints×4

coordinates×4 training subsets). We observe that misplaced

tags have a wide performance range [0.65, 1.00], while

disoriented tags have a narrower range [0.60, 0.85]. We

hyphotesize that the wide misplacement performance is due

to differences in the width of the main lobe. If a lobe is wide,

a tag is more robust to misplacements on the direction of that

lobe, while narrower lobes are more sensitive to orientation.

On the other hand, the antenna direction with the weakest

signal strength does not have a high variability among tags.

It is important to notice that the grid is large (4m), and

this contributes to the perfect accuracy of the baseline set,

smaller grids may cause errors, but our goal is to highlight

the relative impact of tag misplacements and disorientations.

Second Set of Experiments (With Human Body). The

framework is analogous to the first set of experiments, but

the tag was located on the front middle torso of a person

facing North. For each tag and each coordinate we collected

4 sets of experiments:

• Baseline: the tag is fixed to a belt with the main lobe

facing up.

• T-shirt: the tag has the same position and direction

of the baseline, but it is placed directly on the clothes

(loosely attached).

• Disoriented: the tag is fixed to a belt and rotated 90◦

clockwise with respect to the baseline.

• Misplaced: the tag is fixed to a belt and moved 10 cm

to the right with respect to the baseline.

The collection and processing of data is the same as in

the first set of experiments. Figure 6 shows the distribution

6This is due to imprecise manufacturing processes and also affects
hardware designs that strive for precise RSS measurements [17].
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of the signal variance (based on the comparisons of the

euclidean distances). Similarly to the first set of experiments,

disorientations and misplacements cause a large variance.

But in this case, the baseline has a wider variance. This is

because of the slight unconscious movements of people (as

compared to the completely static setup with a stand). We

can also observe that the t-shirt tag has a wider variance

than the baseline. This is because it was loosely attached,

and hence, it has slight misplacements and rotations.

Figure 7 depicts the per tag (candlesticks) and overall

localization accuracy (connecting line). The results follow

the same trend as the first set of experiments, but the

effects are aggravated (worse accuracy). The ranges of the

t-shirt, misplaced and disoriented sets are rather similar

among themselves because minor movements of the person

intertwined these effects, that is, a small movement can

cause both disorientation and misplacement.

C. Effects of Body Absorption

Besides tag disorientation and misplacement, another im-

portant factor increasing signal variability is the human body

itself7. We quantify the impact of this effect by placing one

reader at R1 and 12 tags at C4 as depicted in Figure 3. The

experiments were conducted as follows:

• Baseline: All 12 tags are attached to a thin cardboard

and the cardboard is then attached to a thin wooden

stand with a height of 1.5m. The main lobe of the tags

is facing up.

• Body: The cardboard, with the 12 tags, is attached to

the back of a person facing the reader (5 persons in

total). The persons are of different stature and mass.

While attaching the cardboard, we ensured that we keep

the height and orientation of the baseline.

As in the previous experiments, we asked the persons to

avoid movements in order to minimize the dynamics. We

7The human body consists of 65 percent of water which is well-known to
have a high absorption. To mitigate this, [4] proposes to capture fingerprints
at different orientations when creating a signal propagation map.

took two baseline measurements and one testing measure-

ment for each person (two minutes for each measurement).

Following the same methodology of the previous section

we obtained the euclidean distances. However, in this case

we had only 16 comparisons because we used a single

coordinate. The results are depicted in Figure 8. We observed

that body effects cause a variance between 5 and 15 dB.

These variances are significant and comparable to those of

tag misplacement and disorientation (Figure 6).

As reported in previous studies [4], body absorption leads

to ambiguous information. By simply rotating 180 degrees,

a person could be mistakenly located several meters further

(or closer). In [4], the authors propose to take samples at

different cardinal directions to overcome body effects. In

contrast, we propose to attach multiple tags to a person in

order to overcome these effects. To do this, we construct

wide fingerprints from the individual fingerprints by simply

concatenating them. This allows us to apply the machine

learning method without any modifications.

