
3PC: System-support for Adaptive Peer-to-Peer
Pervasive Computing

MARCUS HANDTE

Universität Duisburg-Essen, Germany

GREGOR SCHIELE

Universität Mannheim, Germany

VERENA MATJUNTKE

Universität Mannheim, Germany

CHRISTIAN BECKER

Universität Mannheim, Germany

and

PEDRO JOSÉ MARRÓN

Universität Duisburg-Essen, Germany

A major characteristics of pervasive computing applications is their ability to adapt themselves
to changing execution environments and physical context. In this article, we analyze different
kinds of adaptations and introduce a multi-dimensional classification for them. On this basis, we
propose a novel approach for peer-to-peer-based pervasive computing that provides support for
the identified classes and integrates them in a multi-level architecture. We give a comprehensive
overview of this architecture and its current realization in the Peer-to-Peer Pervasive Computing
(3PC) project, discussing what adaptation is realized on each level, how the levels interact with
each other and how the overall system benefits from the integrated treatment of adaptation.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed
Systems; D.4.7 [Operating Systems]: Organization and Design; D.2.7 [Software Engineer-
ing]: Distribution and Maintenance

General Terms: Adaptation, Automation, Pervasive Computing, Peer-to-Peer

Additional Key Words and Phrases: Multi-level Adaptation, System Software

1. INTRODUCTION

As envisioned by Mark Weiser [Weiser 1991], the overall goal of pervasive com-
puting is to provide seamless and distraction-free support for the everyday tasks

Author’s addresses: M. Handte, P. J. Marrón, Networked Embedded Systems Group, Department
of Computer Science and Applied Cognitive Sciences, Universität Duisburg-Essen, Duisburg, Ger-
many, E-mail: first.last@uni-due.de; G.Schiele, V. Matjuntke, C. Becker, Information Systems II,
Department of Business Administration, Universität Mannheim, Mannheim, Germany, E-mail:
first.last@uni-mannheim.de.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2010 ACM 1529-3785/2010/0700-0001 $5.00

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. Y, 01 2010, Pages 1–20.

2 · M. Handte, G. Schiele, V. Matjuntke, C. Becker, P. J. Marrón

of users through computer technology. To achieve this goal, pervasive computing
foresees the integration of miniaturized computers into everyday objects. Using
wireless communication technology the devices can form networks spontaneously.
Through sensors, they are able to perceive their physical environment – i.e., their
context – and they can recognize user activities autonomously. This allows implicit
interactions between devices and users which can improve task support.

Pervasive computing introduces a new class of networked computer systems. Due
to integration, devices are highly heterogeneous, ranging from small, resource-poor
embedded systems to resource-rich general purpose computers. Due to the fact
that many everyday objects are mobile and use of short-range communication, the
overall system is highly dynamic. Finally, since the typical lifespan of an everyday
object exceeds the lifespan of a computer, pervasive systems evolve continuously.

Pervasive applications must address these characteristics to be available at any
time, any place. The main approach to do so is to adapt the application at runtime
to different devices, contexts, and environments. Usually, it is not feasible to push
the responsibility for adaptation to the user as this causes additional distraction.
As a consequence, the development of pervasive applications is often challenging,
since the application must adapt with little to no user interaction. System software
for pervasive computing can mitigate this by providing generic adaptation support.

In this article, we present a novel multi-level system software that supports adap-
tation in a modular yet efficient manner. This system software is developed in the
Peer-to-Peer Pervasive Computing (3PC) project since 2002 and comprises work un-
dertaken in a number of sub-projects since then. 3PC establishes dynamic device
groups, so-called smart peer groups, at runtime and allows executing distributed
adaptive applications on them. In contrast to other approaches, 3PC does not re-
quire any external infrastructure for this, e.g. in the form of a smart environment.
Instead, nearby devices directly discover and connect with each other.

3PC offers extensive support for different kinds of adaptation via a number of
subsystems. Previously, we presented each of these subsystems in detail. In this ar-
ticle, we concentrate on the architectural aspects, i.e. the subsystem structure itself.
We give a brief overview of each subsystem and describe how they jointly realize
comprehensive adaptation support. Thereby, we make the following contributions:

(1) We present a classification for adaptation support that can be used to identify
possible adaptation subsystems and to specify their responsibilities.

(2) We describe how the different subsystems of 3PC realize the various adaptations
at different levels to provide comprehensive support for automatic adaptation.

(3) We show that providing integrated system support for application adaptation
at different levels can greatly improve the overall efficiency of the system.

The remainder of this article is structured as follows. In the next section, we
introduce a classification for adaptation support in pervasive computing and outline
associated design considerations. In Section 3, we discuss adaptation support in
the 3PC infrastructure. In Section 4, we show that providing adaptation support
at various levels of the software stack can greatly improve the performance of an
adaptive system. In Section 5, we contrast the 3PC approach with related work on
the basis of the classification introduced in Section 2. In Section 6, we conclude the
article with a brief summary and a discussion of open challenges.
ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. Y, 01 2010.

System-support for Adaptive Peer-to-Peer Pervasive Computing · 3

2. ADAPTATION IN PERVASIVE COMPUTING

The dynamics and heterogeneity of pervasive systems as well as the fact that per-
vasive applications are usually distributed raises an inherent need for adaptation.
Clearly, adaptation can be reduced by minimizing the dependencies of an applica-
tion on its execution environment. In many cases, however, such a reduction leads
to a significant loss in quality. In fact, pervasive computing demands applications
that leverage the available devices thoroughly to achieve its goal.

Pervasive applications can be modeled as a set of application and system services
that are executed on multiple (potentially mobile) devices and interact with each
other using a set of networking services. Thus, adaptation can occur in different
ways. Moreover, it is possible to classify existing systems from different perspec-
tives. For example, from an algorithmic perspective, we may classify adaptation
according to synchronization requirements or convergence characteristics, etc.

In the following, we classify adaptation-support for pervasive applications from
an architectural perspective. The resulting dimensions are adaptation time, level,
control and technique as depicted in Figure 1. Next, we discuss each of them. A
comprehensive classification of existing systems along the dimensions is presented
in Section 5 and summarized in Figure 8.

2.1 Adaptation Time

The first dimension classifies adaptation regarding the point in time when an adap-
tation takes place. Here, we can differentiate proactive and reactive adaptation:

—Proactive: Proactive adaptation denotes modifications of an application per-
formed before an application can no longer be executed. Thus, it tries to avoid
application failures. To enable this kind of adaptation, the entity that controls
the adaptation process needs a priori knowledge about future system states, e.g.
by using a prediction heuristic.

—Reactive: Reactive adaptation denotes a modification to an application that
takes place at a point in time when the application can no longer be executed,
e.g. due to a lack of resources. As such, it fixes an application when it has already
experienced a condition that prevents execution. For this, the entity controlling
the adaptation needs to be able to detect failures whenever they occur.

