An Approach for Secure Role Assignment

Wolfgang Apolinarski, Marcus Handte, Pedro José¢ Marrén
Networked Embedded Systems Group
University of Duisburg-Essen
Duisburg, Germany
{wolfgang.apolinarski|marcus.handte|pjmarrron } @uni-due.de

Abstract—One of the key characteristics of pervasive comput-
ing applications is their ability to adapt to their environment.
One possible approach to simplify the development of such adap-
tive applications is to use middleware to automate adaptation
decisions. However, in many application scenarios, adaptation
decisions can have critical security implications. Thus, when
designing middleware to support adaptation it is necessary to take
security constraints into account. In previous work, we presented
generic role assignment [1] as a middleware abstraction to sup-
port adaptation. In contrast to other approaches, role assignment
enables adaptation within a single and across multiple smart
environments in a flexible, application-overarching manner. In
this paper, we extend the concept to support security constraints.
Furthermore, we describe the necessary modifications to our ex-
isting role assignment system. Finally, we evaluate our approach
showing resulting benefits and limitations. In comparison with
existing approaches, the proposed approach is more flexible and
does not introduce a single point of trust.

Keywords-Role Assignment, Security, Access Control

I. INTRODUCTION

The vision of pervasive computing is to provide the user
with seamless and distraction-free task support. This task sup-
port is realized by pervasive applications that are running on
devices integrated into everyday objects. Using sensors, they
are able to perceive information about their physical context
and using actuators, they may manipulate parts of it. Due
to their integration, the devices are heterogeneous and may
exhibit mobility. These factors lead to a dynamic environment.
Because of this, applications need to adapt to the environment
continuously. If the environment changes frequently, a manual
adaptation by the user is not feasible as this might cause
significant distraction. Therefore, it is necessary to automate
the adaptation. Implementing this automation at the application
layer is a complicated and error-prone process and leads to a
considerable development overhead.

To avoid this, it is possible to implement the automation
at the middleware layer. An application can then specify its
adaptation requirements to the middleware. The middleware
automates the adaptation decisions and may even execute the
resulting changes. In many application scenarios, adaptation
decisions can have critical security implications. Consider an
application for document editing that automatically migrates
its output from the small screen of the user’s mobile phone to
a larger screen available in the environment. If the screen has
been set-up by a malicious person, it is possible to copy the

displayed documents. This problem is amplified, if a service
in a remote environment is mediated over the Internet. As a
result, it is necessary to consider security constraints when
designing a middleware that automates adaptation.

In previous work [1], we presented generic role assignment
as a lightweight but flexible abstraction to automate adaptation
at the middleware layer. Role assignment assumes that devices
have some knowledge about their context and are able to
perceive parts of it at runtime. Examples for the former may be
the device type or owner. Examples for the latter might be the
device’s GPS coordinate or the surrounding temperature. In
generic role assignment the middleware automatically assigns
so-called roles based on this context. A role can be seen as a
tag that may be assigned to one or more devices. By definition,
a role is assigned to any device as long as there are no further
constraints. To enable the use of roles in different applications,
role assignment introduces so-called rules that define contex-
tual constraints on devices. Rules can be categorized into filter
and reference rules. A filter rule simply constraints the set of
devices to those that exhibit a particular context. A reference
rule references other assignments which enables hierarchical
composition. To express a set of requirements, a developer can
define combinations of roles and rules within a so-called role
specification. Since the roles are just tags that are assigned to
devices, they can be used at both, the application as well as the
middleware layer. At the middleware layer, roles may be used,
for example, to adapt the set of devices that interact with each
other. An example use case at the application layer is to use
roles to adapt the configuration of a distributed application.

In this paper, we extend generic role assignment to support
security constraints. To do this, we first define a simple yet
flexible model to capture the trust relationships between dif-
ferent devices. On the basis of this, we extend role assignment
with an additional class of rules to model security requirements
and we discuss the necessary changes to enable their automatic
enforcement at runtime. As a validation, we describe a pro-
totypical implementation of a secure role assignment system
and we describe several system services that we built on top
of it. Finally, in order to evaluate the approach, we determine
its performance impact experimentally and we discuss experi-
ences from implementing several security critical applications.
The evaluation indicates that secure role assignment is flexible
enough to support a broad range of services and applications
without introducing high performance overheads.

The structure of the remainder is as follows. In the next
section, we briefly outline our design goals for secure role as-
signment. Thereafter, in Section III, we describe our approach.
In Section IV, we describe our prototypical implementation
which we evaluate in Section V. Finally, we describe related
work in Section VI and we conclude the paper in Section VII.

II. DESIGN GOALS

Our primary goal for secure role assignment is the ability to
use its resulting role assignments as basis to develop security
critical pervasive computing applications. Based on this, we
can derive the following three design goals.

