
iScreen: A Toolkit for Interactive Screens

Marcus Handte, Stephan Wagner, Wolfgang Apolinarski, Pedro Jose Marron
Networked Embedded Systems Group
University of Duisburg-Essen, Germany

{marcus.handte|stephan.j.wagner|wolfgang.apolinarski|pjmarron}@uni-due.de

ABSTRACT
With the advent of touch-centric operating systems such as
iOS and Android, an ever-increasing number of mobile de-
vices are equipped with touch screens. Several integrated
computer systems extend this trend to traditional comput-
ers and they provide a cost-efficient hardware platform for
a pervasive deployment of interactive displays in a variety
of environments. However, to be useful for a particular ap-
plication scenario, their software needs to be customized.
Without further support, this customization can be a time-
consuming and costly undertaking which may ultimately
limit their applicability. To mitigate this, we have devel-
oped the iScreen software toolkit that aims at minimizing
the development effort by providing a set of reusable build-
ing blocks for interactive applications. In this paper, we
present the toolkit’s architecture and we describe a num-
ber of components that we have implemented on top of it.
To validate our work, we present four example applications
some of which we have been using on a day-to-day basis over
the last two years.

Categories and Subject Descriptors
H.4.2 [Information Systems Applications]: Communi-
cations Applications—Bulletin Boards; D.2.13 [Software
Engineering]: Reusable Software—Reusable libraries

General Terms
Design, Experimentation, Management

Keywords
Pervasive Computing, Interactive Displays, Prototyping

1. INTRODUCTION
With the advent of touch-centric operating systems such

as iOS and Android, an ever-increasing number of mobile
devices are equipped with screens that enable touch-based

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
PerDis 2012, June 4–5 2012, Porto, Portugal.
Copyright 2012 ACM 978-1-4503-1414-5/12/06 ...$10.00.

interaction. Lately, the enormous success of these systems
has not only changed mobile computing but it is increasingly
making its way back into traditional computing as well.

Integrated computer systems such as the Asus EEE Top
series or the HP Touchsmart series provide a cost-efficient
hardware platform for a pervasive deployment of interactive
displays in a variety of environments. Besides from provid-
ing touch screens, they are also equipped with processing
and storage capabilities as well as wireless networking which
simplifies deployment and maintenance. Furthermore, using
additional accessories, they can be attached to a wall easily.

Yet, to be useful for a particular application scenario, their
software needs to be customized. For a bulletin board ap-
plication, for example, the customization might entail the
design of a simple user interface to access the relevant infor-
mation as well as the development of the gluing code that
retrieves the information from a web page or a database.
Furthermore, in cases where the computer is mounted in a
public area, it might entail the development of additional
software to limit the device capabilities.

Without further support, the development of application-
specific customizations can be a time-consuming and costly
undertaking. In fact, in cases where only few computer sys-
tems are to be deployed, the cost resulting from application
development can often exceed the hardware and deployment
cost. Consequently, in order to increase the feasibility of
using touch-enabled computer systems as a low-cost appli-
cation development platform, it is necessary to reduce the
associated software development effort.

The iScreen software toolkit aims at minimizing the devel-
opment effort by providing a set of reusable building blocks
for touch-based, interactive applications. In this paper, we
present the overall architecture of the toolkit and we de-
scribe a number of components that we have implemented
on top of it. To validate our work, we present four example
applications some of which we have been using on a daily
basis over the last two years.

The remainder of this paper is structured as follows. Next,
we introduce the design goals for the toolkit. Thereafter, in
Section 3, we describe its architecture and implementation.
To evaluate the toolkit, we discuss a number of example
applications in Section 4. Finally, we discuss related work
in Section 5 and we conclude the paper in Section 6.

2. DESIGN GOALS
The design goals for the iScreen toolkit can be derived

directly from the goal of minimizing the effort for the de-
velopment of arbitrary interactive applications running on

Core

Main Window & Panels

Controls

Emitters

Renderers

Providers

Logging

Loading

M
ed

ia
ti

o
n

Settings

Define Layout Define Properties

2

3

4

5

1

Setup Components Load Core

Figure 1: iScreen Architecture

integrated touch-enabled computer systems. In summary,
we derive the following three goals:

• Genericity: The toolkit should enable the development
of arbitrary applications. Thereby, it should not re-
strict the application designer, e.g. by mandating a
particular screen layout or interaction sequence. In-
stead, the toolkit should simplify the development of
custom layouts as well as interaction sequences.