From a user’s perspective, proactive adaptation is usually preferable over reactive
adaptation as it results in an uninterrupted execution. From a system developer’s
perspective, however, proactive adaptation is only possible with sufficiently accurate
predictions for future states of the system. Due the difficulty of developing such
predictions for complex systems that involve users, most existing systems including
3PC are focusing primarily on reactive adaptation.

2.2 Adaptation Level

The second dimension classifies adaptation with respect to the adaptation level, i.e.,
the level of the software stack at which adaptation takes place. Based on the system
model there are three possibilities that can occur either isolated or in combination.

—Network: The first possibility is to perform adaptation at the network level, i.e.
the level that connects multiple application and/or system parts with each other.

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. Y, 01 2010.

4 · M. Handte, G. Schiele, V. Matjuntke, C. Becker, P. J. Marrón

Adaptation

Time

Proactive

Reactive

Level

Network

System

Application

Control

Manual

Automatic

Technique

Behavior

Composition

Context

Fig. 1. Adaptation space in pervasive computing.

Examples for this are a handover between different communication technologies
or a dynamic modification of a compression factor during a transmission.

—System: The second possibility is adaptation at the system level which may adapt
basic services. As an example, a context service may migrate data dynamically
depending on the access pattern. Similarly, a discovery service might dynamically
cluster devices to reduce lookup latency.

—Application: The third possibility is to perform adaptation at the application
level by changing the composition of the application or by changing its behavior.
As an example, the user interface of an application might be switched from one
device to another.

Although it seems intuitive to handle changes solely at the lowest possible level, in
practice, pursuing this approach can be inefficient or even ineffective. For example,
instead of adapting to weak connectivity it can be beneficial to adapt an application
structurally. The opposite approach, i.e. pushing responsibility to the upper levels,
does not result in viable support either as it leads to coupled system structures that
are hard to debug and maintain. 3PC applies an intermediate solution where lower
levels provide generic mechanisms that can be fine-tuned by upper-level policies.

2.3 Adaptation Control

The third dimension classifies adaptation based on the control of the adaptation
process. The control can be classified into manual and automatic.

—Manual: Manual adaptation is performed by a human. Beyond supporting man-
ual modifications, the person that controls the adaptation must be supplied with
a mental model of the application. Furthermore, the person must be able to
perceive relevant properties to make proper adaptation decisions.

—Automatic: Automatic adaptation is performed by the application without user
intervention. For this, the application must possess the same type of informa-
tion that is required for manual adaptation. In addition, however, automatic
adaptation requires a mechanism that selects and executes the modifications.

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. Y, 01 2010.

System-support for Adaptive Peer-to-Peer Pervasive Computing · 5

The goal of providing distraction-free support for tasks, limit the applicability of
manual adaptation, but pushing the responsibility for adaptation into the applica-
tion complicates development. Selecting an action in response to a change requires
reasoning about effects on the execution environment. However, due to the con-
tinuous evolution of pervasive systems, it is hard to foresee all possible states and
effects at development time. Thus, this reasoning must be performed at runtime
which complicates testing. As mitigation, the responsibility for adaptation can be
pushed into the system software. Yet, enabling the system software to adapt an ap-
plication requires explicit application knowledge which can often only be acquired
by forcing applications to adhere to a particular application model.

2.4 Adaptation Technique

Finally, the fourth dimension classifies adaptation depending on the type of mod-
ification applied to the interacting parts that constitute the application. In this
dimension, we can identify behaviour, composition and context adaptation.

—Behavior: Behavior adaptation modifies the way in which a certain part of the
application is realized, for example, by changing parameters. Usually, behavior
adaptation is applied to functionalities that are inherently configurable such as
media transcoding, etc.

—Composition: Composition adaptation modifies an application by changing the
structure or the distribution of the functionality that constitutes the application.
This may entail simple isomorphic changes such as migration or more complex
forms of recomposition.

—Context: Beyond adapting itself, a pervasive application can adapt its physical
context. Obviously, this requires some way to actually change context, e.g. using
adequate actuators. In addition, changing the context must be coordinated with
other applications to avoid oscillating changes.

Intuitively, the set of adaptation techniques that can be used to compensate for a
particular change is constrained by the granularity of control that is available. For
example, behavior and composition adaptation require parametrizable or modular
applications, respectively. Furthermore, the set is also constrained on the basis of
the type of change that shall be handled. For example, behavior adaptation is usu-
ally not applicable to service unavailability. On top of that, each of the techniques
usually results in vastly different adaptation costs. While behavior adaptations are
often fast, adapting the composition or context can take significantly longer. As
a result, 3PC applies behavior, composition and context adaptation at different
levels. The goal thereby is to provide an effective and efficient combination.

3. ADAPTATION IN THE 3PC PROJECT

In the following, we discuss how adaptation is supported in the Peer-to-Peer Perva-
sive Computing (3PC) project. The 3PC project provides a software infrastructure
to support adaptive pervasive computing applications. Its main goal is to fully
automate adaptation, relieving application developers from implementing adapta-
tion logic. To do so, 3PC follows a multi-level approach, supporting adaptation on
all three levels of the software stack, the network, the system, and the application
level, thereby applying behavior, composition and context adaptation.

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. Y, 01 2010.

6 · M. Handte, G. Schiele, V. Matjuntke, C. Becker, P. J. Marrón

fig_3pc

Mobile Device

BASE
SANDMAN

PCOM

COMITY

Time: Reactive Control: Automatic

Level: Network Technique: Beh./Comp.

Time: Reactive Control: Automatic

Level: System Technique: Composition

Time: Reactive Control: Automatic

Level: Application Technique: Beh./Comp.

Time: Re./(Pro.) Control: Auto./(Man.)

Level: Application Technique: Context

Fig. 2. 3PC software infrastructure overview.

3.1 The 3PC Software Infrastructure

3PC follows a peer-to-peer system model to which we refer to as smart peer group
model. The basic idea is that the devices present in a user’s physical environment
configure themselves automatically into a smart peer group which can execute dis-
tributed applications. All necessary resources and system services are provided
jointly by the devices in the group. This enables the execution of pervasive appli-
cations everywhere. In contrast to this, other system software (e.g., [Román and
Campbell 2000], [Garlan et al. 2002], [Johanson et al. 2002]) primarily focuses on a
smart environment system model where one or more dedicated servers are provid-
ing basic system services within a spatially restricted area. In comparison to smart
environments, smart peer groups are much more dynamic, as any device may leave
the user’s proximity at any time. Thus, we cannot assume that any device is always
available to provide a service but we must prepare for its possible sudden loss.