The resulting fingerprint not only copes with body absorp-

tion and contains information about the orientation of the

person, but it is also more robust to multi-path effects. This

last point is particularly important compared to single-tag

approaches. To quantify the effects of using wide fingerprints

of multiple tags, we attach 12 tags steadily to a belt in

the waist line of a person (main lobe facing up). For

the training and testing sets, we obtain four fingerprints

for each of the four coordinates and each of the four

cardinal directions, which results in 64 fingerprints per

tag (4 coordinates × 4 orientations × 4 fingerprints). The

training set is divided into four subsets each containing one

fingerprint per <coordinate, location> tuple. The overall

and per-tag accuracy is calculated analogous to the previous

experiments.

Figure 9 shows the resulting accuracy distribution of the

different tag combinations. For example, the value 2 in the

x-axis represent all the potential combinations of 2 tags (out

of 12). This figure provides two important trends. First, more

tags provides better accuracy, but it has diminishing returns.
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Second, and more important, four tags seem to provide a

good trade off between cost an accuracy. In the next section,

we will observe that this insight is validated in a realistic

environment.

D. Tag Placement Guidelines

Given the results discussed in the previous sections, we

derive a set of practical guidelines to minimize the negative

effects that occur when tags are placed on a human body.

For simplicity, we refer to them as PMMS (precisely mount

multiple tags and keep them steady).

Guideline 1 (Tag Orientation): The rotation of the an-

tenna has an impact on the variability of the signal strength.

Keep the orientation of the tag steady.

Guideline 2 (Tag Placement): The placement of the an-

tenna has an impact on the variability of the signal strength.

Keep the position of the tag steady.

Guideline 3 (Body Absorption): The absorption of the

body has an impact on the variability of the signal strength.

Use multiple tags to overcome body absorption effects.

These guidelines limit the parts of the human body where

tags could be attached. The first two guidelines exclude the

limbs, as ordinary body movements (such as walking or hand

motions) will likely cause both, disorientation and misplace-

ments. Although tags could be attached to caps or hats, this

might be inconvenient for many persons. Consequently, the

placement of tags are restricted to the torso. Furthermore,
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Figure 10. Apartment layout with readers (Ri) and coordinates (Ci)

Figure 11. Tag placement on t-shirt (loose) and with belts (tight)

considering that tags should be tightly attached, a belt on

the waist line appears as the most convenient and practical

position.

IV. EVALUATION

In order to validate the results gathered in the laboratory

environment, and to test the validity of our guidelines in a

realistic scenario, we performed an experiment in a medium

size apartment. The layout of the apartment is shown in

Figure 10. The doors and larger pieces of furniture are

primarily made of wood, metal and fabric. We distributed

4 RFID readers (R1-R4) in the apartment by placing them

in each of the outermost corners at a height of 180 cm.

After discarding the areas blocked by furniture and walls,

we identified 34 accessible coordinates (C1-C34) in a 1×1m

grid (c.f. Figure 10).

We equipped a person with 10 tags as shown in Figure

11. To capture realistic temporal changes, we collected the

testing set seven hours after collecting the training set.

During the experiment, the tags were split into the following

test-groups:

• Loosely attached: 4 tags were loosely attached to the t-

shirt of the person. After the training set was collected,
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one of the tags was moved by 10 cm to the right, one

of them was rotated by 90 degrees, one of them was

moved and rotated, and the last one stayed as it was.

• Tightly attached: 2 tags were attached to a belt. After

the training set was collected, one of them was moved

by 10 cm to the right and the other one was rotated by

90 degrees.

• PMMS guidelines: 4 tags were attached to a second

belt (2 on the front and 2 on the back). Following our

own guidelines, we neither move nor rotate them.

For each set (testing and training), and for each co-

ordinate, we collect one-minute samples at each cardinal

direction (N,E,S,W). A one-minute sample leads to two

fingerprints. This results in 272 fingerprints for each tag (34

coordinates × 4 directions × 2 fingerprints/minute). Also,

as described in the previous section, we divide the training

data into two sets (each set having only one fingerprint per

<coordinate, direction> tuple).