« Configurable: To support a broad range of applications,
the role assignment must be configurable. The same
holds true for the concepts required to realize secure
role assignment. Specifically, it is necessary to enable
the developer to specify security requirements at different
levels of abstraction. For example, a developer might
want to directly limit role assignment to a set of devices
that is known at development time. For other applications,
a developer might want to perform role assignment only
with the set of devices that are trustworthy from a user’s
perspective. Furthermore, since not all adaptation deci-
sions must be secured, the security should be optional.

o Light-weight: The devices in the pervasive comput-
ing domain are often heterogeneous and may include
resource-constrained devices like sensors. To be able to
use such devices, secure role assignment should be light-
weight. In cases where security is not needed, its security
mechanisms should not introduce additional costs. Fur-
thermore, if security is required the resulting overheads
should not introduce high performance penalties.

o Secure: Since the decisions made during role assign-
ment may have critical security implications, the security
provided by role assignment must be high. Despite the
fact that devices can be resource-constrained, malicious
persons may have a significant amount of resources at
their disposal. This is especially true, if role assignment
is performed across an insecure network such as the
Internet. Consequently, the concepts used to secure role
assignment should allow the use of cryptographic meth-
ods that exhibit Internet-level strength.

III. APPROACH

In the following, we describe our approach to realize the
design goals described previously. To do this, we first provide
an overview of the basic idea. Thereafter, we discuss the
individual concepts in detail.

A. Overview

The basic idea of our approach is to secure the input
data that is used during role assignment. Since generic role
assignment introduces two classes of rules, this affects two
types of data. For filter rules, it is necessary to ensure that
the context used during their evaluation corresponds to the

The Doe Family

John Doe . Certificate of

a device or domain

John Doe’s Jane Doe‘s
PDA Phone —> Signature relation
John Doe’s Jane Doe’s O Trusted devices, if
Laptop Car trusting Jane Doe
Fig. 1. Certificate Hierarchy and Trust Model Example

actual situation. From a systems perspective!, this can be

achieved by ensuring that the situation has been observed by
a trustworthy sensor’ and that the observation has not been
altered. Furthermore, since the context may change over time,
it may also be necessary to ensure that the observation has
been made recently. For reference rules, it is necessary to
ensure that the roles used during reference resolution have
been assigned properly. To do this, it is necessary to ensure
that the role has been assigned by the device responsible for
a particular role specification and that the role has not been
altered. As role assignment is a dynamic process, it may also
be necessary to ensure that the role is not outdated. Thus, we
need to secure the authenticity and integrity of context and
roles and optionally, we also need to ensure their freshness.
As a first step, it is necessary to define the set of trustworthy
devices. To do this, we introduce a simple trust model that is
based on certificate hierarchies. In the model, a certificate is
attached to every device. The certificates are used to identify
devices and capture the devices’ memberships in different
administrative domains. As a second step, we then extend the
role specification with an additional class of so-called security
rules which define the set of devices or domains regarded as
trustworthy. In order to enable user-specific definitions of trust,
we introduce trust-levels that can be defined for each device.
The levels can be referenced in an abstract manner within the
security rules. At runtime, the levels are then automatically
resolved into the proper set of device-specific certificates.
Due to the fact that the security rules cause additional effort
during the role assignment process, the rules can be attached
to individual filter or reference rules. Besides from reducing
the overhead, this approach also increases the configurability.
As a third and last step, we then ensure the enforcement of the
security rules during the evaluation of the corresponding filter
and reference rules which realizes the design goal of security.

B. Trust Model

As a first step, it is necessary to define the set of trustworthy
devices. Trust can be modeled in many different ways [2]-
[4]. For our approach, we chose to base our trust model on
the widely used concept of certificate hierarchies [5] depicted

'We are aware of the fact that there are other possibilities. For example, one
might argue that a correspondency is given, if n arbitrary sensors make similar
observations. However, such definitions are orthogonal to our approach.

2If certain facts are not observed directly but modeled by a human (e.g.
device ownership, etc.), the modeling person must be trustworthy.

— Role Specifications

—’l Role A: Device located at Home A +-1- Filter Rules
1

1
Role A": Device has Role A <+————L Reference

N)
& Role issued by level ,full trust” Rule
Role B: Device located at Home B 9 Security
Rules

—| & Context issued by HomeServer
& Context timeout 60 min

Fig. 2. Role Specification with Security Rules Example

in Figure 1. The reason for this is twofold. First, certificate
hierarchies exhibit both, scalability at deployment as well as
at runtime. By means of hierarchical relationships, devices
can be grouped into an arbitrary number of administration
domains. Furthermore, it is possible to add new devices to
established domains at any point in time (i.e. by signing a
device’s certificate with the corresponding domain certificate).
At runtime, it is then possible to automatically detect and
verify a device’s membership in a decentralized manner (i.e.
by validating the signatures of a known sub-tree). Second, as
a side-effect of using certificates, it is possible to generate
a unique, cryptographically strong device identifier (e.g. by
using the certificate’s fingerprint as device id).