The 3PC software infrastructure is composed of several subsystems as shown in
Figure 2 which reduces the implementation complexity. The communication mid-
dleware BASE provides basic networking functionality, most notably remote service
invocation. It supports adaptation on the network-level to optimize the communi-
cation quality and reachability of remote services. SANDMAN extends BASE with
adaptation on the system-level to reduce the energy consumption of mobile devices.
To do this, SANDMAN automatically clusters the devices within a smart peer group
around a cluster head that is automatically (re-)elected. Thereby, it removes re-
dundant system services and adapts the sleep schedules of idle devices to minimize
possible usage delays. To handle persistent failures that cannot be masked, PCOM
adds support for adaptation on the application-level. PCOM introduces a minimal
component system and an associated set of configuration algorithms and adaptation
mechanisms that can automatically configure and adapt a distributed application
at runtime. Finally, if it is necessary to adapt multiple applications consistently,
COMITY provides a cross-application coordination framework that performs con-
text adaptation. The framework identifies conflicting context influences of different
applications and tries to resolve them using configurable resolution strategies. If
no automatic resolution can be found, COMITY falls back to manual adaptation.

Together, the 3PC subsystems employ adaptation on all levels. Thereby, the
focus lies on automatic adaptation which is transparent to both, the application
developer as well as the user. With the exception of COMITY which applies reac-
ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. Y, 01 2010.

System-support for Adaptive Peer-to-Peer Pervasive Computing · 7

tive and proactive adaptation, the remaining subsystems are solely reactive. This
ensures broad applicability without requiring accurate predictions and, as discussed
in Section 4, it can greatly improve the overall efficiency. Next, we describe the
subsystems and their interaction in more detail.

3.2 Network-level Adaptation: BASE

BASE [Becker et al. 2003] is an object-oriented communication middleware that
has been tailored towards the specific requirements of pervasive systems. As such,
BASE provides networking functionality for peer-to-peer interaction. To cope
with the heterogeneity and evolution of communication technologies and proto-
cols, BASE relies on a micro-broker design that introduces a minimum core. This
so-called invocation broker can be extended with plug-ins on a per-device basis. As
shown in Figure 3, the core introduces proxy objects to provide a uniform program-
ming interface to system services and application objects. Furthermore, it relies on
a plug-in manager to perform remote communication.

At runtime, the micro-broker is responsible for dividing service and object in-
teractions into individual invocations, i.e. atomic units of transmission. These
invocations are then mediated and synchronized according to the desired interac-
tion pattern. To perform the mediation for local interactions, the invocation-broker
makes use of an object registry. To perform remote mediation, the invocation-broker
forwards the invocations to the plug-in manager. The plug-in manager then uses the
plug-ins to take care of all remaining transmission tasks such as (de-)marshalling,
compression, encryption, transmission, reception, etc.

To support a broad range of applications with a small set of plug-ins, a single
plug-in usually handles only one aspect of communication. This enables the plug-
in manager to adapt the communication stack flexibly. As explained in Section
2.4, this resembles an instance of composition adaptation. Since different network
technologies and protocols often posses tuning parameters such as compression
rates, or retransmission counters, a plug-in may expose them to support behavior
adaptation. This reduces the number of plug-ins and thus, it speeds up composition.

As discussed, the basis of composition adaptation is structural knowledge. Since
the tasks performed by plug-ins are known in advance, it is possible to uniformly
classify plug-ins statically. This is done by means of a plug-in framework that de-
fines several layers of plug-ins [Handte et al. 2010]. Using structural knowledge
about the layers, the composition of a communication stack is performed auto-
matically by the plug-in manager. Thereby, the plug-in manager ensures that the
resulting stacks are functionally complete. In addition, it also ensures that the
communicating devices are equipped with compatible sets of plug-ins. To do this,
each plug-in is equipped with a plug-in description that models its functionality
and compatibility. This description is then proactively distributed (and updated)
among the devices as part of the device discovery process.

To provide control over the composition process, the plug-in manager exposes a
configuration framework to the higher layers. This framework enables application
developers to formulate requirements on individual protocol layers. Specifically, an
application developer may request the presence of a certain protocol or the manda-
tory usage of a particular communication technology for transmission. In addition,
the application developer may also specify parameters and possible relaxations.

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. Y, 01 2010.

8 · M. Handte, G. Schiele, V. Matjuntke, C. Becker, P. J. Marrón

A
p

p
li

ca
ti

o
n

La
y

e
r

M
ic

ro
-

b
ro

k
e

r

La
y

e
r

P
lu

g
-i

n

La
y

e
r

Invocation

Broker

Plug-in Manager

Object

Registry

Device

Registry

Plug-ins

Invocations
Device & Plug-

in Descriptions
References

Proxies / Skeletons Proxies / Skeletons

Application Objects Services

Fig. 3. BASE architecture.

To compose a stack, the plug-in manager relies on a backtracking algorithm that
exhaustively searches through all possible combinations. If the composition suc-
ceeds, the stack configuration can be used to initiate the communication. If no
satisfactory stack can be found, either the requested parameter set cannot be real-
ized or the remote device is not available at this time. BASE does not handle such
failures. Instead, the plug-in manager signals them to higher system layers using
exceptions, enabling them to initiate other types of adaptation. As an example,
PCOM may use this information by adapting the application composition such that
the remote device is not used at all. In this way, BASE tries to shield higher layers
from adaptations as much as possible by performing comparatively cheap network
level adaptations if possible.

3.3 System-level Adaptation: SANDMAN

The SANDMAN [Schiele et al. 2004] subsystem performs adaptation on the sys-
tem level by adapting system services. The goal of SANDMAN is to reduce the
redundant provisioning of system services using automatic adaptation by composi-
tion. Due to the dynamic nature of smart peer groups, devices cannot rely on the
availability of a particular device at any point in time. Thus, important system
services must be provided locally by all devices to ensure continuous availability.
Intuitively, this often leads to a high number of redundant services. To mitigate
this, SANDMAN dynamically identifies a subset of devices that are sufficient to
provide a service reliably. All other devices can stop providing the system service
locally which enables them to enter a low power mode to save energy.

In the following, we describe how SANDMAN can be used to adapt the service
discovery system service (SDSS) but SANDMAN can be extended to support other
system services as well. A service discovery system service (SDSS) provides up-
to-date information about the functionalities that are currently available in an
environment. To do so, it exchanges descriptions of client needs and service offers
between the participating devices. A suitable SDSS must be able to discover services
promptly and precisely and it can have a mediator-based (e.g., [uddi.org 2004]) or
a peer-based (e.g., [Sun Microsystems 2001]) system organization.

A SANDMAN-based SDSS provides an adaptive alternative between the two.
It offers two different modes of operation. If the system environment is highly
dynamic, SANDMAN keeps devices activated to ensure that they can be discovered
ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. Y, 01 2010.