We evaluate the accuracy of the system in two ways, in a

per-location basis and in an overall basis. In the per-location

evaluation, we measure the number of times that a particular

coordinate was guessed correctly out of 16 attempts (2

training sets × 4 directions × 2 fingerprints). The overall

accuracy reflects the fraction of correct guesses out of 544

attempts (272 fingerprints × 2 training sets).

The resulting accuracy distribution is shown in the can-

dlestick plot in Figure 12. The plot shows the minimal

and maximal accuracy for all coordinates, as well as, the

interval between the 25th and the 75th percentile (box). The

connecting line represents the overall accuracy. Based on the

depicted results, we can draw three important conclusions:

Misplacement and disorientation play a central

role on localization accuracy. The tightly attached

tags {misp},{diso} seem to capture a lower bound be-

havior when compared to the loosely attached tags

{misp},{diso},{misp+diso}. This observation is important

because, as we mentioned in the introduction, signal variance

have several sources, some of them out of our control (like

the movement of pieces of furniture). Misplacement and

disorientation are, however, to some extent under our con-

trol, and they seem to account for most of the performance

degradation. Hence, they must be considered in order to

maximize the accuracy of an indoor localization system that

applies RSS fingerprinting.

Maintaining the orientation and placement of tags

prevents accuracy degradations of up to 50 percent.

Consider two sets of tags placed in a body: the first set

contains {base},{misp},{diso},{misp+diso} and the second

{a},{b},{c},{d}. In the first set, only the base tag provides

an accuracy similar to the second set (which follows our

method)8. The key lesson to take away is that a tag may

remain still and have a good performance, but it might as

well rotate or move, which could degrade the performance

by up to 50%. Following our guidelines guarantees a fairly

constant and good performance.

Placed properly, multiple tags effectively mitigate body

effects and increase the accuracy by a factor of 4.

Fixing a tag to avoid misplacements and disorientations is

necessary, but it may not be sufficient. For a fine grain

scenario like ours (1×1m grid), single tags {a},{b},{c},{d}
lead to a rather moderate accuracy (40%). This relatively low

performance is due to external effects such as multipath and

body absorption that create ambiguities (locations having

similar fingerprints). The figure shows that utilizing four

fixed tags can improve the average accuracy to values around

88% (4 times more than single tags that are carelessly

attached). It is important to highlight that the diminishing

returns pattern validates the laboratory results.

8Note that the {base} tag has a good performance, in spite of being
directly on the clothes, because it is relatively steady between two belts
(Figure 11).



V. RELATED WORK

Location is an important part of a person’s context which,

in turn, represents a cornerstone of pervasive computing.

Outdoors, GPS [1] provides a cost-effective solution to de-

termine the location of persons on a global scale. When GPS

is not available, or if energy and latency are a concern, it is

possible to provide supplementary solutions using WLAN

[18], GSM [19], CDMA [20], or WiMax [21], to name a

few. Over the last decade, the ubiquity of accurate location

information in outdoor settings has let to the development

of a plethora of location-based services and applications.

Transferring the results from outdoor to indoor environ-

ments is a challenging task that has spawned an enormous

body of research. For the sake of brevity, we would like to

refer the reader to [2] and [3] for recent surveys on existing

applications, algorithms, systems, and metrics. To overcome

the effects of multi-path signal propagation, RADAR [4]

was among the first systems that applied the idea of signal

strength fingerprinting. This seminal work used 802.11 as

basis for a study which showed that fingerprinting is a viable

method for localization. Over time, this idea has been tested

successfully with a broad spectrum of technologies. Exam-

ples include Bluetooth [5], GSM [6], 802.15.4 [7], [10], FM

[22], DECT [8], and passive [11] as well as active RFID

[12]. Together, these studies provide a clear indication for the

broad applicability of fingerprinting in indoor environments.