• Reusability: To ease development, the tookit should
support the development of reusable building blocks
for common application functionality. Thereby, the
reuse should be enabled in such a way that it does not
require additional programming effort.

• Extensibility: To support additional application do-
mains that may be emerging over time, the toolkit
should be extensible. For this, it must be easy to im-
plement additional functionality in such a way that it
can then be integrated into different applications.

3. ISCREEN TOOLKIT
In the following, we first provide an overview of the iS-

creen toolkit’s architecture. Thereafter, we discuss how the
individual components interact with each other at runtime.
Finally, we outline some implementation issues and we de-
scribe a number of generic application building blocks that
we implemented on top of it.

3.1 Architecture
The iScreen toolkit follows a component-based approach

to application development to achieve it’s design goals with
respect to reusability and extensiblity. Thereby, components
are providing reusable functionality that is orchestrated dur-
ing application development. As depicted in Figure 1, a
generic core is responsible for loading components and me-
diating their interactions. The core itself is loaded and ini-
tialized through a main class which defines the visual layout
of the application as well as basic application settings. As
hinted in Figure 1, the development of such a main class
can be simplified by using existing development tools such
as Visual Studio’s Form and Settings Designer.

In order to achieve generic composability, application com-
ponents are loosely coupled and they interact with each
other by emitting and consuming events. Similar to Intents1

1See http://dev.android.com/guide/topics/intents/intents-
filters.html for more details.

in the Android platform, events in iScreen can either target
a particular component (in a unicast fashion) – that may be
bound at runtime – or they can be announced to all compo-
nents (in a broadcast like fashion).

Components in iScreen may implement arbitrary applica-
tion functionality at a developer-defined level of granular-
ity. However, in order to simplify reuse, it is preferable to
rather implement fine-granular components. Depending on
the functionality implemented by a component, the toolkit
provides four separate extension points. Each is defined by
means of a component interface as well as a core interface.
The component interface defines the set of methods that
must be implemented by a component. The core interface
exposes a specific subset of the core functionality. To use
it, the core passes a handle implementing the core interface
to the component during load time. Similar to the model-
view-controller design pattern [4], the iScreen toolkit realizes
three extension points called renderer (i.e. view), provider
(i.e. model), control (i.e. controller). In addition, a forth
extension point – the so-called emitter – enables the recep-
tion of sensory inputs. For simplicity, a single component
may implement multiple extension points. In the following,
we briefly outline the idea behind each extension point:

• Renderer: A renderer component is capable of manag-
ing a particular type of user interface control on the
screen. If the renderer should be reusable in different
applications, the underlying model must not be hard
coded but instead it must be retrieved dynamically
through a provider component. As an example, con-
sider a renderer that is able of drawing and managing
a toolbar. Instead of knowing the icons that shall be
displayed, it should rather be able to support arbitrary
sets of icons in order to be customizable.

• Provider: A provider component is capable of provid-
ing a particular model to other components. Thereby,
it abstracts from the way how that model is generated.
A simple provider may just provide access to a hard
coded model. More complex providers may load them
from a web page or a file. To allow the reuse of provider
components, they may provide access to multiple mod-
els. To address a particular model, the iScreen toolkit
uses URIs. To support late binding, providers register
the supported URIs or URI patterns during load time.

• Emitter: An emitter generates events based on some
input. Depending on the type of emitter, the input can
either represent some touch event to a visual element
generated by a renderer or it can represent some sensor
input such as a picture taken by a camera.

• Control: A control component takes care of interpret-
ing the events that are generated by the other com-
ponents and executing appropriate actions. These ac-
tions may entail the activation of new renderers, the
removal of existing renderers, the reloading or manip-
ulation of models, etc. Control components can be or-
ganized hierarchically, such that a master control com-
ponent activates its children depending on the state of
the application. However, in contrast to other types
of components, controls are often application specific
and thus, they are hard to reuse.

