Enabling Energy-Efficient Context Recognition with Configuration Folding

Muhammad Umer Igbal, Marcus Handte, Stephan Wagner, Wolfgang Apolinarski, Pedro José Marrén
Networked Embedded Systems
Universitaet Duisburg-Essen
Duisburg, Germany
{umer.igbal|marcus.handte|stephan.j.wagner|wolfgang.apolinarski|pjmarron’} @uni-due.de

Abstract—Existing context recognition applications for per-
sonal mobile devices are usually fine-tuned to recognize the
set of characteristics required to support a particular user
task. Outside of a laboratory environment, however, users are
often involved in multiple tasks at a time which requires the
simultaneous execution of several applications. Yet, due to
the energy constraints of most personal mobile devices this
approach is inherently limited in scale. In this paper, we show
how this problem can be avoided by applying a component-
based approach to application development and execution.
We present a component system that enables developers to
build individual applications in isolation without compromising
runtime efficiency. When applications are executed simultane-
ously, the component system applies a novel technique called
configuration folding to automatically remove redundancies.
Our experimental evaluation of configuration folding shows
that it can save up to 48 percent of energy when applied to
a music and a speech detection application, thus, amortizing
energy costs after a few seconds of execution.

Keywords-Context recognition, energy efficiency, component
system

I. INTRODUCTION

Personal mobile devices such as smart phones, tablets and
laptops have become major platforms for context recognition
applications. They have lead researchers and practitioners to
develop a number of recognition applications for different
domains such as physical activity recognition [1], traffic
monitoring [2], social networking [3], healthcare [4], etc.
Such applications are usually fine-tuned to recognize the set
of context characteristics required for a particular user task.
A road monitoring application such as [2], for example,
may be fine-tuned to support the recognition of potholes
or honking cars to detect a crowded intersection. A social
networking application, on the other hand, such as [3] may
be able to classify music to generate status updates.

Outside of a laboratory environment, however, users are
often involved in multiple tasks at a time [5] which re-
quires the simultaneous execution of several applications.
As a simple example consider that when driving around,
a user might want to use both, the travel time as well
as the road monitoring application, while using the social
networking application to update the status with the music
playing on the radio. As a result, the applications have
to continuously sample and process acceleration data for
road monitoring and speed estimation as well as audio

data for music classification and honk detection. Yet, since
running multiple applications simultaneously increases the
energy requirements additively and due to the fact that
mobile devices are usually battery-powered, this approach
is inherently limited in scale.

In this paper, we show how this problem can often be
avoided when relying on a component-based approach to
develop context recognition applications. Thereby, we make
the following contributions. First, we present a component
system that enables developers to build recognition appli-
cations in isolation. Second, we show how the resulting
component structure can be exploited at runtime to reduce
energy requirements when executing several recognition
applications simultaneously. To do this, we introduce a
novel technique called configuration folding that detects
and removes redundancies. Third, we evaluate the overall
approach using two music and speech detection applications
that we have implemented based on the description given in
[6]. Our experimental evaluation shows that configuration
folding can save up to 48 percent of energy when applied
to the music and speech detection applications. Thereby, the
technique introduces energy costs that amortize after a few
seconds of executing the applications.

Our work builds upon existing applications, e.g., [3], [2],
in that it aims at minimizing their energy requirements.
However, instead of focusing on one concrete application,
configuration folding targets the simultaneous execution of
multiple. Consequently, it is related to frameworks such as
[71 or [8]. Yet, instead of focusing on specific types of
context information that are known at system design time,
configuration folding is open and generic in the sense that
it can be extended by application developers.

The remainder is structured as follows. In Section II,
we discuss the basic design rationale. In Section III, we
describe our component system. In Section IV we introduce
configuration folding to reduce the energy requirements
when running multiple context recognition applications. In
Section V, we evaluate the approach. We describe related
work in Section VI and conclude the paper in Section VIL.

II. DESIGN RATIONALE

When executing multiple recognition applications simul-
taneously, additive increases in energy requirements can

often be avoided. The reason for this is twofold. First,
applications often use overlapping sets of sensors which
operate on low duty cycles. Second, the signal processing
methods applied by them are often similar. Consequently,
it is possible to reduce the energy requirements by reusing
samples and avoiding duplicate computations. To do this, it
is necessary to identify identical samples and (intermediate)
results and to replace them with a single one.