Typically these studies focus on evaluating the technology

without a systematic analysis of the impacts caused by a

human body. Providing such an analysis is a primary goal

of our work.

For the study in this paper, we build upon the existing

work in several ways. To gather robust fingerprints, we bor-

row the concept of fingerprinting the highest value [4] and

we combine this with [15] to filter high peaks. To compute

accuracies, we use nearest neighbor methods similar to [4],

[5], [6], [7], [8] while using the euclidean distance. We are

aware that there are more elaborate metrics [23] and filtering

techniques [24] which are designed to improve the accuracy,

but the focus of our study is to create a clear link among

the relative performance of different effects.

Our study is related to other studies on the signal vari-

ability. In [9], for example, the authors study the low level

temporal effects of indoor signal propagation to optimize

network technology. [25] studies the variability of signal

strength at stationary transceivers caused by human bodies to

enable device-free localization. In contrast, we are focusing

on the variability effects caused by mobile transceivers

placed on a human body to quantify the impact on local-

ization accuracy.

We point out that the individual effects have been pre-

viously noted by other researchers. For example, RADAR

proposes to take measurements in which the user faces a

different direction (e.g. north, south, east and west) to over-

come the absorption effect. This has turned out to become a

common approach that is also used to calibrate commercial

802.11 systems such as Ekahau [26] and we also apply this

technique but we propose to replace complex processing

with using multiple tags. Most other works, however, do

not systematically analyze this effect [5], [6], [22], [8] or

evaluate their systems in more controlled settings, e.g. [12].

Our proposal to use multiple tags is related to [27] which

analyzes the effects of using multiple antennas to improve

signal strength fingerprinting. Similarly to our finding the

study concludes that it is possible to achieve significant im-

provements by introducing additional antennas. In contrast

to our proposal, however, [27] studies 802.11 and introduces

the antennas at the access points. Conceptually, our proposal

is therefore more closely related to [16] which uses multiple

sensor nodes on a body to enable localization. However,

[16] attaches nodes loosely to the person (i.e. by hanging

them around the neck or putting them into the pockets of

the trousers). Based on our results, this is likely to cause

inaccuracies due to node misplacement and disorientation.

Regarding the effects of antenna disorientation there have

been a few studies already. Interestingly, [27] indicates

that the rotation of the external antenna of an off-the-shelf

802.11 access points does not cause significant effects on

the received signal strength. We hypothesize that this is due

to the more complex antenna arrays found in today’s access

points. Similar to our finding, the study in [13] shows that

the localization capabilities of current 802.15.4 hardware is

significantly impacted by antenna disorientations. However,

in contrast to our work [13] does not analyze other body

effects such as misplacement or absorption.

Indoor localization is a dense research area and several

issues evolving around the effects of the human body on

localization have been noted. To our knowledge, our work is

the first to perform a comprehensive analysis that quantifies

the effects and derives a set of simple, practicable guidelines

to minimize them. As our validation shows, following these

guidelines can improves the accuracy by a factor of 4.

VI. CONCLUSIONS

Motivated by the limitations of current RSS-fingerprinting

techniques, we quantified three negative effects on localiza-

tion accuracy resulting from placing tags on persons. Some

of these effects have been reported in the literature. We build

on top of the existing state of the art by analyzing them

systematically in the context of indoor localization. Based

on the analysis, we propose PMMS – three simple guidelines

to effectively counter the effects. To minimize the signal

variance caused by tag misplacement and disorientation, it

is necessary to steadily attach tags to the torso. To over-

come body effects, it is necessary to use wide fingerprints

constructed from multiple tags. The validation of PMMS in

a realistic scenario shows that following the guidelines can

consistently improve localization accuracy. Using four tags



tightly attached we achieve an improvement by a factor of

4 (from around 20% to up to 88%).

In the light of new pervasive computing technologies such

as body area networks (BAN), we hope that a systematic

study of placement issues will help other researchers to

achieve a high localization accuracy in their applications.
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