
Configuration Folding: An Energy Efficient Technique for Context Recognition

Muhammad Umer Iqbal, Marcus Handte, Stephan Wagner, Wolfgang Apolinarski, Pedro José Marrón
Networked Embedded Systems
Universitaet Duisburg-Essen

Duisburg, Germany
{umer.iqbal|marcus.handte|stephan.j.wagner|wolfgang.apolinarski|pjmarron}@uni-due.de

Abstract—This demonstration presents configuration folding,
a novel technique which enables the energy efficient execution
of multiple context recognition applications on a personal
mobile device. Configuration folding achieves energy efficiency
by identifying and removing the redundant functionalities
in different context recognition applications at runtime. The
demonstration shows the effectiveness of configuration folding.
To do this, we have implemented two non-trivial sound-based
context recognition applications that are able to detect speech
and music. During the demonstration, we will execute these
applications with folded and unfolded configurations and we
will show how the resulting energy gains can be measured.
Furthermore, we present how similar applications can be built
by means of composition.

Keywords-Context recognition, energy efficiency, component
system.

I. INTRODUCTION

In recent years, personal mobile devices like smart phones
have evolved as a major context recognition platform. A
number of applications have been developed by the research
community targeting different domains including physical
activities [1], social networking [2], health care [3], etc. The
growing number of such applications implies that users are
often involved in executing different sets of them simulta-
neously resulting in a considerable energy usage.

A closer analysis of context recognition applications
shows that they often use similar signal processing and
data mining techniques. For example, researchers have built
a number of applications that detect physical activities
using accelerometers. If two such applications recognize,
for example, falls and stair climbing, it is highly likely
that similar - if not identical - sampling and preprocessing
functions are implemented as part of each of them. If both
applications are executed simultaneously on the same device,
this results in duplicate computation which, in turn, leads to
an unnecessarily high increase in energy usage.

The increased energy utilization stemming from dupli-
cate application functionality can be reduced by manually
integrating the different context recognition applications.
However, on the one hand, the required overhead for such
a manual integration increases fast with the number of
target applications. On the other hand, manual integration
requires internal knowledge about the applications and thus,
it prevents isolated application development. Consequently,

Further Application Logic Further Application Logic

Recognition Logic

Sampling

Preprocessing

Classification

Component Manager

Configuration Store

Configuration Store

C
o

n
fi

g.

C
o

n
fi

g.

C
o

n
fi

g.

Configuration Folding
Algorithm

Fo
ld

e
d

C

o
n

fi
g.

Delta Configuration
Activator

Component

Further Application Logic

Component

Component

Add and remove
configurations

Signal changes
in context

Adapt
components,
parameters,
and wiring

Update
configuration

Figure 1. Component System

this approach is not only tedious but also inherently limited
in scale.

The basic idea behind configuration folding is to avoid this
problem by introducing a component structure that facilitates
runtime analysis of context recognition applications. By
exploiting the component structure, configuration folding
can automatically detect and remove redundant application
functionality at runtime. To do this, configuration folding
rewires the component configuration of each executed appli-
cation in such a way that samples and (intermediate) results
are shared among them.

II. APPROACH

In the following, we briefly outline the overall approach
taken by configuration folding. A more detailed technical
description of the approach and an experimental evaluation
can be found in [4]. In addition to that, more details on the
underlying system can be found at [5].

A. Component System

In order to enable the runtime analysis of arbitrary con-
text recognition applications, we have developed a minimal
component system for personal mobile devices. As depicted
in Figure 1, the component system introduces a separation
between the context recognition logic and further application
logic such as user interfaces or networking in order to
avoid restrictions on the latter. The main building blocks
of the recognition logic realized by the component system

are components, connectors and configurations. Components
represent atomic and reusable functions implemented at
developer defined granularity. However, usually each appli-
cation functionality is implemented as a single component,
e.g. filtering, FFT, windowing, etc. Connectors are used to
model the interaction between components in terms of data
and control flow. Thus, they implicitly define the execution
order. Configurations represent a description of the context
recognition logic of a particular application. Consequently,
they consist of a description of the components required by
the application as well as the associated connections between
them.

B. Configuration folding

Configuration folding analyses the application’s structure
by means of its configuration. It identifies redundant com-
ponents that are present in different applications and derives
a folded configuration. The folded configuration contains
components and connectors that jointly realize the function-
ality of the input applications without having redundancies.
As depicted in Figure 1, this single folded configuration is
then used by the component system to execute all of them.
Finding redundancy between components does not merely
consist of finding out the exact components in different
configurations but it also involves ensuring that set of input
components are also identical.

