
Ubiquitous Integration of Cooperating Objects

STAMATIS KARNOUSKOS

SAP Research

and

VLADIMIR VILLASEÑOR

Tampere University of Technology

and

MARCUS HANDTE

Universität Duisburg-Essen

and

PEDRO JOSÉ MARRÓN

Universität Duisburg-Essen

Billions of devices are expected to be online by 2020. These will not only provide information
by monitoring the real-world, but create complex collaborations in order to provide sophisticated
value-added services. Slowly, we are witnessing the emergence of Cooperating Objects in the In-
ternet of Things, which will rapidly change the way we design, develop and realize cyber-physical
dependent applications. We investigate which requirements this poses, and evaluate several mid-
dleware systems which we have used in the past. We propose an architecture that is used to
integrate cooperating objects and enable their collaboration, and depict this in a demonstration
example. Finally we prioritize the requirements, and discuss on future directions that could be
followed.

Categories and Subject Descriptors: H.4.0 [Information Systems Applications]: General;
K.6.0 [Management of Computing and Information Systems]: General

General Terms: Design, Management

Additional Key Words and Phrases: Cooperating Objects, Cyber-Physical Systems, Enterprise
Integration, Internet of Things, Middleware, Web technologies

1. COOPERATING OBJECTS

The core idea behind amalgamating the physical and virtual (business) world is to
seamlessly gather useful information about objects of the physical world and use
the information in various applications in order to provide some added value. As
we are moving towards the “Internet of Things” (IoT), [?] millions of devices will
be interconnected and will cooperate, providing and consuming information avail-
able on the network. Since these devices need to interoperate, the service-oriented
approach seems to be a promising solution for building systems; i.e., each device
offers its functionality as one or more services, while in parallel they may discover
and invoke new functionality from other services on-demand [Guinard et al. 2010].
Cooperating Objects are an integral part of the future IoT. The latter is expected to
enable unprecedented interconnection of networked embedded devices and further
blur the line between the real and virtual world.

A number of different system concepts have become apparent in the broader
context of embedded systems over the past couple of years such as pervasive and

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2011, Pages 1–0??.

2 · Karnouskos, Villaseñor, Handte, and Marrón

ubiquitous computing and most recently wireless sensor networks (WSN) that sense
their environment (monitoring) and manage it (control). In the last years, these
systems have moved from standalone operation towards collaboration, i.e. coopera-
tion among them and with third-party provided services in order to take advantage
of additional knowledge and realize sophisticated functionality and system-wide
goals.

All these three types of systems (i.e. embedded systems, pervasive and ubiquitous
computing and wireless sensor networks) that act and react on their environment
are actually quite diverse, novel systems that, on the one hand, share some principal
commonalities and, on the other hand, have some different aspects that comple-
ment each other to form a coherent group of objects that cooperate with each other
to interact with their environment. In particular, important notions such as con-
trol, heterogeneity, wireless communication, dynamics/ad-hoc nature, and cost are
present to various degrees in each of these types of systems.

According to the Cooperating Objects Network of Excellence (CONET) [Marrón
et al. 2011], Cooperating Objects consist of embedded computing devices equipped
with communication, as well as sensing or actuation capabilities that are able to
cooperate and organize themselves autonomously into networks to achieve a com-
mon task. However, it is important to notice that an object may refer not only to a
standalone physical device, but also to a business application masked as a physical
device. The vision of Cooperating Objects is to tackle the emerging complexity by
cooperation and modularity. Towards this vision, the ability to communicate and
interact with other objects and/or the environment is a major prerequisite. While
in many cases cooperation is application specific, cooperation among heterogeneous
devices can be supported by shared abstractions.

Achieving enhanced system intelligence by cooperation of smart embedded de-
vices pursuing common goals is relevant in many types of perception and sys-
tem environments. In general, such devices with embedded intelligence and sens-
ing/actuating capabilities are heterogeneous, yet they need to interact seamlessly
and intensively over wired and/or wireless networks. More constrained devices
may also cooperate with more powerful (or less congested) neighbors to meet ser-
vice requests, opportunistically taking advantage of global resources and processing
power. Independently of the structuring level (weakly structured or highly struc-
tured), process-driven applications make use of different kinds of data resources
and combine them to achieve the application task.

Cooperation between objects can be understood in the following context:

— Two (or more) objects (i.e., object-to-object or object-to-business) are able
to engage into a conversation in a loosely-coupled manner.

— The objects have a common understanding of well-defined communication
patterns and protocols.

— The objects are able to exchange data relevant to their capabilities and needs.

— The objects share computational resources when needed by means of infor-
mation migration or data mash-ups.

— The objects are able to cluster in order to create distributed data gather-
ing/processing platforms.
ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2011.

Ubiquitous Integration of Cooperating Objects · 3

Another interesting trend is the evolution towards global service-based infras-
tructures which rely on the Service-Oriented Architecture (SOA) paradigm. As
such, new functionality is introduced by combining services in a cross-layer form,
i.e. services relying on the enterprise system, on the network itself and at device
level can be combined in order to create more sophisticated ones. New integration
scenarios can be applied by orchestrating the services in context-specific ways. In
addition, sophisticated services can be created at any layer (even at device layer)
taking into account and based only on the provided functionality of other entities
that can be exposed as a service. In parallel, dynamic discovery and peer-to-peer
communication will allow to optimally exploit the functionality of a given device.
It is clear that we move away from isolated stand-alone hardware and software solu-
tions towards more cooperative models. However, in order to achieve that, several
challenges need to be tackled.