Using the certificate hierarchies, we enable the user to
assign different levels of trust to one or more certificates. An
example for this is depicted in Figure 1. If the certificate repre-
sents an administrative domain, intuitively, the trust recursively
expands to all devices that it contains. For example, in Figure
1, by putting a particular level of trust in the certificate that
represents Jane Doe, the trust expands to all of Jane Doe’s
devices. In order to reduce the modelling effort, we order the
trust levels and assume transitivity such that a lower level
includes the higher levels. Consequently, the two extremes are
full trust and no trust. Between those two levels, we allow
an arbitrary number of additional levels with an application-
defined meaning. Additionally, applications can modify the
trust level of certificates based on their needs.

C. Security Rules

To secure the input data that is used during role assignment,
we extend the role specification by introducing a new class of
rules, security rules. Security rules enable the specification of
two types of security requirements. They allow the specifica-
tion of a minimum amount of trust that is required to consider
a data source during role assignment. This can be done either
directly by referencing devices or administration domains by
the means of their certificates. Alternatively, it is possible
to indirectly reference devices by requiring a particular trust
level. Second and in addition to trust, the security rules enable
the specification of a maximum age of data.

The security rules can then be assigned to filter and ref-
erence rules in a fine-granular manner. An example for the
resulting role specifications is depicted in Figure 2. The figure
shows three role specifications. The first one assigns a role

Role A to a device whose location is at Home A. The second
specification references Role A in the previous specification,
but in addition it requires that the role ought to be assigned
by a device that is classified as full trust. Consequently, this
role will only be applied to devices that are equipped with a
certificate that exhibits the trust level full trust. Note that due
to the trust model, this may apply to both, devices that have
been identified as such directly as well as devices that exhibit a
certificate whose signatures are rooted in a full trust certificate.
The third example specification defines Role B which is only
assigned to devices that are located at Home B. Using security
rules, the distribution of this role is restricted to devices whose
location has been observed by a device called HomeServer and
this observation has been made at most 60 minutes ago.

D. Enforcement

After having defined the trust model and the security
rules, the third step and final step is to ensure the security
enforcement during role assignment. Due to the fact that the
security rules can be added to both, filter rules and reference
rules, it is necessary to enable the enforcement for context as
well as roles. In the following, we briefly describe how the
enforcement can be realized for each type of data.

1) Context: To enable the enforcement with respect to con-
text we must be able to ensure the authenticity of the source.
Furthermore, we must be able to ensure the integrity of the
context and we must be able to determine its age. To do this,
we apply the generator, storage and validator principle that
we developed previously. For the sake of brevity, we briefly
discuss the problem mapping in the following and outline the
basic idea. The detailed protocol descriptions can be found in
[6]. For our application scenario, generators are mapped to
devices that gather context by means of their built-in sensors.
Storages are mapped to devices that store this context and
make it accessible for role assignment®. Validators are mapped
to devices that evaluate role specifications and perform the
role assignment. Using the update and validation protocols
described in [6], validators can verify the authenticity, integrity
and freshness of the context gathered by generators, even
if the storage device is malicious. To do this, the protocols
utilize cryptographic signatures as well as some additional
meta information that is attached to the context. Note that in
order to support resource-constrained devices, the protocols do
not require asymmetric cryptography on all devices. Instead,
they can also apply hash-based message authentication codes
as a light-weight replacement on resource-poor devices.

By applying this mapping, validators — that is devices
evaluating a role specification — can directly validate the
authenticity, integrity and freshness of the context supplied
by the (storage) devices which they test. They must compare
the requirements defined in the role specification with the
context’s meta information and they must validate the cryp-
tographic signatures. Due to the use of certificate hierarchies,
this might require the additional exchange of the certificate

3Note that generators and storages can be represented by the same device.

chain of the generator. Towards this end, the generator has
to be modified in such a way that it attaches the chain as
part of the update protocol — which transmits context from
the generator to the storage.

2) Roles: The role assignment process is described in detail
in [1], here we focus on the security requirements. To enforce
the security requirements with respect to roles, there are two
possible options. First, it is possible to apply the principles
applied to context analogously. To do this, assigned roles
must be extended with meta information by the source device
that assigns a role to a target device. Just like with context,
this meta information must include a time stamp, the source
and the target device identifiers as well as the certificate
chain of the source device. The result can then be protected
against manipulation using a cryptographic signature before
it is transferred to the target device. When a reference rule
is extended with a security rule, any device can then validate
the role assignment by the following process. If the security
role requires a certain freshness, the age of the assignment is
validated by checking the time stamp. Now, it is necessary
to validate whether the source device exhibits (at least) the
required trust level. So, the source identifier and the identifiers
contained in its certificate chain must be matched against the
certificates that exhibit (at least) the required trust level. If this
is the case, the signatures along the certificate chain as well as
the signature of the role need to be validated. As an alternative,
it is also possible to enforce the security requirements by
retrieving the role and the meta data directly from the source
device through a secure connection. This alleviates the need to
cryptographically sign the role. To establish such a connection,
it is possible to use the devices’ certificates to guarantee
authenticity and to generate a shared symmetric key which
can then be used to guarantee integrity as well as secrecy.