Clearly, it is possible to exploit the overlapping sets of
sensors and duplicate computations by manually integrating
a targeted set of applications. However, such a manual
integration of context recognition applications would require
a significant development effort that increases fast with the
number of used recognition applications and thus, it should
be automated. As a first step towards such an automation,
it is necessary to detect duplicate sampling and processing
code which requires an analysis of the applications that
are supposed to be executed simultaneously. Intuitively,
the complexity of such an analysis depends on the degree
of structure applied to the application. If an arbitrarily
structured application shall be analyzed, the overall problem
is at least as complex as the detection of code clones [9].
Due to the associated computational effort, such an analysis
can only be done offline on a powerful device. Consequently,
to support the online analysis on a personal mobile device,
it is necessary to further structure the applications.

For this, we chose a component-based approach which
requires application developers to structure their applications
by composing a set of components. The reason for this
is threefold. First, there already exist rapid prototyping
toolkits such as [10] that validate the suitability of com-
ponent abstractions to develop context recognition applica-
tions. Second, given a repository of standard components, a
component-based approach can speed up application devel-
opment through reuse which also ensures the effectiveness
of duplicate removal'. Last but not least, given a suitable
connector model, the components that constitute an applica-
tion can easily be manipulated at runtime.

To avoid restrictions, we apply the component structure
only to the parts of the application that deal with the actual
recognition. Other parts such as user interfaces, networking
logic, etc. can be structured arbitrarily. Consequently, our
approach introduces a clear separation between the recogni-
tion of context characteristics and their further use.

III. COMPONENT SYSTEM

The fundamental building blocks of the resulting com-
ponent system are depicted in Figure 1. Each context
recognition application consists of two parts, namely the
part containing the recognition logic and the part containing
the remaining application logic. The part that contains the

'Open source projects such as Eclipse or TinyOS demonstrate that this
approach can lead to a number of (de-facto) standard components.

Further Application Logic
Add and remove Signal changes
(1) configurations In context

i Delta Configuration I (4) |
E Activator e omponen
o

t

Classification
7 . 7 Adap
Configuration Store components,

parameters, fomponent

(2) ﬁ Run ﬁflding] and wiring Preprocessing
algorithm Configuration Store’ ” I
Configuration Folding Update Component
Algorithm (3) configuration Sampling

Component Manager Recognition Logic

Figure 1. Component System

recognition logic consists of a set of components that is com-
posed according to a configuration. The part that contains
the remaining application logic can be structured arbitrarily.
Upon start up, a context recognition application passes the
required configuration to the component manager which then
takes care of executing the recognition logic in an energy-
efficient manner. Upon shut down, the context recognition
application removes its configuration from the component
manager which will eventually release the components that
are no longer required. As long as the recognition logic is
running, the recognized context is signalled.

A. Component Model

To structure the recognition logic, our component system
realises a lightweight component model which introduces
three abstractions.

Components represent recognition logic at a developer-
defined level of granularity, similar to other systems such
as J2EE or OSGi. Yet, in contrast, they can be instanti-
ated multiple times and they are parametrizable to support
different application requirements. As indicated in Figure
2, at the sampling layer, these parameters might be used,
for example, to express different sampling rates, depths,
frame sizes or duty cycles. At the preprocessing layer, they
might be used to configure different filters or the precision
of a transformation. Due to the parameters, the component
model is more flexible than other models which simplifies
reuse but, at the same time, it also prevents a straight-
forward multiplexing of components. Besides parameters,
all components exhibit a simple life cycle that consists
of a started and a stopped state. To interact with other
components, a component may declare a set of typed input
and output ports that can be connected using connectors.

Connectors are used to represent both, the data- as well as
the control-flow between individual components. To avoid
frequent instantiations of events that are passed between
ports, connectors automate their management. From a high-
level perspective, the resulting model is similar to PCOM
[11]. Yet since PCOM is targeted at the automatic config-
uration of distributed applications, it uses stub objects to

| Further Application Logic |
Application

. Spectral
[Bandwidth][Rolloff

Low Energy Zero Crossing
Frame Rate Rate

Spectral
Entropy

Prec.: 1024 terms

Preprocessing

Rate: 8000 Hz
Depth: 16 bit
Record: 2000 ms
Cycle: 10000 ms

Audio Source

Sampling

Accelerometer

| Microphone | Gyroscope

Figure 2. Componentized Speech Recognition Logic

mediate component interaction and it performs search to
determine a suitable configurations. To avoid this overhead,
we realize connectors through a lightweight observer pattern
[12] and we introduce configurations to define a composition
that recognizes one or more context characteristics.