3.2 Interaction
To clarify the interaction in an application, we briefly out-

line a typical scenario depicted in Figure 1. When the main
application starts up, it first initializes the core. Thereafter,
it registers the application settings as well as the panels con-
tained in the applications main form. When the core is
loading, it first initializes the log. Thereafter, it searches for
components by scanning a predefined folder for assemblies
that exhibit the associated extension points. During compo-
nent startup, the core issues typed handles to all components
which allow them to send and receive events or to initiate
other calls depending on the implemented extension points.
During component start up, the components may access the
application settings in order to retrieve their configuration.
Examples for settings may be the resource identifier of the
device’s webcam or the user name and password to be able
to send emails.

Once the core has loaded all components, it signals the
successful initialization by sending an event. In response,
the control component(s) will typically assign a renderer to
different layout panels defined by the main application or
they may start different emitters, e.g. in order to capture
pictures periodically using the device’s camera. If an emitter
detects an input, such as a person standing in front of the
screen or a person pressing a visual element displayed by a
renderer, it generates a corresponding event (c.f. Figure 1
(1)). This event is then received and processed by a control
(2). If the screen state needs to be modified, the control will
call the core to update a particular renderer on a panel with
an associated model provided by a provider (3). Once the
renderer receives the request, it fetches the model using the
specified provider (4) and updates the panel accordingly (5).

3.3 Implementation
To validate the architecture, we implemented it using the

.NET framework. The reason for choosing .NET was three-
fold. First, many integrated computer systems are shipped
with Windows which makes .NET a natural choice. Second,
using .NET it is simple to access all of the device’s periph-
erals and due to pinvoke it is straight-forward to access li-
braries written in other non-MSIL languages. Last but not
least, since .NET supports dynamic loading of assemblies, it
is possible to distribute components in binary format. This
not only speeds up compilation but also simplifies the distri-
bution of proprietary code. On top of the core, we developed
a number of components. Among others, they include:

• TouchKeyboard: The TouchKeyboard component im-
plements a customizable renderer and emitter that en-
ables a user to provide text input by typing on the
screen. By passing button sequences via a model, the
keyboard’s keys and layout can be adjusted, for exam-
ple, to support text or numbers.

• ImageButtonGrid: The ImageButtonGrid component
implements a renderer and emitter that shows an ar-
bitrary number of buttons that are organized in a grid
that adjusts to its panel size. By pressing a button,
the grid can emit a customizable event.

• RTFViewer: The RTFViewer implements a simple ren-
derer that can display a document in rich text format.
This can be used, for example, to display instructions
on how to use the application.

• HTMLBrowser: The HTMLBrowser wraps Internet
Explorer as a renderer and emitter. It can be cus-
tomized to show only a single web page or to allow
browsing. If browsing mode is enabled, it shows an
optional bar to specify addresses. A developer can
limit the addresses by providing a URL pattern.

• CalendarViewer: The CalendarViewer is an renderer
that enables a person to browse a particular Google
calendar via Google’s Data API. The calendar can be
customized to limit the visibility to public events to
protect the owner’s privacy.

• EmailComposer: The EmailComposer implements a
renderer and emitter that enables a person to send
an email to a particular (set of) address(es). Using a
keyboard input a user can type arbitrary text that is
sent once the user hits a send button.

• BluetoothScan: The BluetoothScan component imple-
ments an emitter that performs Bluetooth scans. This
can be used, for example, to determine the number of
persons that are located close to the device.

• CameraSnapshot: The CameraSnapshot component im-
plements an emitter that can take pictures using the
device’s built-in camera. The snapshots can then ei-
ther be stored or processed using further components.

• FaceDetector: The FaceDetector component implements
a control and emitter that consumes the events from
the CameraSnapshot component to detect faces in the
camera images. To do that, it uses a simple neural
network that is applied to different parts of the image
at different resolutions. The output of the component
is a set of rectangles which identify the regions with
faces.

• FolderTransfer: FolderTransfer is a simple control and
emitter component that can transfer a folder from and
to the device using Window’s built-in file sharing. This
allows the transfer of log information to another com-
puter and it enables the retrieval of new content for
the device.

• File-/DB-/WebProvider: This set of provider compo-
nents enable the retrieval of data from different sources.
To ease their reuse, it is possible to configure the base
URL for the file and web access or the DB connection
strings via application settings.

4. EVALUATION
To evaluate the iScreen toolkit, we used it to develop a

number of applications. In the following, we first present
some of them. Thereafter, we describe our experiences dur-
ing the application development as well as during day-to-day
use.