System-support for Adaptive Peer-to-Peer Pervasive Computing · 9

accurately and with little latency. In such environments, a mediator-based system
organization would result in a large overhead. Therefore, the system uses a system
organization in which all devices are equal peers and discovery requests are answered
by each device directly. If SANDMAN identifies a more stable network topology, it
switches to a mediator-based organization in which devices are elected to operate
as lookup service (LUS). This is realized by organizing the devices into clusters.

A cluster consists of one cluster head (CH) and an arbitrary number of clustered
devices (CN). Both, CH and CNs can offer and use services. In order to save
energy CNs periodically deactivate themselves when they are idle. After waking
up, a CN waits for incoming client requests for the duration of a timeout interval.
If no requests are received, it informs its CH and deactivates itself again. This way,
unused CNs can save a substantial amount of energy. To provide timely discovery
with low latencies despite the deactivated nodes, the CH stays active all the time.
It acts as LUS managing all services running on devices in its cluster. Therefore,
the CH can instantly answer any client’s discovery request with a list of service
descriptions and wake-up times. Note, that each CN must check with the CH
periodically. Otherwise, a CH could announce a service that is no longer available,
e.g. due to mobility. The CH’s responsibility to stay awake is the trade-off taken
in SANDMAN between energy-saving and discovery latencies.

SANDMAN can be divided into three parts. The first part, the cluster manage-
ment, is responsible for creating and maintaining the clusters. It determines which
nodes act as CH and assigns nodes to certain clusters. It also detects changes in
node connectivity and adapts the system accordingly by re-electing CHs and re-
assigning nodes. To achieve stable clusters SANDMAN aims at clustering devices
with similar mobility patterns, i.e., devices moving together. This can be achieved
by comparing the movement vectors of devices similar to [Wang and Li 2002]. If de-
vice locations are unknown, we can use a simple heuristic to detect group mobility
based on the duration that two devices have already stayed in each others vicinity.
The longer two devices can communicate, the more likely they have similar mobility
patterns. Thus, we introduce a clustering delay threshold value that denotes the
minimal duration of two nodes in each others communication range before they
can be clustered. By changing the threshold, the cluster management protocol can
be adapted to different intended stability levels at runtime. The second part, the
service management, defines how services are registered at a CH and how clients
perform lookups. The third part, the energy management, identifies idle CNs and
schedules and executes their deactivation. To do so, it continuously monitors the
state of each device, detects unused CNs, and schedules their deactivation periods.
Scheduling is done on the cluster level, i.e., for all CNs in a cluster, by the CH.
The CH collects state information from all CNs, calculates a schedule for the whole
cluster and sends back deactivation commands and durations. The exact schedul-
ing strategy can be selected by each CH autonomously to meet different goals. For
optimal results, the three parts cooperate, e.g., to schedule sleep times depending
on client requests. A complete description can be found in [Schiele 2007].

3.4 Application-level Adaptation: PCOM

The PCOM sub-system [Becker et al. 2004] of the 3PC software infrastructure is
targeting application level adaptation. The need for application level adaptation

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. Y, 01 2010.

10 · M. Handte, G. Schiele, V. Matjuntke, C. Becker, P. J. Marrón

can be easily motivated by revisiting the scope adaptation performed by BASE and
SANDMAN. With BASE and SANDMAN, a distributed application can be exe-
cuted flawlessly as long as it is possible to mask communication failures by adapting
a communication stack or changing a wakeup schedule. However, if connectivity
cannot be restored by network or system level adaptation, the resulting failures
cannot be masked. Instead, it is necessary to adapt the application, for example,
by replacing a service or resource that has become unavailable with another one.

The PCOM component model differentiates between components and component
instances. Components can be thought of as blueprints for their instances. The
number of instances is a priori not restricted. Each component resides on exactly
one device and each device runs a component container that creates and manages
all local component instances. An instance provides a contractual description of
its offered functionality and its requirements. The requirements can be split into
local resource requirements and requirements on other components. The container
assigns the local resources and, in cooperation with other containers, it instantiates
and manages the required instances.

An PCOM application is a tree of component instances that is constructed by re-
cursively starting the required instances of a root instance, the so-called application
anchor. An application can only be started, if all recursively required instances can
be executed. If a required resource or component becomes unavailable at runtime,
the application must be suspended until an executable configuration can be found
or the application is stopped upon user request. It is noteworthy that a PCOM
component container supports strictly limited resources, e.g., to model exclusive
resources. Strictly limited resources usually lead to a limitation on the number of
instances that can be executed on a container. Since instances of different com-
ponents can have overlapping resource requirements, creating an instance of one
component can prohibit the instantiation of another one.

To enable external management of components and thus, applications by means
of the PCOM component container, components are bound to a life cycle that con-
sists of a started, stopped and paused state. Changes to the life cycle are triggered
by the component container via callback methods that must be implemented by the
component developer. To interact with required components, the component con-
tainer provides each instance with local references to (possibly remote) component
instances as well as local resources. By providing and managing the references, the
component container ensures that they are resolved at runtime as long as a compo-
nent instance is started. Once a required component instance becomes unavailable,
the component container triggers the paused state recursively and initiates an adap-
tation. Once the adaptation has been executed, the component instance is either
stopped or started again. In the latter case, the component container has updated
the references so that they are valid again.

The PCOM container is able to automatically determine executable configura-
tions upon start up using a distributed backtracking algorithm [Handte et al. 2005].
Furthermore, on top of the signalling provided by BASE, it is also able to detect
cases in which the application can no longer be executed and thus, needs to be
adapted [Handte et al. 2007]. As introduced in Section 2.1, this type of adaptation is
reactive since it performs adaptation after a failure occurred. In general, cases that
ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. Y, 01 2010.

System-support for Adaptive Peer-to-Peer Pervasive Computing · 11

require adaptation can be attributed to two types of changes, namely changes to
preferences and changes to the available resources and devices. In PCOM, user pref-
erences are expressed by means of contracts that describe the requirements on the
application anchor. If a user changes these requirements, the component container
can validate whether the running application satisfies the changed requirements by
matching the modified contractual requirements with the current provision. Sim-
ilarly, if the available set of resources changes dynamically, the change is usually
reflected by means of a changed provision. Thus, if the modified provision does no
longer satisfy the current requirements, the application needs to be adapted.

If PCOM’s configuration and adaptation algorithm is not able to compute an ex-
ecutable configuration, PCOM simply pauses the execution of the application until
the required resources become available. Yet, in cases where multiple applications
are executed, it might be possible to free up resources from other applications as an
alternative. However, since such adaptations would require an coordinated treat-
ment of multiple applications, they are not handled by PCOM directly but they
are signalled to COMITY where they can be handled in an integrated manner.