Within its configuration, each recognition application
explicitly lists all required components together with the
associated wiring and parametrization. Since ports are used
to model both, the data as well as the control flow, a
wiring always represents a directed acyclic graph (DAG)
in order to guarantee termination. To define configurations,
we introduce a simple XML format. Although, XML is
a rather verbose format, it is widely used and can be
manipulated easily. However, during load time the XML is
transferred into a more efficient graph representation so that
the overhead for parsing and validation occurs only once.

B. Component Manager

The component manager controls the execution of the
componentized recognition logic of all running applications.
To manipulate the components executed at any point in time,
the component manager provides an API that enables devel-
opers to add and remove configurations at runtime. When
a new configuration is added (Figure 1 (1)), the component
manager first stores the configuration internally. Thereafter,
it initiates a reconfiguration of the running recognition logic
that reflects the modified set of required configurations. To
reduce the energy requirements, however, the component
manager does not directly start the components contained
in the configuration. Instead, it uses the set of active
configurations as an input into our configuration folding
algorithm (Figure 1 (2)). Using the set of configurations, the
configuration folding algorithm computes a single, folded
configuration that produces all results required by all running
applications without duplicate sampling or computation.

Once the configuration has been folded, the component
manager forwards it to the delta configuration activator
(Figure 1 (3)). By comparing the running and the folded
configuration, the activator determines and executes the
set of life cycle and connection management operations
(starting, stopping and rewiring of components) that must
be applied to the running configuration in order to transform
it into the folded target configuration. When executing the
different operations (Figure 1 (4)), the delta activator takes
care of ensuring that their ordering adheres to the guarantees
provided by the component life cycle. To do this, it stops
existing components before their are manipulated.

Since configuration folding cannot be reversed easily,
the component manager performs a similar procedure once
a configuration shall be removed. First, it removes the
configuration from the internal storage (Figure 1 (1)), then
it performs configuration folding (Figure 1 (2), (3)) and
finally, it activates it (Figure 1 (4)). Although, we could
avoid this procedure in some cases by caching several
previously folded configurations, we decided to use this
simple procedure instead. The reason for this is that caching
is only useful in cases where the removals are made in the
inverse order of the additions.

C. Implementation

To validate the proposed abstractions, we have imple-
mented them in Java. In addition, we implemented a number
of wrappers that simplify the usage of the component
system on different platforms including Linux, Windows
and Android. On top of the system, we have developed a
variety of components which we used as a toolkit to build
several applications. This includes sensor components (e.g.
for accelerometers, microphones, GPS, wifi and Bluetooth
scanning), preprocessors (e.g. average, percentile, variance,
entropy, etc.), filters (e.g. finite response filters), transforma-
tions (e.g. FFT) among others.

IV. CONFIGURATION FOLDING

To execute multiple applications efficiently, the compo-
nent manager applies configuration folding. The goal is to re-
move components that perform redundant sampling or com-
pute redundant results. In the following, we first discuss how
such components can be identified in general. Thereafter,
we present an algorithm that can fold two configurations
that exhibit only identically parametrized components in an
optimal manner. Finally, we discuss how we extended the
algorithm to fold different parametrizations.

A. Problem Formalization

Informally, we can define redundancy as follows. Given
two configurations, a set of components is redundant if
this set is contained in both configurations in such a way
that all identical components exhibit the same connections
and parametrizations and that each set does not depend

on the inputs of components that are not part of the set.
Based on this definition, the outputs generated by both sets
of components cannot differ. To justify this consider that
components at the sampling level do not require inputs
from other components. Consequently, if two configurations
contain the same sampling component with an identical
parametrization, it is possible to remove one of the two
components by reconnecting the components that require its
output to the other component. If the components require
inputs, however, it is also necessary to ensure that the inputs
are identical to ensure that their outputs cannot differ.

To model the configuration details, we introduce a func-
tion F(vertex) — (impl, params) that maps each vertex
to its associated implementation and parametrization. Given
two configurations G; = {Vi,E;} with F; and Gs
{Va, E2} with F», where V and E represent set of vertices
(components & parameters) and set of edges (wirings) in
directed acyclic graphs, we can define redundancy as a
subset S C V; and an associated mapping R : s — v with
s € S,v € V, subject to the following conditions: First,
we ensure that the redundant wiring is identical, i.e. has the
same edges.

1
2
3
4
5
6
7
8

O

10
11
12
13
14
15
16
17
18
19
20

Vs1,82 € S (s1,82) € By < (R(s1),R(s2)) € B2 (1)

Second, we ensure that redundant vertices represent the same
components with the same parametrization.

Vs €S : Fi(s) = Fa(R(s)))

Finally, we ensure that neither components in V; nor com-
ponents in Vs require non-redundant inputs.