The increasing computing capabilities of embedded devices will allow the imple-
mentation of new software for completely novel processes. Enabled by software, the
IoT will provide for virtually infinite integration of sensors, actuators, microsystems,
mechatronic systems, and robots. The world market for technologies, products, and
applications alone that are related to what the IoT enables — i.e., monitoring and
control (M&C) — will increase significantly. In fact, it is expected [European Com-
mission DG Information Society & Media 2008] that the world M&C market will
grow from 188 Bne in 2007 to 500 Bne in 2020.

The convergence of solutions and products towards the SOA paradigm adopted
for smart embedded devices contributes to the improvement of the reactivity and
performance of industrial processes [Karnouskos et al. 2010], such as manufac-
turing, logistics, and others. This will lead to information being available in near
real-time based on asynchronous events, and to business-level applications that are
able to use high-level information for various purposes, such as diagnostics, perfor-
mance indicators, traceability, etc. SOA-based vertical integration will also help to
reduce the cost and effort required to realize a given business scenario as it will not
require any device drivers or third-party solutions. To realize the next generation
IoT applications, we need to focus on how to interact with cooperating objects
i.e. on the Ubiquitous Integration of Cooperating Objects (UICO) which we will
analyze in more detail in the subsequent sections.

The domain of Cooperating Objects is still at its dawn; however, its impact is
estimated to be so broad and significant that it could change future applications
and services drastically. Numerous market analyses also point out this direction.
It is important to understand that Cooperating Objects is a huge domain with
applications spawning several fields, and, therefore, it is very difficult to set the
limits and estimate its total value. However, the issue of ubiquitous integration
is common to all domains and seen as a key challenge that must be overcome to
realize cooperation and collaboration.

2. REQUIREMENTS FOR COOPERATING OBJECTS

There are several requirements that have to be tackled at a sufficient level in order
to enable easy integration of Cooperating Objects. Basically we see two modes of
cooperation:

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2011.

4 · Karnouskos, Villaseñor, Handte, and Marrón

— Standalone: devices discover and interact with each other on a standalone
mode without significantly depending on the existence of third-parties; this is ex-
pected to be the case for generic forms of interaction, mostly locally. Examples for
past research projects that focused on enabling this type of cooperation are 3PC
[Becker et al. 2003], [Becker et al. 2004], MundoCore [Aitenbichler et al. 2007],
and P2PComp [Ferscha et al. 2004], to name a few.

— Infrastructure assisted : devices cooperate with each other and third-parties by
heavily depending on infrastructure services; these can be sophisticated interactions
not restricted at the local level or to the own device’s capabilities. Past research
projects focusing on this type of cooperation are GAIA [Román and Campbell
2000], AURA [Cheng et al. 2002], ALLOW [Herrmann et al. 2008], and O2S
[Mazzola Paluska et al. 2008], for example.

Adding cooperation in the context we analyzed, makes it imperative to have a
look from a different angle, i.e., that of integration with the goal of cooperation.
Based on our experiences coming from multiple industry and R&D projects, we see
several requirements for the UICO:

Requirement 1 – Dynamic collaboration. Devices with sensing and/or actuating
capabilities and embedded intelligence should be able to dynamically collaborate
in the environment and provide services to the user (e.g. a service, another device
or an end-user). As dynamic collaboration is the foundation for any cooperation,
this requirement is frequently tackled by existing middleware developments such as
[Aitenbichler et al. 2007], [Becker et al. 2003], or [Román et al. 2001].

Requirement 2 – Extensibility. Flexible support for extending the capabilities of
a device is needed. Cooperating Objects is a rapidly developing domain and im-
plementation should take future growth into consideration. Since extensions can
be made through the addition of new functionality or modification of existing one,
support for change should be provided while minimizing impact to existing sys-
tem functions. One possibility to achieve this is to support protocol composition
[Handte et al. 2003] or to rely on adequate programming abstractions [Becker et al.
2004], [Ferscha et al. 2004].

Requirement 3 – Resource utilization. Optimal management of resources at the
local (device) as well as non-local (groups, global view) level is needed. As most
of the cooperating devices are expected to be resource-constrained, the resource
utilization should be considered and possibly captured in a cooperation context. For
instance, it should be possible that resource-scarce devices exploit the capabilities of
devices with more resources, and opportunistically take advantage of the resources
in the surroundings if it makes sense from the strategy or performance viewpoint.
So far, such optimizations have been done only with respect to individual system
functions, e.g. [Schiele et al. 2004] or [Handte et al. 2007].

Requirement 4 – Description of objects (interface). Another requirement is an im-
plementation independent description of the object that can be used by both im-
plementers and requesters. This will facilitate decoupling of design and actual im-
plementation, which will enable cooperating concepts to be developed in a loosely
coupled way with respect to the actual software and hardware available. Due to
its general usefulness, this requirement is realized by many existing integration
ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2011.

Ubiquitous Integration of Cooperating Objects · 5

systems, e.g. [Object Management Group 2004] or [Sun Microsystems 2004].

Requirement 5 – Semantic description capabilities. Semantics and ontologies should
be used to enforce the dynamic interpretation of things and as an input for reason-
ing systems. An object should be able to not only understand that cooperation is
possible, but also to assess what impact the cooperation might have, e.g., on the
resources, time, processor utilization, etc. Thereby, it should describe constraints
of capabilities of the specific cooperation. So far, only few existing integration
approaches such as PECES [Haroon et al. 2009] attempt to tackle this require-
ment; however, it is important to notice that the use of semantic descriptions has
been long researched at industrial scale, for example in the manufacturing industry
[?], [?], from where it has been possible to obtain experience about its potential
application in embedded devices.