3.5 Application-level Adaptation: COMITY

The COMITY subsystem [Tuttlies et al. 2007], [Majuntke et al. 2010] provides
support for coordinated context adaptation. This form of adaptation is typically
achieved via actuators available in the environment. For example, an ebook reader
application whose current display requires a certain light level may switch on the
light instead of selecting another display. In fact, context adaptation is available
in diverse systems which integrate the use of actuators. However, context adapta-
tion of multiple applications is usually not coordinated such that each application
changes the shared context independently. This leads to interferences if applications
have contradictory requirements which may cause cyclic changes.

Fig. 4. Coordinated Context Adaptation with COMITY

To avoid cycles, COMITY provides a framework which coordinates the adapta-
tion techniques of multiple applications in order to manage the occurring interfer-
ences. The relationship between COMITY and PCOM is shown in Figure 4. To
enable automatic coordination, the framework requires each application to explic-
itly specify (a) its context influences, i.e., how it modifies the context and (b) its
context goals, i.e., its requirements towards the shared context. For a PCOM ap-

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. Y, 01 2010.

12 · M. Handte, G. Schiele, V. Matjuntke, C. Becker, P. J. Marrón

plication the context influences and context goals depend on the components which
are used in the respective application configuration.

The context goals as well as the context influences are collected by a represen-
tative member of the smart peer group, the application coordinator. The selection
of the member can be determined dynamically using the SANDMAN subsystem.
Based on the collected information, the application coordinator determines a com-
mon context goal which considers the context goals of all concurrently executed
applications. This common goal may change over time as applications are started
or terminated in the smart peer group. If context goals of different applications
contradict, COMITY may initiate a composition adaptation of a selected set of
applications to adapt context goals which cause the contradiction.

For interference detection, the application coordinator continuously compares
the constructed context goal with the current context. To do this, it must have
access to a context model which is maintained by the members of the smart peer
group. In addition to context provided by sensors, the context model holds all
context influences which have been communicated by active applications. When
the coordinator detects that the context goal is not met either the context or active
applications have to be adapted. The specific adaptation and the selection of appli-
cations which have to adapt depend on the resolution strategy which has been set
for the application coordinator. Our current implementation of COMITY instructs
those applications to adapt, whose context influences violate the common context
goal. To do this, COMITY marks the problematic PCOM components as unus-
able. This forces the component container to adapt the application. If no suitable
solution can be found, COMITY can fall back to rudimentary manual adaptation
support by asking the application users for a possible resolution. COMITY also
provides basic support for proactive adaptation. To do so, it checks the context in-
fluences of PCOM components before instantiating them, instead of only checking
the resulting context after a new component is started. Thus, context interferences
can be detected and resolved before the actual context influence occurs. However,
we are currently working on further support for proactive adaptation.

3.6 3PC Implementation, Tools, and Applications

To evaluate the abstractions and algorithms introduced by the individual subsys-
tems of the 3PC infrastructure, we have implemented and refined them over the
course of several years. During that time, we relied on a bottom up approach to sup-
port continuous integration and testing. The basis was the first prototype of BASE
in 2002. Due to the increasing pervasiveness of the Java language at that time,
we based the implementation on J2ME. To support resource poor devices such as
mobile phones, the core abstractions of all subsystems comply to the J2ME CLDC
specification which introduces considerable restrictions on the features provided by
the virtual machine. At the same time, relying only on minimal functionality also
greatly simplified the porting of 3PC to different devices.

In addition to the infrastructure itself, we developed a considerable set of tools.
The tools can be classified into compile-time and runtime tools. The compile-time
tools are mostly generative in nature and include for example stub generators for
BASE proxies and PCOM components. Since we used IBM Websphere Device
Developer which is an Eclipse-based suite of development tools during the early
ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. Y, 01 2010.

System-support for Adaptive Peer-to-Peer Pervasive Computing · 13

J2EE Application

Application

Server

W
E

B

D
B

Gateway Service

 Service

3PC Middleware

T
C

P
/IP

M

EJBs/Servlets

Machine Remote

Control

SWT/JFACE UI

3PC Middleware

Cup Preferences &

Administration

Browser

(IE, Firefox, …) Serial

CAN

LAN

LAN

WLAN

WLAN

Machine Server

T
C

P
/IP

 Serial CAN

RFIDlib TICO

WMFlib
M

3PC Middleware

Fig. 5. Coffee maker application.

stages of the implementation, the compile-time tools are implemented as Eclipse
plug-ins. The runtime tools include visualizations for PCOM’s configuration and
adaptation algorithms as well as user interfaces and system inspectors.

To validate the 3PC infrastructure, we implemented a number of application
prototypes using the abstractions provided by BASE and PCOM. An example for
PCOM is the Pervasive Presenter [Handte et al. 2006] which enables a user to
display and control a PowerPoint presentation using a mobile phone. Due to the
use of PCOM, the presenter completely configuration free and neither the developer
nor the user have to take manual steps to adapt the application. An example
for a BASE application is the RFID-based billing system depicted in Figure 5.
The coffee maker is equipped with a CAN bus to control the machine. A custom
embedded system consisting of a TINI micro controller and a Texas Instruments
RFID reader connects to the CAN bus. The micro controller runs an instance of
BASE and exports a service via a LAN connection. When the RFID of a user is
detected at the reader, the BASE service contacts an application server to retrieve
the coffee preferences. Thereafter, the micro controller issues the command to brew
the desired coffee. Using an application running on a PDA, a service technician
can retrieve information about the internal state of the machine.

At the time of writing, the developments on BASE and PCOM have been com-
pleted and they are freely available as open source under a BSD-style license (c.f.
http://www.3pc.info). We are currently using both systems as an application de-
velopment platform in different research projects. Our current development effort
focuses on the subsystem at the highest level, namely COMITY and the associated
context management and application coordination services.

4. EVALUATION: OVERHEADS AND BENEFITS OF MULTI-LEVEL ADAPTATION

A key goal of the 3PC software infrastructure is to leverage adaptation on all levels
of the software stack in order to provide thorough support for adaptive applications.

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. Y, 01 2010.

14 · M. Handte, G. Schiele, V. Matjuntke, C. Becker, P. J. Marrón

Fig. 6. BASE Communication Delay (left) and SANDMAN Message Overhead (right).

In the following, we discuss and contrast the adaptation overheads induced by
different levels. Thereafter, we discuss how the levels can be used for optimization.