VseS,veVi:(v,s) e By —veS 3)

VscSveVy: (v,R(s) € By = R 'v)eS @) gg

Given the condition 1 alone, the problem would corre- 43&?)

spond to finding a homomorphism in a sub graph of G1 and 41
G2 which is known to be NP complete. However, due to 45
equations (2), (3) and (4) as well as the DAG structure of 43

configurations, it is possible to find an efficient solution. 44
45
B. Basic Algorithm 46

Our configuration folding algorithm is based on the idea ig

that two components can only be redundant if they are on 49
the same level in the topological ordering of the two graphs. 50
If they are not on the same level, the component at the 51
higher level will be connected to at least one component gg
that was not present in the other configuration. Consequently, s,
in each step of the algorithm, we can restrict comparisons 55
between the graphs to the set of vertices at a particular level. 56
By traversing the graph in topological order, we can then 57
constructively ensure the conditions 1 and 2 by matching gg
the component descriptions and we can ensure condition 3

and 4 recursively by ensuring that all incoming edges are

60
61
originating in a redundant component. To do this efficiently,

62

we incrementally replace the incoming edges in the input
graphs with labels to their parent vertices in the folded graph.

Define Graph As // configuration

Vertices: Set<Vertex> // all components
Define Vertex As // component & wiring
Incoming: Set<Vertex> // connected inputs
Outgoing: Set<Vertex> // connected outputs
Labels Set<Vertex> // labels of inputs
Comp Component // component impl.
FoldGraphs (Graph G1, Graph G2): Graph

Graph Res = New Graph

// start on first level

Set<Vertex> Curl = GetRoots(Gl)
Set<Vertex> Cur2 = GetRoots(G2)

While (! (Curl.IsEmpty() & Cur2.IsEmpty()))
Set<Vertex> Nextl = New Set

Set<Vertex> Next2 = New Set

// create hash map for constant lookup
Map<Component, Vertex> M = New Map
Foreach (Vertex N2 In Cur2)

M. Put (N2.Comp, N2)

// handle vertices that can be folded
Foreach (Vertex NI In Curl)

Node N2 = M. Get(N1.Comp)

If (N2 != NULL && AllowsFolding (N1,N2))
Vertex N = AddVertex(Res, NI1.Comp)
Visit (N, N1, Nextl)

Visit (N, N2, Next2)

Curl . Remove (N1)

Cur2 . Remove (N2)

// handle vertices that cannot be folded
Foreach (Vertex NI In Curl)

Vertex N = AddVertex(Res, N1.Comp)
Visit (N, N1, Nextl)

Foreach (Vertex N2 In Cur2)

Vertex N = AddVertex(Res, N2.Comp)
Visit (N, N2, Next2)

// continue with next level
Curl = Nextl
Cur2 = Next2
Return Res
Visit (Vertex Nu, Vertex Ol, Set<Vertex> S)

// connect according to configuration
Foreach (Vertex N In OIl.Labels)
Nu.Incoming .Add(N)

N. Outgoing .Add (Nu)

// label edges and compute next level
Foreach (Vertex N In Ol.Outgoing)
N.Incoming .Remove(Ol) // mark parent done
N. Labels .Add(Nu) // memorize connection

If (N.Incoming.isEmpty())

S.Add(N) // no inc. —> parents done
AllowsFolding (Vertex N1, Vertex N2): Boolean
Return N1.Comp. Equals (N2.Comp) &

N1.Labels.Equals (N2. Labels)

AddVertex (Graph G, Component C):
Vertex Res = New Vertex[Comp=C]
G. Vertices .Add(Res)

Return Res

Vertex

GetRoots (Graph G): Set<Vertex>
Set<Vertex> Res = new Set

Foreach (Vertex N In G. Vertices)