Requirement 6 – Inheritance/polymorphism. To simplify programming via code
reuse, it would make sense to have a way to form new objects using objects that
have already been defined. At a later stage one can move towards the Composite
Reuse Principle which enables polymorphic behavior and code reuse by containing
other classes which implement the desired functionality which is partially addressed
by [Mazzola Paluska et al. 2008] or [Becker et al. 2004].

Requirement 7 – Composition/orchestration. As basis for cooperation, genera-
tion and execution of work-plans between objects, services and other resources
in order to promote their interaction should be supported. One example for this
type of orchestration are the adaptable flows implemented in ALLOW [Herrmann
et al. 2008].

Requirement 8 – Pluggability. Due to the continuous evolution of future systems,
ubiquitous integration will require the dynamic interaction with newly plugged-in
and previously unknown objects. This refers not only to software but also to hard-
ware; typical examples include communication, computation, behavior, etc. and
calls for a component-based approach where things can be combined to customize
existing behavior or to deliver more complex ones. Cooperating objects support-
ing pluggability will enable third-party developers to create capabilities to extend
them, easy ways of adding new features, reduced size and independent application
development, etc. On the software side, this can be addressed by approaches such
as Speakeasy [Edwards et al. 2002].

Requirement 9 – Service discovery. Cooperating Objects must support a mech-
anism for each node to make its services known to the system and also to allow
querying for services. Automatic service discovery will allow us to access them in
a dynamic way without having explicit task knowledge and the need of a priori
binding. The last would also enable system scalability and support the composable
approach of services. However, existing approaches such as [UPnP Forum 2008] or
[Sun Microsystems 2006] mostly focus on low level aspects of this process.

Requirement 10 – (Web) service direct device access. Enterprise applications must
be able not only to discover but, in many cases, also to communicate directly with
devices, and consume the services they offer [Karnouskos et al. 2010]. The need to
bypass intermediates and directly acquire specific data from the device may offer
business benefits and rapid development, deployment, and change management.

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2011.

6 · Karnouskos, Villaseñor, Handte, and Marrón

Additional support, e.g. the capability of event notifications from the device side
to which other services can subscribe, may provide optimization advantages.

Requirement 11 – (Web) service indirect device access (gateway). Gateways might
glue to the Cooperating Objects infrastructure devices by hiding heterogeneity and
resource scarceness. However, most efforts in the research domain today focus
on how to open the device functionality to the enterprise systems, yet, the oppo-
site, i.e., the opening of enterprise systems to the devices, might also be beneficial
[Karnouskos et al. 2010]. For instance, devices should be able to subscribe to events
and use enterprise services; this can be achieved by creating “virtual devices” that
proxy an enterprise service. Having achieved that, business logic executing locally
on devices can now take decisions not only based on its local information, but also
on information from enterprise systems.

Requirement 12 – Brokered access to events. Events are a fundamental pillar of
a service-based infrastructure; therefore access to these has to be eased. As many
devices are expected to be mobile, and their on-line status often changes (including
the services they host), buffered service invocation should be in place to guarantee
that any started process will continue when the device becomes available again
(opportunistic networking). Also, since not all applications expose (web) services,
a pull point should be realized that will offer access to infrastructure events by
polling [Spiess et al. 2009]. Minimized resource usage on the device by delegating
access to a more powerful device/system will be beneficial.

Requirement 13 – Service life-cycle management. In future infrastructures, var-
ious services are expected to be installed, updated, deleted, started, and stopped.
Therefore, the requirement is to provide basic support on-device/in-infrastructure
that can offer an open way of handling these issues [?], [?].

Requirement 14 – Legacy device integration. Devices of older generations should
be also part of the new infrastructure. Although their role will be mostly providing
(and not consuming) information, we have to make sure that this information can
be acquired and transformed [Karnouskos et al. 2010] to fit in the new service-
enabled infrastructure. The latter is expected to be achieved via the wrapping of
them, for example, using web services. An alternative to this is to use extensible
protocol composition [Handte et al. 2010], [Aitenbichler et al. 2007].

Requirement 15 – Historian. In an information-rich infrastructure, a continuous
logging of relevant data, events, and the history of devices is needed. The historian
is needed to offer logging of information to services, especially when an analysis of
up-to-now behavior of devices and their services is needed, for example, to support
system audits.

Requirement 16 – Device management. Service-enabled devices will contain both,
static and dynamic data. This data can now be better and more reliably integrated,
e.g. into enterprise systems. However, in order to manage large infrastructures, a
common way of applying basic management tasks is needed [?], [?]. The device
management requirement makes sure that at least on the middleware side, there is
a way to hide heterogeneity and provide uniform access to a device’s and infras-
tructure’s life cycle.

Requirement 17 – Security, trust and privacy. Security, trust and privacy mech-
anisms should be considered. Access to the devices and their services will depend on
ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2011.

Ubiquitous Integration of Cooperating Objects · 7

the deployed security context and, therefore, basic functions should be supported.
Trust relationships will need to be considered and built upon. Similarly, privacy
should be preserved especially for devices operating in sensitive user areas, e.g.
hospitals, households, etc. This requires the development of new or the adaptation
of existing methods to new application areas [Apolinarski et al. 2010], [?].