4.1 Applications
To validate the toolkit, we used it as an application devel-

opment platform in several student projects at the Univer-
sity of Bonn and Duisburg-Essen. In each of the projects,
we were targeting a different use case that seemed applica-
ble and useful in a university context. In the following, we
briefly describe four resulting applications.

(a) Calendar

(b) Email

Figure 2: iScreen Doorplate

• iScreen Doorplate: The first application implements
an interactive door plate. Similar to other smart door
plates [5, 12], the interactive door plate displays in-
formation about the person that inhabits a particu-
lar room. Due to the fact that many businesses are
already maintaining staff information on their home
page, the information about the person is retrieved
via the web. To do this, the HTMLBrowser compo-
nent is configured via an application setting to dis-
play the person’s homepage. In cases where a visitor
does not meet the person directly, it is often helpful to
know the schedule of the person in order to determine
whether it makes more sense to wait or to come back
another day. To enable this, the door plate displays the
person’s public appointments by means of the Calen-
darViewer (c.f. Figure 2(a)). Once the return time has
been planned, it might be beneficial to leave a notice.
To do this, the door plate enables the visitor to send
an email via the EmailComposer (c.f. Figure 2(b)).
To avoid fake emails, the recipient is hard coded via
an application setting. Furthermore, the send button
of the EmailComposer is only enabled once a face has
been detected using the FaceDetector and CameraS-
napshot components. The picture containing the face
is then attached to the email to identify the sender.

• iScreen Kiosk: The second application is a in-store
kiosk application that can be derived directly from the
interactive door plate. In order to show in-store infor-
mation, the HTMLBrowser can be reconfigured to dis-
play the associated web site and to allow browsing on
it. Furthermore, using the CalendarViewer it is then
possible to display special events. Finally, by redirect-

ing the EmailComposer to the customer service, it is
possible to facilitate customer feedback.

• iScreen Advertise: The third application implements
a scenario in which the device is used to display ad-
vertisements similar to [10]. Using the FolderTrans-
fer component, advertisements are loaded from a re-
mote server on a daily basis. The advertisements are
then shown using a configurable schedule that is down-
loaded together with the advertisements. In order to
capture statistics, the CameraSnapshot and FaceDe-
tector components are used to count the number of
viewers for each advertisement. In addition, the Blue-
toothScan component is used to capture the number
of persons in the surrounding of the display.

• iScreen Coffee: The last application serves as a touch-
based replacement for tick-lists that we previously used
to distribute softdrink and coffee cost among the mem-
bers of our research group. Using the ImageButton-
Grid component, iScreen coffee provides access to a
number of features that were previously realized us-
ing pen-and-paper. Using the RTFViewer component,
iScreen coffee can display a simplified manual for our
coffee machine including cleaning instructions that are
targeted at new employees. By hitting a booking but-
ton and selecting a particular account, a person can
book different types of drinks (c.f. Figure 3(a)). Using
the cost of the individual drinks as well as the person’s
consumption and payments, the application computes
the total balance. By hitting the payments button and
selecting a person, it is possible to add payments via
the TouchKeyboard component that is configured to
display only numbers (c.f. Figure 3(b)). Similarly, by
hitting the shopping button, it is possible to add ex-
penses which is used to compute the global balance of
our coffee fund. To save power, the display is deacti-
vated automatically after a short period and the Cam-
eraSnapshot and FaceDetector component are used to
automatically enable the display as soon as a person
is detected in front of it. Furthermore, to avoid data
loss, the FolderTransfer component is used to backup
the underlying database on a daily basis.

4.2 Experiences
During the development of the components and applica-

tions we found that most of the students had no problems in
understanding the basic architecture as well as the interac-
tion. Due to the clear separation of tasks introduced by the
different extension points of the core system, the emitter,
provider and renderer components were fairly easy to reuse.
This is also indicated by the fact that the four applications
presented previously share a set of common components.
For example, both the kiosk as well as the plate applica-
tion share an almost identical configuration. Similarly, the
CameraSnapshot as well as the FaceDetector components
are used in multiple applications. Thereby, they may either
serve as an unobtrusive way to collect usage statistics or – as
in the case of the coffee application – to enable the display
on demand.