If (N.Incoming.IsEmpty()) Res.Add(N)
Return Res

Listing 1. Configuration Folding Algorithm

As depicted in Listing 1, the folding algorithm, i.e., Fold-
Graphs, starts by determining the lowest level in each graph
using GetRoots. Then it checks whether two vertices on that
level are redundant. To allow constant time comparisons, the
vertices of one of the graphs is hashed by components (for
simplicity, we omit collision handling). When two vertices
represent identical components, AllowsFolding additionally
checks whether their incoming edges have been labeled
identically, i.e. whether they originate in the same set of
components — which enforces condition 2. On the lowest
level of the graph, this will always be the case since the
roots have no inputs. For consecutive levels, this will only
be the case for redundant components — which enforces
the conditions 3 and 4 recursively. If redundant compo-
nents have been identified, a new vertex is created using
AddVertex. Then, the new vertex is connected according to
the configuration using Visit. Thereby, the visit method will
add labels to all vertices that are connected to the vertex
that is about to be folded. Furthermore, to speed up the
traversal, Visit also determines the vertices on the next level
of the graph. This is done by removing incoming edges in
the outgoing vertices and testing for emptiness. Note that
this simply reflects topological traversal as described in [13].
Once all possible vertices have been folded, the remaining
vertices are handled by creating new vertices and adjusting
the connections while computing the vertices on the next
level in Visit. Thereafter, the algorithm switches to the next
level in both graphs, which has been gathered already. After
handling all levels, the algorithm returns the folded graph.

To analyze the algorithm’s complexity, one must con-
sider that the algorithm simply traverses both graphs in
topological order. Thereby, each vertex and each edge is
visited exactly once. Due to the fact that the comparisons
between the vertices on each level are performed in constant
time using hashing, the overall complexity of topological
sorting is not increased. Consequently, the complexity of
the algorithm is O(ny + my + no + mo) where n; and m;
represent the number of vertices and edges in the graphs
which results in O(n} +n3) since there are at most n? edges.

C. Extended Algorithm

While the above algorithm can be applied to any con-
figuration, in principle, the fact that it only folds com-
ponents with identical parametrization can be suboptimal,
in practice. The reason for this is that parameters are
often used to configure sensor resolutions or precisions
during computations. Consequently, it is possible to define
lightweight transformations that can be used to derive the

Classifier
Broadcaster

Music
Classifier
[Bandwidth][

Low Energy
Frame Rate

Further Application Logic

Spectral
Flux

Spectral
Rolloff

FastFourier
Transform

Spectral
Entropy

. . Short To
| Microphone [Audlo Source Double
Figure 3. Componentized Music Recognition Logic

result computed with a particular parametrization from a
result with another parametrization. As an example consider
that an 8bit audio sample can easily be derived from a
16bit sample. As a result, it is often beneficial to use
transformations instead of performing duplicate sampling or
processing. However, without further knowledge such cases
cannot be identified automatically. To gather this knowledge,
the component system makes use of typed parameters. The
parameter types allow the component developer to specify
a transformation for each type (if one exists). Besides from
providing a component to perform the transformation, the
developer also specifies which parametrization shall be set
(e.g. higher or lower). Furthermore, if a component supports
multiple parameters, the developer also specifies an ordering.

Using this, it is possible to extend the basic algorithm
shown in Listing 1 as follows. First, we replace the Boolean
AllowsFolding function with a tristate variant which returns
the third state in cases where the components differ only
in parametrization and all parameters can be transformed.
If this state is returned to FoldGraphs, the algorithm first
computes the parameter value to set at the component. Next,
it identifies the graph that can be connected directly to the
component and it runs the Visit procedure for it. Thereafter,
the algorithm introduces the chain of transformations into
the graph and sets the associated parameters. Finally, the
algorithm connects the second graph by running Visit using
the vertex representing the last transformation.

D. Example Applications

To create a set of applications, we implemented the speech
and the music recognition logic using the set of audio
features described in [6]. We used RapidMiner [14] to train
a classifier for speech and music recognition using several
hours of recorded audio data. Thereby, we increased the
frame size of recordings to two second long periods which
enabled us to achieve a 90 percent precision using a decision
tree classifier. The resulting set of used features are shown
in Figure 2 for speech and in Figure 3 for music.

As depicted in these figures, both classifiers use a varying
set of frequency as well as time domain features. As a result,
the componentized recognition logic contains a number of
identically configured components (marked in grey). The

identical components include the actual sampling component
(audio source), a conversion component (short to double),
the frequency domain transformation (FFT) as well as fea-
tures from the time domain (i.e. the low energy frame rate)
and the frequency domain (i.e. bandwidth, spectral rolloff,
spectral entropy). Besides that, each logic also contains
components to compute unique features that are not relevant
to the other application (i.e. zero crossing rate, spectral flux).
Together, this provides an indication for the optimization
potential of configuration folding.

V. EVALUATION

To evaluate the effectiveness of configuration folding, we
performed a detailed experimental analysis of the speech and
music recognition applications introduced earlier. As target
platform for our experiments, we used an HTC Tattoo which
is a low-end smart phone (Qualcomm MSM7225 processor
running at 528MHz, 512MB ROM, 256MB RAM) running
the Android operating systems in version 1.6. In order to
perform precise power measurements, we rely on a setup
that closely follows the one described in [15].