Requirement 18 – Service monitoring. Anticipating that the overall infrastruc-
ture will rely on services, it should be possible to monitor these services and deter-
mine their status [Karnouskos et al. 2010]. Based on their continuous monitoring,
key performance indicators can be acquired, e.g. responsiveness, reliability, perfor-
mance, quality, etc.

As we see for the cooperating objects domain we deal with a wide range of
requirements. In the next section we propose a reference architecture which could
be used in order to define the necessary elements for enabling cooperating objects.
This reference architecture has been specified taking into consideration the list of
requirements described previously.

3. UICO ARCHITECTURE

As fundamental basis for a ubiquitous integration of cooperating objects, we envi-
sion an overall abstract architecture. Embedded devices are depicted at the lowest
layer, i.e. the device layer. They are composed of a hardware as well as a software
part that enables low level programmability. On the top layer, i.e., the application
layer, we have various (enterprise) services and applications that can form mash-
ups. Between the two, there is a middleware layer partially at infrastructure level
and partially at device level.

This middleware implements functionality that assists towards the integration
of and collaboration among cooperating objects. Figure 1 presents an overview
of an architecture we follow within the CONET. The focus is on the middleware
implemented on-device and in-infrastructure. The selection of the components was
done with the requirements of Section 2 in mind, in order to sufficiently tackle them.
Since we want to enable both device-only and device-to-infrastructure services, some
functionality is unavoidably duplicated at infrastructure and device level; however
with different degrees of support and capabilities. Examples of implementation
of this architecture can be realized, for instance, by the SOCRADES Integration
Architecture [Spiess et al. 2009] for the infrastructure part, while for the device
specific part the BASE [Becker et al. 2003] can be used.

Applications may use the infrastructure services in order to realize sophisticated
approaches and still be lightweight; however this is not a must as they can use also
the devices directly. Security, trust and privacy are critical issues spawning both
the application, infrastructure and device layer.

3.1 Infrastructure middleware

At the infrastructure level, the aim is to enable enterprise-level applications to inter-
act with and consume data from a wide range of networked devices in a service-based
manner. The infrastructure should enable and promote the bidirectional collabo-
ration among its services, enterprise applications and devices in a cross-layer way.
As depicted in Figure 1 several components can be identified; a detailed description

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2011.

8 · Karnouskos, Villaseñor, Handte, and Marrón

Device OSDevice OS

Device HWDevice HW NetworkNetwork ProcessingProcessing

Resource ManagerResource Manager

Communication Plugins

Micro-Broker (Execution Engine)

Device Service Proxy Device Service Injector

Device System Services

Device Services

Service Lifecycle ManagerDevice ManagerDevice Manager
(Monitoring + Inventory +Discovery + History)

Invocation HandlerEventing
Application Service Application Service

Catalogue

Composed Services Composed Services
Runtime

Service Monitor

Available in (resource-limited) devicesAvailable in (resource-limited) devices

Infrastructure
Middleware

Secu
rity &

 P
rivacy

Device
Middleware

SemanticsSemantics

Knowledge Knowledge
Manager

MonitoringMonitoring DiscoveryDiscovery

A
p

p
lic

at
io

n
 L

ay
er

Application Layer

Fig. 1. UICO Reference Architecture. A minimal device middleware enables the ad-hoc coop-
eration of objects whose capabilities can be enhanced with an infrastructure middleware when
available. This enables uniform support for a broad spectrum of application scenarios while being
suitable for resource-constrained embedded systems. Security and privacy are cross-cutting con-
cerns that must be handled at both infrastructure and device middleware levels in an adequate
manner.

[Spiess et al. 2009] as well as hands-on experiences based on the implementation
and usage in prototypes are available in [Karnouskos et al. 2010].

A messaging (or eventing) system allows an application to consume any events
whenever it is ready to and not when a low-level service happens to send them. A
so-called invocation handler allows buffering invocations to devices that are only
intermittently connected. Finally, an application service catalog enables human
users and applications to find service descriptions and pointers to running service
instances. Both atomic services hosted by the devices and higher-level composed
services can be listed here.

All functionality offered by networked devices is abstracted by services. The
notion of devices is abstracted and the only visible assets are services. A repository
of all currently connected service instances is provided by the service monitor. A
runtime for the execution of composed services is available to support composition
of business processes by offering an execution service, for example, for specified
BPEL processes, meaning that service compositions can be modeled as business
processes where the involved partners do not need to be explicitly specified at
design time. The knowledge manager introduces the semantics and supports the
ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2011.

Ubiquitous Integration of Cooperating Objects · 9

collaboration among devices by semantic arguing means.
Devices are dynamically discovered, monitored and their status is available to the

enterprise services. This is done via the device manager. Additionally the service
lifecycle manager provides a unified view on remotely installing or updating the
software (via the device service injector) that runs on devices. The device service
proxy eases the integration of several categories of heterogeneous devices. Plug-ins
can be written that uniformly address devices based on their capabilities, which
enables the devices to communicate natively, i.e. in their own protocol.

3.2 Device middleware

At the device level, the goal is to support (enterprise) applications running in the
infrastructure with an appropriate interface to the capabilities of networked and
possibly mobile devices. In addition, the middleware on the devices should support
the collaboration between different devices in a peer to peer fashion. This reduces
the dependencies on the infrastructure in cases where the collaborative tasks are
simple enough to be done by several devices. To fulfill both goals simultaneously,
the architecture depicted in Figure 1 introduces four layers that are stacked on top
of the device hardware and operating systems. In the following, we briefly outline
their functionality and interaction from top to bottom.