Both approaches have advantages and disadvantages. The
main advantage of the first possibility is that it does not
require a direct connection between the source device that
assigns a role and the device that aims at validating the role.
However, in order to support validation, it is either necessary
to use comparatively heavyweight asymmetric cryptography
or to have a shared symmetric key which must be distributed
somehow. For the former, the resulting overhead can be high,
especially if many roles must be validated or if roles need to be
validated periodically. In such cases, it is more efficient to opt
for a secure connection. The additional effort for connection
establishment can then be easily amortized over time. Since
both approaches can be beneficial, depending on their usage,
we propose to apply both of them on a case-by-case basis.

IV. IMPLEMENTATION

To validate our approach, we have extended the implemen-
tation of our basic role assignment system presented in [1]
with the security related concepts and mechanisms described
previously. Furthermore, we have used it to develop a number
of additional security critical middleware services. The result-
ing implementation is available as open source under BSD

> | Applications |
S T
5° Secure Secure Group Role-based
Q& Service Lookup Communication Access Control
> @ Assignment Secure Assignment
A Notification Algorithm
g2
3 S Role Specification Framework
= 0 Rules Rules
s st
orage &
g S Acquisition el
3 Provisioning
I Update and Validation
(1]
IS Device Discovery & Interaction Key Exchange
3 (:7.93) & Encryption

Fig. 3. Secure Role Assignment System Architecture

license*. In the following, we briefly describe the necessary
architectural changes. Thereafter, we outline the interaction of
the components. Finally, we describe a number of middleware
services that we have built on top of secure role assignment.

A. Architecture

As described in [1], for our original implementation of
generic role assignment, we used the BASE [7] middleware
to enable spontaneous interaction between devices. On top of
that, we implemented a context storage that stores arbitrary
context in the form of RDF triples that can be structured using
OWL ontologies. The storage makes the local context available
to other devices. A role assignment framework enables devel-
opers to define role specifications, which consist of Boolean
expressions of SPARQL queries (for filter rules) and references
to roles of other specifications (for reference rules). A generic
assignment service implements the algorithm to automatically
assign roles. Roles are assigned by executing queries and
resolving the references to other assignment services. When
the assignment changes, the devices that receive or loose a
role are notified. On top of that, middleware services and
applications may use the assignment to adapt their behavior.

In order to implement the concepts described in Section III,
we extend the basic architecture with a number of additional
components. The resulting architecture is depicted in Figure 3.
The previous components are marked in black whereas the new
components are shaded gray. At the communication layer, we
extend the architecture with two additional BASE plugins that
provide secure connections using symmetric cryptography (via
AES and HMAC) and enable different variants of the Diffie-
Hellman key exchange (i.e. DH and ECDH). To implement
the trust model and to manage pre-shared symmetric as well
as asymmetric keys and certificates (i.e. RSA and ECC), we

4Documentation and code are accessible via http://peces.googlecode.com.

add a key store component. Besides from managing pre-
deployed keys and certificates, the key store is also able to
cache symmetric keys (and verified certificate chains) that are
established (and verified) using the key exchange plug-ins.
Furthermore, we add a component that is capable of signing
and validating context information and roles using the update
and validation protocols described in [6]. To define security
requirements, we extend the role specification framework with
the security rules described in Section III-C.

B. Interaction

To clarify the architecture described previously, we provide
an overview of their interaction in the following. In order to
support secure role assignment, each device must be config-
ured with an asymmetric key pair as well as the chain of
certificates that define its membership in different domains.
Optionally, it may also be equipped with a number of pre-
shared keys. In addition, if a device wants to start secure role
assignments, it also needs to know the certificates of domains
that are trustworthy for the application. These can either be
specified directly as part of a role specification, or they can be
stored in the key store with their associated trust level - which
is then resolved at runtime. Intuitively, this trust configuration
does not have to be performed by the developer but could also
be done by an administrator or an advanced user.