Using this setup, we profiled four different software
configurations that are depicted in Figure 4. In order to
improve the readability, the figure shows the average power
in W aggregated over periods of 100 ms. As a baseline for
the power requirements, we measured the power required
by the device when the display is running and the screen
brightness is on its lowest setting (idle) which resulted in an
average power drain of 103 mW. In addition, we individually
profiled the music and the speech recognition applications
when running on the device in isolation and we profiled the
folded configuration (folded) that combined both, the music
and the speech recognition applications. Thereby, we use
identical parametrizations for all components to allow the
most effective configuration folding that is possible.

0,80 -~
e |dle
0,70 SO
[= Music
0,60 - .
N £ Speech
= 0,50 B P
o
< S = Folded
E 0,40 + A IS
% 0,30 ‘ Audio Recording)%
& 0.20 - | Audio Hardware Audio Hardware
4 ‘\‘ (Applicatjon) (Opera‘ing System)
0,10 + ﬂ Ai\lﬂ\ ﬂ\x VAAANAAANA
VVVVY "V v " \A A Al v y
Display I
0,00 T T T T T T T T T T T T 1
Q © © © © © © © © © © ©
S © © © © © © © © © O
n O n 9 n O n O n 9O un
N N N m Mnm T T 1 N

Figure 4. Decomposed Power Usage

Figure 4 shows one processing cycle for each of the
tested software configurations over a period of 6 seconds.

Using micro benchmarks that we created by stripping out
parts of the applications, we decomposed their power profile
by averaging over the relevant periods as follows. Since
the device’s display is continuously configured to the low-
est brightness setting during all measurements, there is a
constant power drain of 103 mW. When the recognition
applications begin with their task, this power drain increases
by 285 mW for a period of 2 seconds. This can be attributed
to the fact that all recognition applications initially perform
audio recording. The 285 mW can be further divided into
219 mW which are required to power the audio hardware
and 66 mW which are required for the analogue to digital
conversion and the buffering of samples. After the recording
is done, all applications begin with the processing which
results in an average power drain of 527 mW for the time the
computations are performed. However, while decomposing
the profiles we found that only 308 mW are actually due to
the processor running at full speed. The remaining 219 mW
can be attributed to the fact that the HTC Tattoo does not
deactivate the audio hardware immediately after recording.
Instead, once it is no longer required, it will remain powered
on for an additional 3 seconds. Using additional experiments,
we found that these 3 seconds are not dependent on the
recording time but they appear to be a constant coded into
the resource management code of the operating system.

Given these power measurements, we can easily approxi-
mate the overall energy requirements for each recognition
cycle by determining the computation times required for
the individual applications. To do this, we measured the
processing times of 100 recognition cycles which resulted
in an average processing time of 1002 ms for music
recognition, 1023 ms for speech recognition and 1220 ms
for the folded configuration. For all measurements, the
standard deviation was well below 10 percent but there
were systematic deviations which we attribute primarily to
garbage collection that introduces around 100 ms of delay
per collection. Note that these timings already show that
for an identically parametrized music and speech recogni-
tion application, configuration folding saves 40 percent of
processing.

To compute the actual energy savings between running the
unfolded configurations simultaneously as well as running
the folded configuration, however, it is important to con-
sider that the power profile also contains components that
cannot be added directly. Thus, in order to get generalizable
results it is necessary to consider the interleaving of the
music and the speech recognition application at runtime.
The resulting extremes are depicted in Figure 5. All other
possibilities for execution lie between them. In the best
case (most energy efficient), both applications are starting
their cycles at the exact same instance of time. This means
that they share the cost for enabling the audio hardware as
well as the analogue digital conversion during recording.
We can compute the energy requirements in this case as

= > >
] 3 o £ 2 || < £
T S 3 2 5 S G
Qe S a u I o v

S S Y S v Y
= O N] s qQ 9
® 3 I} o Y} w9
s g 3 I « I
Sa

| Audio Hardware " Audio Hardware

Speech
Processing

Folded Case

Recording
Folded
Processing

Recording |
Music
Processing

Best Case
(parallel)

Audio Hardware

Audio Hardware

Figure 5. Analytical Energy Model

55+ 0.219W + 25 - 0.066W + 2.025s - 0.308W = 1.851J

In the worst case, both applications are running sequen-
tially which results in an energy usage of 10s - 0.219W +
4s - 0.066W + 2.025s - 0.308W = 3.078J. In contrast
to this, a single cycle of running the folded configuration
results requires on average 5s - 0.219W + 2s - 0.066W +
1.2205-0.308W = 1.603.J of energy. Thus, the actual energy
savings will always range between 13 and 48 percent. If we
assume that context recognition applications usually have a
low duty cycle in order to conserve resources, we can expect
the savings to be closer to 48 than 13 percent.