At the highest layer, device manufacturers and application developers configure
devices with local applications and services. The services make the device-specific
functionality available to other applications that may be running locally on the
device or remotely on another device or in the infrastructure. In order to be useful
for arbitrary applications, the services are described not only in terms of interfaces
but also with respect to their semantics. The semantic description simplifies the
integration of previously unknown services by making their functionality “visible” to
other services. This is important since it helps to answer two fundamental questions
frequently asked when working on heterogeneous environments using services: what
can be done with the service? and how to interact with it? [?].

Semantic descriptions are made possible by creating taxonomies of indivisible
classes (or concepts), also known as ontologies. The ontologies are intended to rep-
resent knowledge pertaining to a specific domain of discourse in a rational, bounded
way. There exist many languages used to define ontologies, but at the present the
most commonly used are rooted on Description Logic; such is the case of the Web
Ontology Language [?]. A class may contain one or more individuals (or instances)
which inherit membership and properties of the parent class. The facts about the
classes and their members are asserted by means of properties describing binary
relationships.

In this sense, a service provided by a device could be described semantically
by means of ontologies containing classes which define different aspects about the
service: for example: type of service, types of input/output data expected/produced
by the service1, types of preconditions required before using the service, types of

1This differs from the interface description, which is only used as a reference during the devel-
opment stage of other services and/or objects which may need to interact with the service in
question. In this case, the semantic description about the data types can be used to infer if a
translation procedure is required before engaging in a collaboration.

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2011.

10 · Karnouskos, Villaseñor, Handte, and Marrón

postconditions (i.e. change produced on a certain state) generated by the utilization
of the service, etc. It is foreseen that by using ontologies in order to describe the
semantics about the services, it is possible to infer new knowledge about them
which has not been stated a priori. In other words, by understanding what is the
meaning of a service, it could be possible for other entity to use it whether the
service’s interface definition matches 100% what was originally expected or not.

Underneath the device services, system services provide the basic functionality
to support interaction, such as device discovery and service monitoring. The device
discovery service announces the device and monitors the network for announce-
ments from other devices or the infrastructure. If an infrastructure is available,
the discovery service might shift the responsibility to the infrastructure in order to
minimize resource usage. Via the device discovery, the service monitoring service
can determine the availability of services that are needed by applications running
on the device.

To abstract from different software interfaces, the device services and system
services are using an execution engine provided by a so-called micro-broker. The
micro-broker is responsible for forwarding service invocations to remote services and
for dispatching invocations to local services. Thereby, the broker provides interfaces
to register local services, decoupling the interaction pattern of the applications from
the interaction pattern of the communication.

In the spirit of micro kernels, the functionality of the micro-broker can be ex-
tended with communication plug-ins that encapsulate different communication pro-
tocols and communication technologies [Handte et al. 2010] . As a result, they
shield the micro-broker from any device- and technology-specific code which en-
ables platform-independent brokers. Thus, instead of sending remote invocations
directly by means of some fixed communication stack, the micro-broker can flexibly
compose stacks that satisfy different application requirements. As a side effect, this
also increases the interoperability and reduces the size of the on-device middleware.

4. COLLABORATION EXAMPLES

To clarify the concepts of the architecture presented in the previous section, we
briefly introduce two collaboration examples. The first one describes device-only
collaboration. Such collaboration examples often arise in settings where an in-
frastructure is not available, e.g. on the road or in a train, or where the cost of
maintaining it cannot be justified. The second one describes infrastructure-assisted
collaboration which is often used in settings where the cost for maintaining the
infrastructure can be justified by the achievable gains. Both scenarios have already
been implemented and evaluated.

4.1 Device-only Collaboration

As an example of device-only collaboration, let us consider the automation domain
and more specifically the case where two modular material handling units need to
interact in order to provide an adequate transportation service for a pallet carrying
a product. In this example, the collaboration is carried out exclusively between
the devices and there is no need for infrastructure support. Although, it could be
possible to perform the collaboration between the material units using information
channels provided by an underlying infrastructure, the main goal in this case is to
ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2011.

Ubiquitous Integration of Cooperating Objects · 11

Fig. 2. Example of device-only collaboration in the automation domain. Two modular material
handling units can collaborate and negotiate during runtime the transfer of a pallet thanks to
a well-defined communication interface based on Web Services. This provides a new way for
material handling units from different manufacturers (heterogeneous) to collaborate without a
prior knowledge of each other.

provide better scalability to the system by modularizing the units, getting rid of
unnecessary wiring, and reducing the complexity of the communication interfaces.

If every module is considered as a single device it will be necessary to coordinate
the execution of operations provided by every device. From Figure 2, it can be seen
for example that a single unit may offer services such as transferIn, transferOutStart,
and transferOutStop. In this case, module 1, which precedes module 2, should
exchange information about the pallet that is about to transfer, and should request
from module 2 to start transferring the pallet in. Module 2 will inform that it
will accept the pallet only if it is free and, at the same time, it will request from
module 1 to start transferring out the pallet that it currently holds. Since it might
be the case other modules request the same services simultaneously, every single
unit provides in addition operations for reserving and releasing the execution.

4.2 Infrastructure-assisted Device Collaboration

Consider that we have also infrastructure support as we run a multi-site enterprise
in which the assembly of electromechanical components could be allocated to a
corresponding site. This is done as an evaluation result of the best production
facility available when a production request is made, or when — due to external
factors — the production should be shifted to another location.