However, the opposite argument can be made about the
control components. Since control components embody the
actual application logic, they are hard to reuse in differ-
ent settings. This is amplified by the fact that they tie to-

(a) Booking

(b) Payments

Figure 3: iScreen Coffee

gether the remaining components which results in a strong
coupling. Although, it is possible to organize control com-
ponents in a hierarchical fashion, we found that the lack
of support for this kind of organization in early versions of
the iScreen toolkit lead to implementations with large and
error-prone conditional statements. To mitigate this, we ex-
tended the framework with base classes for wizard-like con-
trol components to wrap particular interaction sequences.
This improved the code style by simplifying the development
of modular (sub) control components. In fact, it was even
possible to reuse the logic of some interaction sequences.

Although, we tested all applications for an extended time
period, only one of them – the iScreen coffee application –
has been successful in terms of long-term deployment. After
several weeks of testing, we deployed a dedicated device in
our coffee kitchen (c.f. Figure 4) to solely run the iScreen
coffee application. Over the last two years, the application
has been used by more than 20 people on a daily basis. Dur-
ing this time, the device has been running without interrup-
tion. Despite its low cost, we did not experience a single
day of downtime yet. Besides from the robustness of the
device and application, this is also partly due to the overall
architecture. Due to the fact that the device integrates all re-
quired processing and storage capabilities, it even remained
operational during times when our wireless network and our
(redundant) storage servers experienced critical failures.

With respect to usage we found that even less technically
versed users had no issues with learning the basic operation
of the application within a few minutes. We attribute this
partially to the fact that the actual functionality of the ap-

Figure 4: iScreen Coffee Installation

plication closely mimics the pen-and-paper based solution
and partially to the fact that the touch interface is straight-
forward. In fact, soon after having installed the application
in our kitchen, we forwarded the source code to another re-
search group which has been using it ever since. To meet
some special requirements, the group extended some of the
renderer components to show additional billing information.
Since these extension were implemented without additional
help or documentation provided by our group, this can be
seen as another indicator for the extensibility of the system.

Given these experiences with application development, we
argue that the iScreen toolkit meets its design goals with re-
spect to genericity – as indicated by the number of different
applications –, reusability – as indicated by the overlapping
components used in different applications – and extensibil-
ity – as indicated by the external extension of the iScreen
application. Furthermore, based on our experiences with
application usage, we are convinced that touch-enabled inte-
grated computer systems provide a cost-efficient and robust
platform for many interactive pervasive applications.

5. RELATED WORK
Existing research on pervasive displays and applications

can be broadly classified in work related to interaction meth-
ods and work related to system support. In the area of in-
teraction methods, researchers have developed and studied
a multitude of different approaches. This includes inter-
action through pens [2] or capacitive surfaces [8] which is
now common in commercially available displays or smart
boards. But it also includes interaction through cameras or
sensor devices which capture the location and gestures of
users in front of a large scale display that can be fixed [10]
or steerable [11]. More recently, a significant amount of this
research has focused on the use of mobile devices as a way of
interacting with the screen. Examples include [1] which uses
Bluetooth communication to share photos with a public dis-
play, [7] which proposes the use of visual codes shown on a
display to download further information onto the mobile de-
vice or [6] which describes approaches to use camera phones
as a mouse replacement. The work presented in this paper,
does not attempt to propose a novel interaction technique,
instead, we present a toolkit that simplifies the realization

of many common use cases proposed by others.
Research on system support can be further categorized

into management systems that aim at managing large scale
networks of displays and toolkits that aim at the develop-
ment of applications. Examples for the first include [12] and
[3]. These systems address issues resulting from the scale of
the deployments such as the proper addressing and identifi-
cation of devices, etc. Instead, our work addresses the devel-
opment of applications running on a single autonomous de-
vice. Consequently, our work is more closely related to toolk-
its such as [13] or [9] which are geared towards a simplified
development of display-based applications. However, while
these are focusing on multi-user interactions, the iScreen
toolkit is targeted at simplifying the development of single-
user applications by composing common building-blocks.

6. CONCLUSIONS
Touch-enabled integrated computer systems provide a cost-

efficient hardware platform for a pervasive deployment of
interactive displays in a variety of environments. However,
in order to be useful for a particular application scenario,
their software needs to be customized. In this paper, we
presented the iScreen software toolkit which minimizes the
customization effort by providing a number of reusable com-
ponents that can be composed depending on the application
requirements.