Once a role specification is injected into the assignment
service, the algorithm first interprets the security requirements
of the specification. If a filter rule is associated with a security
rule, the query evaluation for the filter rule cannot be executed
on the context storage of the remote device — as the remote
device could easily send an arbitrary response. Instead, it
must be done locally on the device hosting the assignment
service and it should only be done using context from a
trustworthy source. In order to do that in an efficient manner,
the assignment service sends the query to the remote device.
Using the query, the context storage of the remote device
determines and transmits the subset of RDF triples that is
required to produce the query result. Once the triples are
received, the assignment service validates them as described
in Section III-D1. Thereafter, it locally executes the query
on the subset of triples that meet the security requirements.
Although, this approach requires a duplicate query execution
— on the remote device as well as on the device hosting the
assignment service — the filtering of RDF triples can often
significantly reduce the amount of communication, especially
in cases where devices store a lot of context.

If a reference rule is associated with a security rule, the
assignment service first determines the device responsible for
the assignment as described in [1]. Using the key store, it first
checks whether the two devices already share a symmetric
key. If this is not the case, the key exchange plug-in is used
to establish a symmetric key. Using either the cached or
the newly established key, the device then creates a secure
connection to the device. Using the secure connection, the
assignment service can then retrieve roles and validate meta
information directly.

Once the role assignment has been computed, the role as-
signment service distributes the roles by informing the neces-
sary devices through their notification component. Depending
on the usage of the roles, this may either entail the creation
of a signature — in cases where the role must be validated
without establishing a secure connection — or it may entail the
establishment of a secure connection to the receiving device.
As discussed next, from an efficiency perspective, either one
might be favorable depending on the use case.

C. Integration

Since roles are just generic tags, they can be used as a
basis to implement further adaptation support. In order to
test and validate our implementation, we have extended some
of the services described in [1] to enable their secure use.
Furthermore, we have developed additional security critical
middleware services on top of secure role assignment. In the
following, we briefly discuss their integration with the secure
role assignment system described above.

At first, we extended the role-based service registry as
well as the role-based group communication service described
in [1]. The group communication service implements group
communication using roles (i.e. similar to multicast) whereby
groups are identified by a particular role. To use this service in
a secure manner, we added optional encryption using a group
key. A developer can define security requirements on the group
by defining a role with security rules. The role assignment
system then automatically enforces them and ensures that only
appropriate devices will receive the role. Before the roles are
distributed, we first create a symmetric group key which we
then distribute together with the role. To avoid overhearing, the
role is transmitted to each device using a pair-wise encrypted
channel. If devices leave the group, the role is updated. Once a
role is received or updated, the new key is used for encryption.
This ensures that only group members are actually able to
participate in the communication.

The role-based service registry, uses a slightly different ap-
proach. Similar to the secure group communication service, the
role assignment can be secured by the application developer
using security rules. Instead of using a secure transfer, they are
signed by the assigning device. Thus, when a service search
is executed, the devices that should retrieve the search query
can be evaluated in a scalable, decentralized manner, without
requiring interaction with the device that assigned the roles.

Besides from these extensions, we also developed new
services such as the role-based access control service. Here, we
apply a similar approach as for the role-based service registry.
Instead of using asymmetric signatures, we use HMAC with a
symmetric key. The resulting interaction is depicted in Figure
4. To secure a service with role-based access control, the
developer first specifies roles that represent a client’s possible
access rights. To ensure that the roles are assigned properly,
the developer secures them with security rules.

When the service is started, the system injects the role
specification into an assignment algorithm — either on the local
device or a trustworthy device in the vicinity. To ensure that

. Access Control
Client
Manager

Inject Role Spec.

Call Service =—=Request Service

Role
Request Role =—t— > Failure

Request Role === Request Role

Request Context

Send Context
Send Role

Request Service, Role

Role
Return Result —t— 3 Success

Return Result =

Fig. 4. Role-based Access Control Example

the role specification is not altered, this is done via a secure
connection which will establish a key between the device
hosting the service and the device performing access control.
When a client attempts to access the service, the service first
determines whether the client request contains the necessary
role. If the request does not contain this role, the system
generates an exception which is returned to the client. The
exception notifies the client that the service requires a partic-
ular role that is assigned by a particular device responsible
for access control. In order to get this role, the client contacts
the access control manager and requests it. Then the access
control manager performs the normal sequence of secure role
assignment with this device. This involves sending the query
for filter rules, resolving references, validating signatures, etc.
Once this process has completed, the access control manager
signs the roles using HMAC and the symmetric key of the
device that hosts the service. Then it forwards the role to the
client. Thereafter, the client attaches the roles and repeats the
request. The service can then validate the role by validating the
HMAC using the key shared with the access control manager.
If the validation succeeds, the service is executed and the result
is returned. For subsequent calls, the client simply reattaches
the role to the request as long as it is fresh enough. Once
the role is expired, the procedure repeats from the beginning.
Although, this might look like a fairly complicated procedure,
our implementation of role-based access control hides most of
the details in automatically generated stubs and skeletons. The
only interactions that are visible to the client developer are the
initial call and the failure handling in cases where a service
call fails due to a lack of privileges. Similarly, using the trust
model, the skeleton can hide the selection of a device that is
suitable to perform access control. With the exception of the
definition of a role specification and the API calls to validate
the roles, secure role assignment is completely transparent.