4.1 Comparison of Overheads by Adaptation Level

At the network level, BASE introduces composition and behavior adaptation in or-
der to enable flexible communication support. Intuitively, computing a compatible
protocol stack introduces additional delay experienced by the caller. This delay
usually ranges in the order of several milliseconds. This can be seen on the left side
of Figure 6 which depicts the total delay of a remote method call with different
payload sizes in BASE and RMI using two desktop PCs (Intel Core 2 Q6600, 2.4
GHz, 4GB RAM) connected via a switched Ethernet (1GBit). For both, BASE
and RMI the depicted delay results from a null-call that has no server implemen-
tation. Obviously, the absolute delay depends on the computational capabilities of
the device and thus, they may change with different hardware. However, in typical
settings with WLAN or Bluetooth connectivity, the total communication delay is
dominated by the transmission delay caused by the network. This holds even true
for resource poor devices such as PDAs whose Java implementations are less opti-
mized. Furthermore, the latency could be reduced by caching stack compositions.

The adaptation overhead introduced by SANDMAN can be estimated in terms
of message overhead. The right side of Figure 6 shows the resulting message over-
head per second for different group sizes of pedestrians. For a useful evaluation, it
is not sufficient to model mobility only with speed. Instead, we additionally must
vary the number of nodes per group. We choose three characteristic group sizes:
a single person moving randomly through town, a family moving together, and a
tourist group. Each person carries one device with IEEE 802.11 wireless commu-
nication. A group size of one leads to the well known random waypoint model.
Families are modeled as groups of 4 devices, tourist groups contain 10 devices. In
total, our experiments contain 40 devices moving in an area of 300m by 300m with
up to 2 m/s. The overhead per device decreases for larger groups as cluster sizes
increase. The main message overhead is caused by cluster creation and mainte-
nance. Most notably, each CN periodically checks if its CH is still available using
a request/response interaction with the CH. This is the CH check frequency. As
ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. Y, 01 2010.

System-support for Adaptive Peer-to-Peer Pervasive Computing · 15

Number of Components 4 5 6 7 8 9 10 11 12

Start up 865 1152 1416 1472 1673 1923 2260 2613 2845

Adaptation 576 835 980 978 1178 1291 1593 1846 2038

PCOM + SANDMAN 617 769 826 852 1090 1154 1326 1512 1649

Fig. 7. PCOM Adaptation Delay (in ms).

can be seen, the CH check frequency largely influences the total message overhead.
On the other hand, the higher the check frequency, the faster CNs detect a lost
CH, which increases the service discovery quality. Another contributor to the con-
tinuous message overhead are regular CH announcements using hello messages as
described earlier. For small groups this factor can dominate the overhead.

The application adaptation performed by PCOM is directly visible to the user.
This is a result of the fact that PCOM performs adaptation reactively. Thus, if a
failure is detected and fixed by the component container, the user will experience
an interruption in the execution of the application. The configuration algorithms
utilized in PCOM try to minimize the delay. However, configuration and adaptation
can cause delays in the order of seconds depending on the number and type of the
resource conflicts. Figure 7 shows the time taken to start and adapt an application
with varying numbers of components organized in a binary tree. The tree has been
distributed among the devices in such a way that no adjacent components reside on
the same device and the devices have sufficient resources to execute all components.
The measurements have been performed on 4 MDA Pro PDAs that are connected
via IEEE802.11b. The devices utilize a greedy distributed configuration algorithm.
In order to measure the adaptation performance, a contractual change is injected
that can be resolved by changing other contracts. As a result, adaptation can be
performed faster than start up. The resulting difference in latency is an indicator
for the usefulness of support for both, behaviour and composition adaptation.

The overhead for application-level adaptation using COMITY cannot be mea-
sured systematically in terms of system parameters since it may entail user actions.
For example, in order to change the context a user may have to move to a different
location. Obviously, this overhead often weights more than a delay caused by an
adaptation mechanism. However, in some cases user involvement is the only solu-
tion and thus, it cannot be avoided. Yet, minimizing the amount of such cases is
one of the optimizations enabled by 3PC’s multi-level adaptation.

4.2 Benefits of Multi-level Adaptation

Probably the most obvious optimization results from the fact that the adaptation
mechanisms at the application level are using the adaptation mechanisms at the
network level. When comparing the overhead induced by BASE and PCOM, it
is clearly visible that adaptations in BASE are several orders of magnitude faster.
While protocol adaptation introduces delays of a few milliseconds, application adap-
tation can take seconds. Yet due to the fact that the PCOM component container
and components are using BASE as communication mechanism, application adap-
tation can often be avoided since BASE can adapt communication if necessary.

A similar argument can be made by looking at the interaction between PCOM
and COMITY. Context adaptation can be significantly more annoying to a user

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. Y, 01 2010.

16 · M. Handte, G. Schiele, V. Matjuntke, C. Becker, P. J. Marrón

since it may require user actions. In contrast, adaptations performed by PCOM
only cause interruptions. Thus, by relying on the adaptations performed by PCOM,
the use of COMITY can often be avoided. In addition, the composition adaptation
performed by PCOM also benefits from the context adaptation done in COMITY.
In cases where resources are scarce, the computation of an application configuration
can cause unacceptable delays. In such cases, COMITY can perform automated
decisions that free resources, e.g. by pausing or stopping low priority applications.

Last but not least, there are also benefits from performing system level adap-
tation with SANDMAN and automatic adaptation with PCOM in an integrated
manner. The reason for this is that the configuration algorithms in PCOM are usu-
ally fully distributed to support the peer-to-peer system model. SANDMAN can
reliably detect cases in which the networks are static and it automatically selects
cluster heads to reduce the degree of distribution. This reduction of the degree of
distribution can significantly improve the configuration delay of PCOM’s configu-
ration algorithms. The last row in Figure 7 shows the potential savings. When
performing a simple contractual adaptation, computing a new configuration can
already be improved by up to twenty percent. For 12 components this reduces the
delay experienced by the user by almost half a second. In cases that require the
resolution of conflicts, the advantage can be even higher.

5. RELATED WORK

Adaptation in pervasive computing has been researched by many groups. Figure
8 summarizes related approaches with respect to the classification given in Section
2. Most approaches only support a subset of the possible adaptation space. Others
rely on the availability of a smart environment infrastructure. 3PC supports the
full adaptation space, without the need of any pre-deployed infrastructure.

The most commonly supported adaptation technique is composition adaptation
as provided in systems like MundoCore [Aitenbichler et al. 2007], PECES [Haroon
et al. 2009] and IROS [Johanson et al. 2002] for example. Behavior adaptation is
offered by some approaches, e.g., Puppeteer [De Lara et al. 2001] and REFLECT
[Schroeder et al. 2008]. Context adaptation is so far only supported by few systems,
e.g., REFLECT [Schroeder et al. 2008] and Vainino et al. [Vainio et al. 2008].