The idea is that similar production facilities are available in remote locations.
Both facilities provide electromechanical assembly capabilities, and the components
of the production systems in these locations are abstracted and perceived externally
as Web Services (WS). At local level, each one of the facilities acts independently
and can coordinate its WS-enabled production system by using a middleware. At
global level, both facilities can connect to a WS-enabled ERP module provided by a
third-party, which is used for coordinating the production in the remote locations.
This integration architecture is shown in Figure 3.

In addition, the devices in a location could collaborate with devices in another
location, but in this case they are assisted by the infrastructure. This interaction
is achieved by means of a component called Local Discovery Unit (LDU) which
provides a way for connecting and managing devices and WSs from different re-
mote locations, without needing special private network connections or proprietary
protocols between the premises and the enterprise system. Through LDUs, the

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2011.

12 · Karnouskos, Villaseñor, Handte, and Marrón

Fig. 3. Example of device collaboration assisted by the infrastructure. Devices at the same site
cooperate with each other either directly or via their surrounding infrastructure. Multiple local
infrastructures may cooperate to optimize the resource utilization. A local discovery unit enables
the interaction between devices at different sites via an enterprise Intranet or via the Internet.

WSs from a remote location appear as if they were locally available. In this case,
the infrastructure is providing the proxying mechanisms necessary to do this, and
a caching support in order to accelerate the discovery of remote devices and their
WSs.

Next, we discuss our experiences towards assessing the requirements outlined
previously in Section 2, as well as a view on the development priorities for each one
of the requirements.

5. EVALUATION AND DISCUSSION

Several approaches exist, some of which focus only in enhancing networked em-
bedded devices with on-device software, enabling the direct device-to-device col-
laboration; while others focus on partially device-agnostic approaches, making the
infrastructure smarter in order to extract information and feed it to the appro-
priate applications. Our view is that an amalgamation of both approaches might
bring significant benefits to all future IoT players. Therefore, we have focused on
approaches where we had hands-on experiences developing them in the last years,
and attempted to investigate commonalities such as design directions, requirement
coverage, implementation methods, etc.

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2011.

Ubiquitous Integration of Cooperating Objects · 13

T
ab

le
I.

O
ve

rv
ie

w
of

re
qu

ir
em

en
ts

co
ve

ra
ge

by
U

IC
O

m
id

dl
ew

ar
es

M
id

d
le

w
ar

e
A

p
p
ro

ac
h
es

U
IC

O
ID

U
IC

O
R

eq
u
ir

em
en

t
3P

C
S
IA

G
S
N

W
S
N

-C
S
E
1

S
E
2

S
O

T
R

ec
om

m
en

d
at

io
n

1
D

yn
am

ic
co

lla
bo

ra
ti

on
G#

G#
G#

G#
G#

G#
G#

4
2

E
xt

en
si

bi
lit

y

#

G#

#
#

4
3

R
es

ou
rc

e
ut

ili
za

ti
on

#
#

#
#

G#
#

#
4

4
D

es
cr

ip
ti

on
of

ob
je

ct
s

(i
nt

er
fa

ce
)

G#

G#

4

5
Se

m
an

ti
c

de
sc

ri
pt

io
n

ca
pa

bi
lit

ie
s

#
#

G#
#

#
#

2�

6
In

he
ri

ta
nc

e/
P
ol

ym
or

ph
is

m
G#

G#
G#

G#
G#

G#
G#

2�
7

C
om

po
si

ti
on

/O
rc

he
st

ra
ti

on

G#

#

G#

4
8

P
lu

gg
ab

ili
ty

G#

#

G#
#

2�

9
Se

rv
ic

e
di

sc
ov

er
y

G#

4

10
(W

eb
)

se
rv

ic
e

di
re

ct
de

vi
ce

s
ac

ce
ss

G#

#
G#

2�

11
(W

eb
)

se
rv

ic
e

in
di

re
ct

de
vi

ce
s

ac
ce

ss
(g

at
ew

ay
)

#

#
#

#

2�

12
B

ro
ke

re
d

ac
ce

ss
to

ev
en

ts
G#

G#

G#
G#

G#

2�
13

Se
rv

ic
e

lif
e-

cy
cl

e
m

an
ag

em
en

t
G#

G#
#

#
G#

G#
G#

2�
14

L
eg

ac
y

de
vi

ce
in

te
gr

at
io

n
G#

G#

G#
G#

4
15

H
is

to
ri

an
#

G#
G#

#

#
#

2
16

D
ev

ic
e

m
an

ag
em

en
t

#
G#

G#
G#

G#
#

#
2�

17
Se

cu
ri

ty
,
tr

us
t

an
d

pr
iv

ac
y

#
#

#
#

#
#

#
4

18
Se

rv
ic

e
m

on
it

or
in

g
#

G#

G#
G#

#

4

C

ov
er

ed
4

M
us

t
be

in
cl

ud
ed

G#
P
ar

ti
al

ly
co

ve
re

d
2�

Sh
ou

ld
be

in
cl

ud
ed

#
N

ot
co

ve
re

d
2

C
ou

ld
be

in
cl

ud
ed

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2011.