V. EVALUATION

To evaluate our secure role assignment system and the
associated services, we have used it in the PECES European
research project to develop several prototype applications
for various scenarios including traffic management and e-

health. In the following, we briefly describe our experiences
from implementing these applications and relate them to the
design goals of creating a configurable and secure abstraction.
Thereafter, we present a number of experiments that show the
resulting overhead and we discuss the results in relation to the
design goal of creating a light-weight abstraction.

A. Experiences

In most practical applications, ensuring security is a manda-
tory requirement. As an example consider the following ex-
cerpt from our traffic management application: The traffic
management application automatically prepares trips on behalf
of the user. When a user enters his car, his smart phone
automatically extracts the destination from the user’s calendar
and uses it to configure the navigation system. The navigation
system and the user’s smart phone apply role assignment to
limit the access to the user’s personal data and service. If
applicable, the phone automatically pays road tolls and it is
also able to reserve parking lots. To do this, the phone deter-
mines a suitable parking lot using the secure service registry.
This ensures that only trustworthy parking lots are used. When
reserving a toll road or a parking lot, the phone transmits the
car’s license plate which is then used for automated billing.
While the car is on the road, the user may subscribe to
the latest commercial traffic announcements which are then
distributed to all subscribed cars using group communication.
Preventing illegitimate access, the data provider uses secure
role-based group communication which ensures that only
paying customers are able to receive the traffic announcements.

As an example on how to involve security rules here,
consider the access limitation to the user’s personal data. The
limitation consists of a role that allows access and checks the
following rules: A filter rule Device is allowed access and a
security rule Context issued by a fully trusted device. This role
specification is then injected into the user’s smart phone and
the access control is managed as pictured in Fig. 4.

Although, the traffic management scenario is fairly compli-
cated and exhibits a number of different entities with varying
security goals, secure role assignment provides the basis for
realizing all of them. The same holds true for the e-health
application as it automatically manages the flow of medical
data between patients, nurses and doctors. Clearly, as role
assignment is just a basic abstraction for automatic adaptation,
the application of role assignment requires the provisioning of
additional services on top of it. The fact that we were able to
implement a range of security critical middleware services on
top of it can be seen as an indicator for fulfilling the design
goals of having a flexibly configurable and secure abstraction.

B. Experiments

During the development of the applications in PECES, we
have used the secure role assignment system on a broad variety
of devices. This includes both, resource-rich devices such as
traditional servers, laptops and tablets as well as resource-
constrained systems such as phones, wifi routers (running

6000 ——No Security

5000 Cached Key, Filter Rule
" —#—Cached Key, Filter & Security Rule
£ 4000 | —e—Key Exchange, Filter Rule [—
£
. 3000
©

/‘

K}
a 2000 /
1000 -

Number of Devices

Fig. 5. Secure Role Assignment Delay

OpenWRT) and sensor nodes (i.e. SunSPOT). During the de-
velopment and testing, we found that the resulting application
performance was not impacted in a dramatical way. However,
in order to experimentally determine the overheads of adding
security to generic role assignment, we performed a number
of laboratory measurements in which we systematically enable
or disable various security features.

For the experiments, we used a Lenovo T61 laptop (Intel
T5670 1.8 GHz Dual-Core CPU, 3 GB RAM) running Win-
dows 7 and the Oracle Java JRE 1.7 to perform all secure role
assignments. The laptop is connected to a varying number of
HTC Tattoo devices (Qualcomm MSM7225 528 MHz CPU,
256MB RAM) that are running Android 1.6. On each device,
an individual 160-bit ECC certificate is pre-deployed. The
security provided by 160-bit ECC is at least as high as 1024-
bit RSA, a standard that is widely used in the Internet. For
the wireless connection, we used a dedicated IEEE 802.11g
network which was created by a Netgear WNR3500L. All
measurements show the average delay of 100 repetitions.

As a baseline (No Security), we measured the total delay of
assigning a single role to a varying number of HTC Tattoos.
The resulting delay is depicted in Figure 5. The time shown is
the total time that passes between starting a role specification
on the laptop until all devices have received the role. For
5 HTC Tattoo devices, the total time stays well below 1.6
seconds. The second (Cached Key, Filter Rule) and third cases
(Cached Key, Filter Security Rule), show the overhead for
role assignment if the resulting roles shall be transmitted
securely to their receivers but the key to establish a secure
connection has been cached already. As can be seen from
the measurements, the additional encryption (128-Bit AES)
adds a small overhead to the overall process. This overhead
is increased by the addition of a filter rule, as this requires
the additional validation of an (asymmetric) signature on the
laptop. With at most 2.3 seconds for role assignment with 5
devices the total overhead remains low. The last measurement
(Key Exchange, Filter Rule) is identical to the second case, but
in addition, it requires the exchange of a key using ECDH. As
depicted in Figure 5, the key exchange drastically increases
the overhead to 5.8 seconds for 5 devices due to the high
computational effort for ECDH. However, due to the fact that
the key store can cache the resulting symmetric key between

different interaction, this overhead is only experienced once.
With an approximate overhead of less than 1 second per device
for the key exchange, we are argue that role assignment is
light-weight and can be applied in many scenarios.