With respect to the different adaptation levels, adaptation on the network level
is usually offered by communication middleware systems like Puppeteer [De Lara
et al. 2001] and MundoCore [Aitenbichler et al. 2007]. Puppeteer supports behavior
adaptation and automatically transcodes transmitted data depending on the avail-
able network resources. Reflective middleware systems, e.g., UIC [Román et al.
2001] additionally allow application developers to adapt the behavior of system
services at runtime. Further approaches like PARM [Mohapatra and Venkatasub-
ramanian 2003] and PECES [Haroon et al. 2009] exclusively focus on the system
level by optimizing the execution of the system software itself. PARM relocates
system services at runtime to remote devices. PECES assigns roles to dynamically
form smart environments. Applications can build on top of these environments but
must provide their own adaptation logic. Only the Runes middleware [Costa et al.
2005] supports adaptation on the system and application level. It offers a minimal
middleware core which can be extended by system and application components.
ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. Y, 01 2010.

System-support for Adaptive Peer-to-Peer Pervasive Computing · 17

Project

Time Level Control Technique

pro rea app sys net man aut beh com ctx

PUPPETEER + + + +

MundoCore + + + + +

UIC + + + + +

PARM + + + +

PECES + + +

RUNES + + + + +

ALLOW + + + +

O2S + + + +

P2PCOMP + + + +

ONE.WORLD + + + + +

SPEAKEASY na na + + +

IROS + + + +

REFLECT + + + + + (+)

Vainio et al. + + + +

G
A

IA

dynamic

TAO
+ + + + +

MPCC na na + + +

Olympus + + + +

A
U

R
A

Odyssey + + + +

Coda + + + +

SPEC-

TRA
+ + + +

PRISM + + + +

3
P

C

BASE + + + + +

SAND-

MAN
+ + + +

PCOM + + + + +

COMITY (+) + + (+) + +

Fig. 8. System Support for Pervasive Adaptation.

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. Y, 01 2010.

18 · M. Handte, G. Schiele, V. Matjuntke, C. Becker, P. J. Marrón

Several systems concentrate on adaptation on the application level. Except for
two approaches, all of them offer automatic adaptation support ([Grimm et al.
2001], [Herrmann et al. 2008], [Mazzola Paluska et al. 2008], [Ferscha et al. 2004])
using composition adaptation. As an example, iROS [Johanson et al. 2002] as-
sembles loosely coupled applications from components at runtime using an asyn-
chronous EventHeap. REFLECT [Schroeder et al. 2008] builds applications from
software components. By specifying provide and demand ports for each component
the middleware can construct applications dynamically. Additionally REFLECT
offers behavior adaptation by chaining application components into control loops
that automatically adapt their behavior. The two exceptions are Speakeasy [Want
et al. 2003] and the approach of Vainino et al. [Vainio et al. 2008]. In contrast
to all other approaches Speakeasy focuses on simplifying manual adaptation. As a
second exception, Vainino et al. focus on a coordinated adaptation of the context
and omit composition adaptation. Their approach learns the routines of a user in
a smart home environment and uses this for automatic control.

The systems discussed so far focus on isolated adaptation levels or techniques.
Yet, there are a number of projects that try to offer more comprehensive adaptation
support on multiple levels and techniques. However, in contrast to 3PC, they realize
smart environments and require pre-installed computer infrastructure.

Gaia [Román and Campbell 2000], provides adaptation on all levels using several
subsystems. Acting as the underlying communication middleware, dynamicTAO
[Roman et al. 1999] supports automatic network and system level adaptation. On
top of this, Gaia structures adaptive applications using an extended Model View
Controller model (MPCC). This model allows composition adaptation as defined by
a system administrator. Automatic composition is added by the Olympus frame-
work [Ranganathan et al. 2005] by mapping application specifications to resources.

The Aura project [Garlan et al. 2002] supports behavior and composition adap-
tation on all three levels. On the network level, Odyssey [Satyanarayanan 1996]
adapts the quality of transferred data leading to a behavior adaptation. Coda
[Satyanarayanan 2002] is located on the system level. It realizes an adaptive dis-
tributed file system with support for disconnected operation. On top, Spectra
[Flinn et al. 2001] executes application parts remotely depending on the current
system environment. Finally, Prism [Sousa and Garlan 2002] manages user tasks
by mapping task descriptions to specific applications in a smart environment. The
currently required user tasks are derived automatically by estimating the user’s
intentions. This allows to proactively prepare adaptations before they become nec-
essary. Concrete mappings are provided manually by system administrators.

6. CONCLUSION

The development of adaptive pervasive applications is a complex and error-prone
process. To mitigate this, application developers need efficient system support for
adaptation. In pervasive computing, adaptation should be supported automatically
on different levels and using different techniques. In this article, we structured
adaptation in pervasive computing from an architectural perspective and outlined
design considerations. We presented the 3PC software infrastructure and discussed
how it applies a broad set of adaptation techniques. 3PC offers adaptation support
ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. Y, 01 2010.

System-support for Adaptive Peer-to-Peer Pervasive Computing · 19

on all system levels, from network to system and application. Providing such an
integrated solution eases development and it improves the adaptation performance.

The main future challenge for our work is to integrate support for proactive adap-
tation. Until now most systems – including our own – focus primarily on reactive
adaptation. COMITY provides restricted proactivity by prohibiting applications to
perform problematic context adaptations before they occur. However, this is only
a first step towards real proactive adaptivity. First, we need to develop accurate
prediction algorithms to foresee future scenarios for adaptation. Second, proactiv-
ity support is required on all levels to gain really seamless application execution.
Otherwise, truly distraction free pervasive computing will not be accomplishable.

ACKNOWLEDGMENTS

This work has been partially supported by CONET (Cooperating Objects Network
of Excellence) and PECES (PErvasive Computing in Embedded Systems), both
funded by the European Commission under FP7 with contract numbers FP7-2007-
2-224053 and FP7-224342-ICT-2007-2 respectively.

REFERENCES

Aitenbichler, E., Kangasharju, J., and Mühlhäuser, M. 2007. Mundocore: A light-weight
infrastructure for pervasive computing. Pervasive Mobile Computing 3, 4, 332–361.

Becker, C., Handte, M., and Schiele, G. 2004. PCOM – a component system for pervasive
computing. In IEEE Int. Conference on Pervasive Computing and Comm. Orlando, FL, USA.

Becker, C., Schiele, G., Gubbels, H., and Rothermel, K. 2003. Base – a micro-broker-based
middleware for pervasive computing. In IEEE Int. Conference on Pervasive Comp. and Comm.

Costa, P., Coulson, G., Mascolo, C., Picco, G. P., and Zachariadis, S. 2005. The runes
middleware: A reconfigurable component-based approach to networked embedded systems. In
16 th Int. Symposium on Personal Indoor and Mobile Radio Communications. 11–14.