To determine the effect of the configuration folding algo-
rithm, we performed a similar set of measurements on the
algorithm itself. This resulted in an average power usage
of 448 mW for 1739 ms which results in 0.78 J for one
run. From this effort, 865 ms and 724 ms can be attributed
to XML loading and parsing as well as validation and
graph transformation, respectively. The remaining 150 ms
are required to execute the folding algorithm. Thus, the
major overheads will only be experienced once. However,
even when including these overheads, given the potential
energy savings of 0.248 J or 1.475 J per cycle, the 0.78 J
required by the algorithm are amortized after 1 to 3 cycles.

To determine the effect of parameters, we retrained the
music classifier with a FFT that uses 4096 points instead
of the initial 8192. We measured the average computation
time of a folded configuration that used a transformation
to handle the different parametrizations and we compared
it with one that uses two fast Fourier components (one for
music and one for speech). When compared to running two
components, the introduction of the parameter transforma-
tion reduced the processing time by 630 ms which results in
a saving of 0.630s-0.308W = 0.194.J per cycle. At the same
time, the usage of a more complicated folding algorithm,
increased its execution time by 63 ms when compared
to a simpler version that treats deviating parametrizations
as non-matching components. Consequently, the additional
0.063s - 0.448W = 0.028J of energy can be amortized
within the first cycle. Thus, avoiding duplicate computations

using transformations is always beneficial in this example.

VI. RELATED WORK

There exist a number of context recognition applications
for mobile devices, e.g. [3], [2], [6], [16]. Due to the
energy-constraints of these devices, these applications apply
a variety of techniques to save energy. [3], for example,
relies on a low duty cycle to reduce the amount of sampling
and processing. Furthermore, it applies data compression
during network transmissions. [2] uses triggered sensing,
in which sensors with high energy requirements are only
enabled once an event has been detected by less energy-
consuming ones. [6] extends the idea of triggered sensing
to processing by introducing an admission control to avoid
computations on samples that cannot contain an event due
to low entropy. When compared with configuration folding,
such techniques exhibit two main differences. First, they
are focused on enabling the energy-efficient execution of
a single known application. Thus, their usage is a necessary
premise for energy efficient recognition but the optimizations
are orthogonal to configuration folding which targets at
efficiently executing several unknown applications (each
of which should already be able to efficiently recognize
the context). Second, in contrast to configuration folding
which is fully automated, the usage of such techniques
requires a significant amount of application knowledge, e.g.
to determine optimal duty cycles or to define a set of triggers.

Consequently, configuration folding is more closely re-
lated to approaches like [16] that allow multiple location-
based applications to efficiently localize a phone using GPS
or WiFi. [16] has presented four broad design principles to
perform energy efficient location sensing. From a high-level
perspective, configuration folding can be though of as an
implementation of the piggybacking principle (which aims
at satisfying location requests from different applications
with a single computation). However, in comparison with
the implementation detailed in [16], configuration folding is
more generic since is not restricted to localization but can
be applied to arbitrary context characteristics.

There are also some generic approaches that specifically
focus on energy efficiency. [17], [18] are frameworks that
generalize the idea of triggered event detection. The recog-
nition is thereby split into a set of smaller tasks that are
ordered hierarchically and executed sequentially. Due to
the sequential execution it is often possible to save energy
since only parts of the hierarchy must be evaluated. As
discussed previously, the applicability of such approaches is
application-specific and thus, they require additional appli-
cation knowledge in order to be applied. In contrast to this,
configuration folding is fully automated and in principle, it is
orthogonal to such optimizations. Similar to our component
system, [8] reduces the energy requirements of several
applications by minimizing the amount of sampling and
processing. It introduces an application-overarching system

that enables developers to specify conditions over context
in which they are interested. Based on the conditions, the
system then determines the minimum amount of sensors
and computations required and only executes those. A key
difference between this and our approach is that [8] is closed
— meaning it supports a fixed set of characteristics that can
be detected. The component system presented in this paper
is open as applications are free to implement arbitrary logic
by providing components to recognize the desired context.