14 · Karnouskos, Villaseñor, Handte, and Marrón

Table I shows an overview of the middleware systems that have been developed
by the members of the CONET consortium, and a comparison based on the re-
quirements that have been jointly derived (as described in Section 2). Thereby,
we identify gaps and possible migration paths in order to provide true support for
the ubiquitous integration of cooperating objects. The following middleware sys-
tems are included for comparison in Table I: Peer-to-Peer Pervasive Computing
(3PC) [Becker et al. 2004]; SOCRADES Integration Architecture (SIA) [Spiess
et al. 2009]; Global Sensor Network (GSN) [Aberer et al. 2006]; Wireless Sensor
Network Center with Gateway Abstraction Layer (WSN-C) [Guerra et al. 2010];
Orchestration Engine with Petri Nets - Continuum (SE1) [Mendes et al. 2009]
and Simulation Framework using smart devices (SE2); as well as the SOCRADES
Orchestration Tools (SOT) [Puttonen et al. 2010]. Finally Table I also depicts our
view on the significance of the requirements and whether these must, should, or
could be present in the future cooperative IoT.

Dynamic collaboration. This functionality is partially covered by all approaches.
However, we still feel it is necessary to specify until which extent an embedded
device is “intelligent”; as well as to define the meaning of “collaboration” among
objects and types of collaborations. In our opinion this is a “must” for any approach
that will deal with a dynamic Cooperating Objects infrastructure.

Extensibility. This is partially covered mainly due to the fact that some ap-
proaches are very task or domain specific. Extensibility is a “must” and should
cover not only communication protocols (the main focus of today’s approaches)
but be embedded on the architecture based on open standards. This implies stan-
dard interaction interfaces, and a modular structure with no hard bindings.

Resource utilization. We can see that this high-impact and important require-
ment is not covered by existing approaches. This is also attributable to the lack of
common methods as well as the difficulty of assessing the resource impact during
execution. This feature “must” be supported to enable resource-driven approaches
in a resource-constrained infrastructure.

Description of objects (interface). This feature is quite well covered; however,
still within specific implementations and is not open in standardized way. An
intermediate mechanism for designing and deploying general types of descriptions
widely understandable is still missing. We consider this a “must” feature because
only implementation independent descriptions can allow the interaction between
objects without the need of constant reconfiguration or re-programming.

Semantic description capabilities. There is partial support for semantics in our
middlewares; however, the majority of embedded devices are not yet capable of em-
bedding complete semantic descriptions about their capabilities. We consider this
as a “should” feature as it will improve the dynamic knowledge based collaboration
and enhance the cooperation capabilities of the objects.

Inheritance/polymorphism. Although partially supported, the focus is mostly on
the inheritance in implementation rather than polymorphism. Cooperating Objects
should inherit features from other objects, both physically and logically. We con-
sider this as a “should” since its existence would facilitate the automatic creation
of new objects and the reuse of code. In conjunction with semantics it would give
ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2011.

Ubiquitous Integration of Cooperating Objects · 15

us new capabilities for knowledge extraction.
Composition/orchestration. This is supported by the majority of middlewares as

most of them assume service-based infrastructures where composition and orches-
tration are common. Dynamic workflows are not embeddable, so it is necessary
to have a mechanism for representing complex workflows in embedded devices.
Additionally, embedded devices do not associate automatically or engage in collab-
oration without a broker guiding the interactions; therefore, it is necessary to define
standard ad-hoc communication patterns that two unknown embedded devices can
follow in order to determine if it is possible to become associated in some manner.
However, resource-constrained devices can also identify their own association capa-
bilities by requesting support from infrastructure services. We consider this as a
“must” as collaborations will be defined possibly as dynamic workflow interactions
among objects.

Pluggability. Partially supported by existing approaches, we consider this as a
“should” for future infrastructures. We cannot fully envision future capabilities
of devices, however, it should be possible to add modules (both in software and
hardware) to enhance or provide new functionality needed to realize a cooperation
scenario.

Service discovery. This is one of the key requirements (therefore a “must”) as
devices will need to discover each other and their capabilities before initiating col-
laborations. As we see almost all of the existing middlewares tackle this. Focus
should be on approaches that provide discovery in a global way (and not only on
local networks).

(Web) service direct device access. Most of the middlewares assume direct access
to the devices and their functionalities. As we mentioned, this is of benefit to specific
enterprise scenarios and, therefore, it is a “should” for the future infrastructures.
However, we have to point out that the target here is mostly resource-rich devices,
or devices that provide very lightweight methods of accessing their itineraries such
as REST.

(Web) service indirect device access (gateway). This requirement is partially sup-
ported by existing middlewares. A significant majority of devices (especially due
to the miniaturization trend) is and will remain resource-constrained, incapable of
accommodating direct access (or it does not make sense to realize that function-
ality). Gateways hiding the heterogeneity of hardware, software, communication
protocols, etc. will mediate access to their features and enable easy integration.
We consider this a “should” as it will allow us to integrate any kind of device to
the global infrastructure.

Brokered access to events. An event-based cooperating objects infrastructure seems
to be eminent in most of the middlewares. Event notifications are partly handled
by the middlewares; however, the successful delivery of events is not guaranteed at
the moment, unless it is explicitly stated. This is especially the case for constrained
devices, which might not request any kind of acknowledgment for the events that
are sent to subscribers in order to save resources. In this case, it would be neces-
sary for such kind of devices to have access to a broker service supported by the
infrastructure, which could take care of the guaranteed delivery. The broker service
will be preferably distributed and/or federated. We consider this a “should” as it

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2011.

16 · Karnouskos, Villaseñor, Handte, and Marrón

would enable the realization of the event-based infrastructure without depending
too much on the device.

Service life-cycle management. Cooperating Objects are expected to provide a
variety of services which could be modified dynamically. In this sense, some mid-
dlewares offer basic service life-cycle management capabilities which are not avail-
able on a general level, and which are application specific. We consider this as a
“should” and see that it is necessary to establish a minimal set of standardized ser-
vice management operations that would be available by default on all Cooperating
Objects and the support infrastructure.