VI. RELATED WORK

Many pervasive middleware systems make extensive use of
context or role assignment, but often security mechanisms are
not considered, implemented or marked as future work. Some-
times, the security mechanisms are described as important for
the future work [8] or security is only mentioned without
providing any further details about the implementation [9].
Focusing more on privacy-awareness, Ni et al. [10] describe
an extensive framework to model role-based access control. It
allows to assign roles based on hierarchical and conditional
constraints, similar to our approach. However, they are not
considering how roles or context are being secured if they are
exchanged over an insecure communication channel.

In our previous work [6], we described an approach for a
peer-based secure context distribution framework. The frame-
work secures context gathered from heterogeneous devices
with built-in sensors. The devices communicate on a peer-
to-peer basis, they are not connected to or rely on any
kind of infrastructure. We used this work as a basis for the
secure role assignment system presented here. In contrast to
the secure context distribution framework, which distributes
context actively, our system provides support for active and
re-active role assignment. Additionally, the role assignment
system enables automatic key exchanges and therefore se-
cure communication based on symmetric cryptography for a
resource-efficient communication, which is not covered by [6].

Many approaches for security systems in the pervasive
computing domain introduce a central server responsible for
security. This contradicts our view of an environment which
consists of decentralized applications and services. Therefore,
a centralized approach for security is not suitable. Although we
support re-active secure role assignment with the possibility
to externalize secure role assignment to another device in the
environment, there is no central security service. This stands in
contrast to GAIA [11] or Vigil [12] which use central services
or agents. Similarly to our approach, Vigil uses certificates for
devices in the environment. Their environments (SmartSpaces)
each consist of a Service Manager that announces public ser-
vices and is used by devices to register with the environment.
All Service Managers are organized in a tree-structure and
have trust relationships established with each other. Similarly,
each SmartSpace has a Security Agent that is responsible for
the secure service access in the environment. Our approach
does not need central authorities or devices, instead, every
device can validate certificates, roles and context on behalf
of another device, if they have previously agreed on working
together. GAIA uses central servers for access control and
for data storage. All data is stored (encrypted) on a central
server that verifies certain requirements (e.g. context), before
the data can be accessed by a device. Using our security
system, the data is stored on each device individually, also the

access to services can be controlled by the device executing
the service itself. This results in a decentralized environment
where central authorities are not needed.

Our description of trust in devices is, in contrast to Lagesse
et al. [2], not reputation-based. Also, trust values are stored
on each device individually and, beside the certificate tree-
structure, there is no trust group formed. Reputation-based
systems [3], [4] can be misused by attackers. If attackers use
a device that behaves well until it reaches a high reputation
level, it is possible to modify the trust relationships to their
needs. A certificate hierarchies avoids these kind of attacks,
because a valid certificate is needed before trusted interactions
are possible. Nevertheless, a modification of our trust model
could add reputation-based trust to the currently implemented
certificate-based trust model. Another approach to model trust
relationships is shown by Takabi et al. [13]. Here, fuzzy
relation equations are used to describe the trust in users. Roles
can require a particular trust level, before they are assigned.
In our system, the secure role assignment may have additional
constraints about the context’s source and freshness, but not
about the trust in the role’s target devices. This enhances the
seamless transition between environments. Consider a device
which is currently located in a remote environment. It may
still access services there, if it possesses the necessary context.
Instead of adding a different parameter (i.e. trust) to roles, we
allow trust constraints to be modeled with regard to context.

The key exchange component that we provide in our secure
role assignment system, could be extended with different ap-
proaches. In SPATE [14], small groups of users can exchange
a common secret (like a key) by comparing hash codes (T-
Flags). This enables SPATE to be independent of a certificate
hierarchy at additional costs, i.e. all users have to recognize
and compare images and all devices need a display showing
the image. Additionally, SPATE has a more complicated setup
which requires the devices to scan a bar-code before the key
exchange process starts (requiring a built-in camera on each
device). Although currently not supported, this approach could
be modified and used to extend our key exchange mechanism.
Mathur et al. [15] describes a key exchange protocol that
retrieves a shared key from RF signals. To obtain a key, it is
necessary to put the pairing devices into physical proximity.
According to the authors, the protocol is resistant to attackers
that are more than 6.2 cm away (at 2.4 GHz). The protocol
could be used to establish a pre-shared key between devices
replacing our current key exchange. Nevertheless, this is only
successful if devices are in direct vicinity. Our approach there-
fore uses a different key exchange to enable the interaction
between devices that are located at different places.