VII. CONCLUSION

Existing context recognition applications focus on support
for a particular user task. To support parallel tasks, it is
necessary to run multiple applications simultaneously. In
this paper, we have shown how the simultaneous execution
of multiple applications can be supported in an energy-
efficient manner by applying a component-based approach
to application development. Using configuration folding,
our component system is able to automatically detect and
remove redundancies in applications that have been devel-
oped in isolation. Our experimental evaluation shows that
configuration folding can significantly reduce the energy re-
quirements in cases where applications are built from similar
sets of components. Furthermore, it indicates that the energy
overhead of configuration folding is quickly amortized by
the possible savings. Currently, we are investigating how
the energy savings can be further increased by modifying
parametrizations in a controlled but automatic manner.

ACKNOWLEDGEMENTS

This work has been partially supported by LIV-
ING++ funded by the BMWi under contract number
KF2095019FRO as well as CONET and GAMBAS, both
funded by the European Commission under FP7 with con-
tract numbers FP7-2007-2-224053 and FP7-2011-7-287661,
respectively.

REFERENCES

[1] J. Lester, T. Choudhury, and G. Borriello, “A practical
approach to recognizing physical activities,” in Pervasive
Computing, ser. Lecture Notes in Computer Science, vol.
3968. Springer, 2006, pp. 1-16.

[2] P. Mohan, V. N. Padmanabhan, and R. Ramjee, “Nericell:
rich monitoring of road and traffic conditions using mobile
smartphones,” in 6th ACM conf. on Embedded network sensor
systems, 2008.

[3] E. Miluzzo, N. D. Lane, S. B. Eisenman, and A. T. Campbell,
“Cenceme: injecting sensing presence into social networking
applications,” in 2nd European conf. on Smart sensing and
context, 2007.

[4] J. E. Bardram, “Applications of context-aware computing
in hospital work: examples and design principles,” in ACM
symposium on Applied computing, 2004.

[5] T. Gu, Z. Wu, X. Tao, H. K. Pung, and J. Lu, “epsicar: An
emerging patterns based approach to sequential, interleaved
and concurrent activity recognition,” in IEEE Intl. Conf.
on Pervasive Computing and Communications, 2009., march
2009, pp. 1 -9.

[6] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T.
Campbell, “Soundsense: scalable sound sensing for people-
centric applications on mobile phones,” in 7th intl. conf. on
Mobile systems, applications, and services, 2009.

[7] J. Kukkonen, E. Lagerspetz, P. Nurmi, and M. Andersson,
“Betelgeuse: A platform for gathering and processing situ-
ational data,” IEEE Pervasive Computing, vol. 8, no. 2, pp.
49-56, 2009.

[8] S. Kang, J. Lee, H. Jang, H. Lee, Y. Lee, S. Park, T. Park,
and J. Song, “Seemon: scalable and energy-efficient context
monitoring framework for sensor-rich mobile environments,”
in Intl. conf. on Mobile systems, applications, and services,
2008.

[9] A. Marcus and J. 1. Maletic, “Identification of high-level
concept clones in source code,” in 16th IEEE intl. conf. on
Automated software engineering, 2001.

[10] D. Bannach, P. Lukowicz, and O. Amft, “Rapid prototyping
of activity recognition applications,” Pervasive Computing,
IEEE, 2008.

[11] C. Becker, M. Handte, G. Schiele, and K. Rothermel, “Pcom -
a component system for pervasive computing,” in /EEE Conf.
on Pervasive Computing and Communications, 2004.

[12] R. J. J. V. Erich Gamma, Richard Helm, “Design patterns.
elements of reusable object-oriented software, publisher:
Addison-wesley.”

[13] A. B. Kahn, “Topological sorting of large networks,” Com-
mun. ACM, vol. 5, pp. 558-562, November 1962.

[14] 1. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and
T. Euler, “Yale: rapid prototyping for complex data mining
tasks,” in ACM intl. conf. on Knowledge discovery and data
mining, 2006.

[15] A. Rice and S. Hay, “Decomposing power measurements
for mobile devices, 2010,” in IEEE intl. conf. on Pervasive
Computing and Communications, 2010.

[16] Z. Zhuang, K.-H. Kim, and J. P. Singh, “Improving energy
efficiency of location sensing on smartphones,” in 8th intl.
conf. on Mobile systems, applications, and services. 2010.

[17] A.Y. Benbasat and J. A. Paradiso, “A framework for the auto-
mated generation of power-efficient classifiers for embedded
sensor nodes,” in Intl. conf. on Embedded networked sensor
systems, 2007.

[18] Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong,
B. Krishnamachari, and N. Sadeh, “A framework of energy
efficient mobile sensing for automatic user state recognition,”
in Intl. conf. on Mobile systems, applications, and services,
2009.