III. DEMONSTRATION

In summary, the demonstration consists of three main
building blocks. First, we demonstrate two sound-based
context recognition applications that are executed on mobile
phones. Second, we demonstrate how such applications can
be built using the component system. Third, we demonstrate
configuration folding and we show how its effectiveness can
be determined.

A. Example Applications

To analyse the effectiveness of configuration folding,
we have implemented two non-trivial context recognition
applications for music and speech detection based on the
descriptions given in [6]. During the demonstration, we
present both applications. The recognition logic imple-
mented by each of them is depicted Figure 2(a) and Figure
2(b), respectively. Both applications require a number of
components. At the lowest layer, they require a sampling
component to capture data from a microphone. On top of
that, there are various preprocessors that compute features in
both, the time as well as the frequency domain. Examples
for the former are the low energy frame rate or the zero
crossing rate. Examples for the latter are the spectral entropy
or the spectral rolloff. Finally, on top of that there are
specialized classifier components that determine the sound
class based on the underlying features. As indicated by the
grey color, both applications share a number of redundant

(a) Componentized Speech Recognition Logic

(b) Componentized Music Recognition Logic

Figure 2. Application Example

components. This can be exploited to reduce the energy
usage. However, as they are performing different tasks, they
also exhibit components that are specific to each application.
Consequently, none of the applications would be able to
replace the other one.

B. Component System

To show how similar applications can be built using the
component system, we demonstrate application development
using a set of Eclipse-based tools. The tools enable the com-
position of new applications by wiring and parametrizing
different components. By adapting the parametrization of
different components and by modifying the wiring of an ap-

plication, it is possible to fine-tune or modify the application
behavior without implementing additional program logic.
Using the source code of the example applications described
previously, we demonstrate the benefits and limitations of
application development using the system.

C. Configuration Folding

To demonstrate configuration folding, we apply it on
the two applications described previously. Furthermore, we
show how to measure the improvements in energy usage.
To do this, we use a number of mobile phones that are
running Android. On one phone, we execute speech de-
tection application and on the second, we execute music
detection application. On another phone, we execute the
resulting folded configuration which combines the other two
applications in an energy-efficient manner.

In order to measure and visualize the actual energy
consumptions, we have developed a energy measurement
setup based on the descriptions given in [7]. As shown
in Figure 3(a), we connect the mobile phone battery to
a high speed data logger. The resulting setup measures
the instantaneous current and voltage readings when the
applications are running as depicted in Figure 3(b).

As described in [4], a detailed analysis of the presented
applications shows that configuration folding can save up to
48 percent of energy. The reason for this is twofold. First,
due to the configuration folding, there are no redundant
computations. Second, due to the joint sampling for both
applications, the sensors exhibit lower duty cycles in typical
application scenarios.

ACKNOWLEDGEMENTS

This work has been partially supported by LIV-
ING++ funded by the BMWi under contract number
KF2095019FR0 as well as CONET and GAMBAS, both
funded by the European Commission under FP7 with con-
tract numbers FP7-2007-2-224053 and FP7-2011-7-287661,
respectively.

REFERENCES

[1] J. Lester, T. Choudhury, and G. Borriello, “A practical ap-
proach to recognizing physical activities,” in 4th International
Conference on Pervasive Computing, 2006, pp. 1–16.

[2] E. Miluzzo, N. D. Lane, S. B. Eisenman, and A. T. Campbell,
“Cenceme: injecting sensing presence into social networking
applications,” in Proceedings of EuroSSC’07, ser. EuroSSC’07.
Berlin, Heidelberg: Springer-Verlag, 2007, pp. 1–28.

[3] J. E. Bardram, “Applications of context-aware computing in
hospital work: examples and design principles,” in 2004 ACM
symposium on Applied Computing, ser. SAC ’04, 2004.

[4] U. Iqbal, M. Handte, S. Wagner, W. Apolinarski, and P. J.
Marron, “Enabling energy-efficient context recognition with
configuration folding,” in IEEE International Conference on
Pervasive Computing and Communications, Lugano, Switzer-
land, 2012.

Battery Pack

Smart
Phone

Data Logger

Measurement
Resistor

Current Voltage

(a) Power Measurement Setup

(b) Power Measurement Application

Figure 3. Power Measurements

[5] Networked Embedded Systems Group, University of Duisburg-
Essen, “Narf adaptive recognition recognition framework
homepage,” 2012. [Online]. Available: http://www.narf.mobi

[6] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T. Camp-
bell, “Soundsense: scalable sound sensing for people-centric
applications on mobile phones,” in Proceedings of MobiSys
’09, ser. MobiSys ’09. New York, NY, USA: ACM, 2009,
pp. 165–178.

[7] A. Rice and S. Hay, “Decomposing power measurements
for mobile devices,” in IEEE International Conference on
Pervasive Computing and Communications, 29 2010-april 2
2010, pp. 70 –78.