As indicated by our example applications, the iScreen
toolkit can reduce the development overhead without im-
posing significant restrictions on the application’s design or
functionality. Furthermore, as indicated by our experiences
with the iScreen coffee application, touch-based interactive
applications can provide an easy-to-use alternative to pen-
and-paper – even when used by non-expert users on a daily
basis.

At the present time, we are thinking about extending the
toolkit to support the coordinated cooperation between mul-
tiple screens. This will simplify the implementation of more
complex distributed applications such as follow-me adver-
tisements or navigation.

Acknowledgments
This work is partially supported by CONET funded by the
European Commission under FP7 with contract number FP7-
2007-2-224053 and by LIVING++ funded by the BMWi un-
der contract number KF2095019FR0.

We thank the participants of the iScreen student projects
at the University of Bonn and Duisburg-Essen for their com-
ponent implementations and their feedback on the toolkit’s
abstractions.

7. REFERENCES
[1] K. Cheverst, A. Dix, D. Fitton, C. Kray,

M. Rouncefield, C. Sas, G. Saslis-Lagoudakis, and
J. G. Sheridan. Exploring bluetooth based mobile
phone interaction with the hermes photo display. In
7th int. conf. on HCI with mobile devices & services,
MobileHCI ’05, pages 47–54, New York, USA, 2005.

[2] S. Elrod, R. Bruce, R. Gold, D. Goldberg, F. Halasz,
W. Janssen, D. Lee, K. McCall, E. Pedersen, K. Pier,
J. Tang, and B. Welch. Liveboard: a large interactive
display supporting group meetings, presentations, and
remote collaboration. In SIGCHI conference on

Human factors in computing systems, CHI ’92, pages
599–607, New York, NY, USA, 1992. ACM.

[3] A. Erbad, M. Blackstock, A. Friday, R. Lea, and
J. Al-Muhtadi. Magic broker: A middleware toolkit
for interactive public displays. In 6th IEEE Int. Conf.
on Pervasive Computing and Communications, pages
509 –514, march 2008.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design patterns. elements of reusable object-oriented
software, 1994.

[5] F. Hupfeld and M. Beigl. Spatially aware local
communication in the raum system. In 7th
International Workshop on Interactive Distributed
Multimedia Systems and Telecommunication Services,
IDMS ’00, pages 285–296, London, UK, 2000.
Springer-Verlag.

[6] S. Jeon, J. Hwang, G. Kim, and M. Billinghurst.
Interaction with large ubiquitous displays using
camera-equipped mobile phones. Personal and
Ubiquitous Computing, (2):83–94, 2009.

[7] K. Mitchell, N. J. P. Race, and M. Suggitt. icapture:
Facilitating spontaneous user-interaction with
pervasive displays using smart devices. In Workshop
on Pervasive Mobile Interaction Devices (PERMID)
at Pervasive, 2006.

[8] J. Rekimoto. Smartskin: an infrastructure for
freehand manipulation on interactive surfaces. In
SIGCHI conference on Human factors in computing
systems, CHI ’02, pages 113–120, New York, NY,
USA, 2002. ACM.

[9] C. Shen, F. D. Vernier, C. Forlines, and M. Ringel.
Diamondspin: an extensible toolkit for
around-the-table interaction. In SIGCHI conference on
Human factors in computing systems, CHI ’04, pages
167–174, New York, NY, USA, 2004. ACM.

[10] M. Strohbach and M. Martin. Toward a platform for
pervasive display applications in retail environments.
IEEE Pervasive Computing, 10(2):19 –27, feb. 2011.

[11] P. N. Sukaviriya, M. Podlaseck, R. Kjeldsen, A. Levas,
G. Pingali, and C. S. Pinhanez. Embedding
interactions in a retail store environment: The design
and lessons learned. In M. Rauterberg, M. Menozzi,
and J. Wesson, editors, IFIP International Conference
on Human-Computer Interaction. IOS Press, 2003.

[12] W. Trumler, J. Petzold, F. Bagci, and T. Ungerer.
Amun - autonomic middleware for ubiquitous
environments applied to the smart doorplate project.
In International Conference on Autonomic
Computing, pages 274 – 275, may 2004.

[13] E. Tse and S. Greenberg. Rapidly prototyping single
display groupware through the sdgtoolkit. In 5th
conference on Australasian user interface, volume 28
of AUIC ’04, pages 101–110, 2004.