De Lara, E., Wallach, D. S., and Zwaenepoel, W. 2001. Puppeteer: Component-based adap-
tation for mobile computing. In USITS’01: 3rd conference on USENIX Symposium on Internet
Technologies and Systems. Berkeley, CA, USA, 14–25.

Ferscha, A., Hechinger, M., Mayrhofer, R., and Oberhauser, R. 2004. A light-weight
component model for peer-to-peer applications. In 24th International Conference on Distributed
Computing Systems Workshops. Washington, DC, USA, 520–527.

Flinn, J., Narayanan, D., and Satyanarayanan, M. 2001. Self-tuned remote execution for
pervasive computing. In HOTOS ’01: Proceedings of the Eighth Workshop on Hot Topics in
Operating Systems. IEEE Computer Society, Washington, DC, USA, 61.

Garlan, D., Siewiorek, D. P., Smailagic, A., and Steenkiste, P. 2002. Project aura: Toward
distraction-free pervasive computing. IEEE Pervasive Computing Magazine 1, 2 (April–June).

Grimm, R., Davis, J., Lemar, E., MacBeth, A., Swanson, S., Anderson, T., Bershad, B.,
Borriello, G., Gribble, S., and Wetherall, D. 2001. Programming for pervasive computing
environments. technical report UW-CSE-01-06-01, University of Washington. June.

Handte, M., Becker, C., and Rothermel, K. 2005. Peer-based automatic configuration of
pervasive applications. In International Conference on Pervasive Services. 249–260.

Handte, M., Herrmann, K., Schiele, G., Becker, C., and Rothermel, K. 2007. Automatic
reactive adaptation of pervasive applications. Int. Conference on Pervasive Services, 214–222.

Handte, M., Urbanski, S., Becker, C., Reinhard, P., Engel, M., and Smith, M. 2006.
3pc/marnet pervasive presenter. In 4th IEEE International Conference on Pervasive Com-
puting and Communications (PerCom 2006) Demos. Pisa, Italy.

Handte, M., Wagner, S., Schiele, G., Becker, C., and Marrón, P. J. 2010. The base plug-in
architecture - composable communication support for pervasive systems. In 7th ACM Interna-
tional Conference on Pervasive Services. Newport Beach, CA, USA.

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. Y, 01 2010.

20 · M. Handte, G. Schiele, V. Matjuntke, C. Becker, P. J. Marrón

Haroon, M., Handte, M., and Marron, P. J. 2009. Generic role assignment: A uniform mid-
dleware abstraction for configuration of pervasive systems. In IEEE International Conference
on Pervasive Computing and Communications. Washington, DC, USA, 1–6.

Herrmann, K., Rothermel, K., Kortuem, G., and Dulay, N. 2008. Adaptable pervasive flows
- an emerging technology for pervasive adaptation. In 2008 Second IEEE Int. Conference on
Self-Adaptive and Self-Organizing Systems Workshops. Washington, DC, USA, 108–113.

Johanson, B., Fox, A., and Winograd, T. 2002. The interactive workspaces project: Experi-
ences with ubiquitous computing rooms. IEEE Pervasive Computing Magazine 1, 2 (April–
June), 71–78.

Majuntke, V., Schiele, G., Spohrer, K., Handte, M., and Becker, C. 2010. A coordina-
tion framework for pervasive applications in multi-user environments. In 6th International
Conference on Intelligent Environments (IE 2010).

Mazzola Paluska, J., Pham, H., Saif, U., Chau, G., Terman, C., and Ward, S. 2008. Struc-
tured decomposition of adaptive applications. Pervasive Mobile Computing 4, 6, 791–806.

Mohapatra, S. and Venkatasubramanian, N. 2003. PARM: Power aware reconfigurable mid-
dleware. In 23rd International Conference on Distributed Computing Systems. 312–321.

Ranganathan, A., Chetan, S., Al-Muhtadi, J., Campbell, R. H., and Mickunas, M. D. 2005.
Olympus: A high-level programming model for pervasive computing environments. In 3rd IEEE
Int. Conference on Pervasive Computing and Communications. Washington, USA, 7–16.

Román, M. and Campbell, R. H. 2000. GAIA: Enabling active spaces. In Proceedings of the
9th ACM SIGOPS European Workshop. ACM, ACM Press.

Roman, M., Kon, F., and Campbell, R. H. 1999. Design and implementation of runtime re-
flection in communication middleware: The dynamictao case. Distributed Computing Systems,
International Conference on 0, 0122.

Román, M., Kon, F., and Campbell, R. H. 2001. Reflective middleware: From your desk to
your hand. IEEE Distributed Systems Online Journal, Special Issue on Reflective Middleware.

Satyanarayanan, M. 1996. Mobile information access. IEEE Personal Comm. 3, 1, 26–33.

Satyanarayanan, M. 2002. The evolution of coda. ACM Trans. Comput. Syst. 20, 2, 85–124.

Schiele, G. 2007. System support for spontaneous pervasive computing environments. Ph.D.
thesis, Universität Stuttgart.

Schiele, G., Becker, C., and Rothermel, K. 2004. Energy-efficient cluster-based service dis-
covery. In Proceedings of the 11th ACM SIGOPS European Workshop.

Schroeder, A., Zwaag, M. v. d., and Hammer, M. 2008. A middleware architecture for human-
centred pervasive adaptive applications. In Second IEEE Int. Conference on Self-Adaptive and
Self-Organizing Systems Workshops. IEEE, Washington, DC, USA, 138–143.

Sousa, J. P. and Garlan, D. 2002. Aura: An architectural framework for user mobility in ubiq-
uitous computing environments. In In Proceedings of the 3rd Working IEEE/IFIP Conference
on Software Architecture. Kluwer Academic Publishers, 29–43.

Sun Microsystems. 2001. Jini technology core platform specification, version 1.2. online.

Tuttlies, V., Schiele, G., and Becker, C. 2007. Comity - conflict avoidance in pervasive
computing environments. In OTM Workshops (2). 763–772.

uddi.org. 2004. UDDI spec technical committee draft, version 3.0.2. online. http://uddi.org/.

Vainio, A.-M., Valtonen, M., and Vanhala, J. 2008. Proactive fuzzy control and adaptation
methods for smart homes. IEEE Intelligent Systems 23, 2, 42–49.

Wang, K. H. and Li, B. 2002. Group mobility and partition prediction in wireless ad-hoc
networks. In IEEE International Conference on Communications (ICC).

Want, R., Pering, T., and Tennenhouse, D. 2003. Comparing autonomic and proactive com-
puting. IBM Systems Journal 42, 1 (Jan.), 129–135.

Weiser, M. 1991. The computer for the twenty-first century. Scientific American 265, 3 (Sept.),
94–104.

Received January 2010; Accepted September 2011

ACM Transactions on Autonomous and Adaptive Systems, Vol. X, No. Y, 01 2010.