VII. CONCLUSION

In many application scenarios, adaptation decisions can have
critical security implications. If the adaptation decisions are
automated using generic role assignment, the role assignment
must be secured. Here, we presented secure role assignment as
a secure extension to generic role assignment and we described
a prototypical implementation of a secure role assignment.

Using this implementation, we showed that the system can
provide configurable and secure support to enable the use of
generic role assignment in security critical applications. As
indicated by our measurements, given a suitable combination
of cryptographic methods, the resulting system is light-weight
enough to be applicable to a broad range of devices. In
the future, we plan on extending our secure role assignment
system to support supplemental models of trust. Specifically,
we focus on extending our trust model with a reputation-based
system to add more flexibility to trust-based decisions.

ACKNOWLEDGMENTS

This work has been partially supported by CONET (Coop-
erating Objects Network of Excellence), PECES (PErvasive
Computing in Embedded Systems) and GAMBAS (Generic
Adaptive Middleware for Behavior-driven Autonomous Ser-
vices), all funded by the European Commission under FP7
with contract numbers FP7-2007-2-224053, FP7-224342-1CT-
2007-2 and FP7-2011-7-287661.

REFERENCES

[1] W. Apolinarski, M. Handte, and P. Marron, “Supporting environment
configuration with generic role assignment,” in Intelligent Environments
(IE), 2011 7th International Conference on, july 2011, pp. 1 -8.

[2] B. Lagesse, M. Kumar, J. M. Paluska, and M. Wright, “Dtt: A distributed
trust toolkit for pervasive systems,” in Proc. of the 2009 IEEE Int. Conf.
on Perv. Comp. and Communications. 1EEE Computer Society, 2009.

[3] K. Krukow, M. Nielsen, and V. Sassone, “A framework for concrete
reputation-systems with applications to history-based access control,” in
Proc. of the 12th ACM conf. on Comp. and com. security, ser. CCS *05.
New York: ACM, 2005.

[4] G. D. M. Serugendo, “Trust as an interaction mechanism for self-
organising systems,” in Int. Conf. on Complex Systems (ICCS), 2004.

[5] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk,
“Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile,” RFC 5280, IETF, May 2008.

[6] W. Apolinarski, M. Handte, and P. J. Marrén, “A secure context
distribution framework for peer-based pervasive systems,” in PerWare
Workshop at the S8th Annual IEEE PerCom, March 2010.

[71 M. Handte, C. Becker, and G. Schiele, “Experiences - extensibility and
minimalism in BASE,” in Workshop on Sys. Support for Ubi. Comp.
(UbiSys) at Ubicomp, 2003.

[8] H. Schmidt, F. Flerlage, and F. Hauck, “A generic context service for
ubiquitous environments,” in IEEE Int. Conf. on Pervasive Computing
and Communications, 2009.

[9] S. Kang, J. Lee, H. Jang, H. Lee, Y. Lee, S. Park, T. Park, and J. Song,
“Seemon: scalable and energy-efficient context monitoring framework
for sensor-rich mobile environments,” in Proc. of the 6th int. conf. on
Mobile sys, app., and services, ser. MobiSys *08. ACM, 2008.

[10] Q. Ni, E. Bertino, J. Lobo, C. Brodie, C.-M. Karat, J. Karat, and
A. Trombeta, “Privacy-aware role-based access control,” ACM Trans.
Inf. Syst. Secur., 2010.

[11] J. Al-Muhtadi, R. Hill, R. Campbell, and M. Mickunas, “Context and
location-aware encryption for pervasive computing environments,” in 4th
Annual IEEE Int. Conf. on Perv. Comp. and Com. Workshops, 2006.

[12] L. Kagal, J. Undercoffer, F. Perich, A. Joshi, and T. Finin, “A secu-
rity architecture based on trust management for pervasive computing
systems.” in G. Hopper Celebration of Women in Com., October 2002.

[13] H. Takabi, M. Amini, and R. Jalili, “Trust-based user-role assignment
in role-based access control,” in IEEE/ACS Int. Conf. on Com. Sys. and
Applications (AICCSA °07), 2007.

[14] Y.-H. Lin, A. Studer, H.-C. Hsiao, J. M. McCune et al., “Spate: small-
group pki-less authenticated trust establishment,” in Proc. of the 7th int.
conf. on Mobile sys., app., and services, ser. MobiSys 09. ACM, 2009.

[15] S. Mathur, R. Miller, A. Varshavsky, W. Trappe, and N. Mandayam,
“Proximate: proximity-based secure pairing using ambient wireless
signals,” in Proc. of the 9th int. conf. on Mobile sys., app., and services,
ser. MobiSys "11. ACM, 2011.