Legacy device integration. Today’s devices are the legacy devices of tomorrow.
All middlewares partially tackle this requirement. However, the main issue is that
all the approaches solve the integration problem only with a reduced set of specific
legacy devices known a priori. In reality, Cooperating Objects are expected to
interact with a very large diversity of legacy devices currently deployed. A solution
to this problem could be to provide the legacy devices with a sufficiently abstract
interface that could allow them to expose their services in a more generic way.
We consider this requirement a “must” as it will heavily dictate the success of
Cooperating Objects, especially in long-living setups such as the industrial domain.

Historian. This is partially tackled by some middlewares, especially the ones that
provide infrastructure services. Selected key data produced by the objects should
be automatically logged by the infrastructure services. This would enable historic
views and statistics in order to evaluate an approach. We consider this a “could”
as it is of low priority in a collaboration.

Device management. Currently there are no unified methods to handle the life-
cycle of heterogeneous devices especially in large-scale heterogeneous infrastruc-
tures. Although partially tackled by existing middlewares, more effort will be
needed once large-scale systems become operational. We consider that this is a
“should” and would enhance the collaboration capabilities.

Security, trust and privacy. It seems that security and privacy issues are under-
estimated, since most approaches try to “put a workable” framework. Trust is
hardly investigated at all. We consider this as a “must” as in some contexts sensi-
tive information can be interchanged between the objects, and the objects should
be prepared for this. For instance, security and trust have significant importance
depending on the operational environments and privacy plays a major role in user-
centric environments, e.g. hospitals, homes, etc.

Service monitoring. Most middlewares do not monitor or provide very limited
support for this requirement. However we consider it as a “must”, especially in
a service-based infrastructure where complex composable services will exist. Since
cooperating objects might co-exist in a distributed fashion and might interact asyn-
chronously, it is important to define a general event-based model that could be used
to monitor any kind of service offered by the objects.

As we can see there are several considerations to be tackled for realizing a co-
operating objects infrastructure and existing middleware systems do not cover all
requirements. It is clear that we need to investigate more how to satisfy all require-
ments efficiently, what their impact would be in specific application domains, and
ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2011.

Ubiquitous Integration of Cooperating Objects · 17

what is the risk associated with the respective degree of requirement fulfillment.

6. CONCLUSION

The field of Cooperating Objects [Marrón et al. 2011] is a very dynamic one that
has the potential of drastically changing the way people interact with the physical
world as well as how business systems integrate it in their processes. We are still
at the dawn of an era, where a new breed of applications and services, strongly
coupled with our everyday environment will revolutionize our lives even in a deeper
way than the Internet has done in these past years.

Seamless cooperation and collaboration is necessary to realize an environment
where the user services are provided in a distraction free manner. Traditional
models support the cooperation either by providing peer-to-peer communication
between devices or by utilizing an infrastructure. We believe that combining both
of these approaches provides several advantages. We have investigated based on our
hands-on experiences the requirements that should be tackled in order to achieve
collaboration both standalone and infrastructure-assisted mode. Based on these,
we have proposed an architecture and depicted a collaboration scenario that has
been implemented by using components of this architecture. Finally, we have prior-
itized the requirements and investigated how these are tackled in a mix of industrial
and academic middlewares while in parallel providing future directions that in our
view are worth following. It is important to mention that although the list of
requirements described in this paper is extensive, it may not be complete. Further-
more, depending on the scenario, there exist different views on the prioritization.
The main intention of this article is to set a starting point for defining the set of
elements that will enable the creation of cooperating objects.

Acknowledgment

The authors would like to thank the partners of European Commission funded
project CONET (www.cooperating-objects.eu), SOCRADES (www.socrades.
eu) and PECES (www.ict-peces.eu).

REFERENCES

Aberer, K., Hauswirth, M., and Salehi, A. 2006. A middleware for fast and flexible sensor
network deployment. In VLDB ’06: Proceedings of the 32nd international conference on Very
large data bases. VLDB Endowment, 1199–1202.

Aitenbichler, E., Kangasharju, J., and Mühlhäuser, M. 2007. Mundocore: A light-weight
infrastructure for pervasive computing. Pervasive Mobile Computing 3, 4, 332–361.

Apolinarski, W., Handte, M., and Marron, P. 2010. A secure context distribution framework
for peer-based pervasive systems. In Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2010 8th IEEE International Conference on. 505 –510.

Becker, C., Handte, M., Schiele, G., and Rothermel, K. 2004. PCOM - A Component Sys-
tem for Pervasive Computing. In PERCOM ’04: Proceedings of the Second IEEE International
Conference on Pervasive Computing and Communications (PerCom’04). IEEE Computer So-
ciety, Washington, DC, USA, 67.

Becker, C., Schiele, G., Gubbels, H., and Rothermel, K. 2003. BASE ” A Micro-Broker-
Based Middleware for Pervasive Computing. In PERCOM ’03: Proceedings of the First IEEE
International Conference on Pervasive Computing and Communications. IEEE Computer So-
ciety, Washington, DC, USA, 443.

Cheng, S.-W., Garlan, D., Schmerl, B., Sousa, J. P., Spitznagel, B., Steenkiste, P., and
Hu, N. 2002. Software architecture-based adaptation for pervasive systems. In International

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2011.

18 · Karnouskos, Villaseñor, Handte, and Marrón

Conference on Architecture of Computing Systems (ARCS’02): Trends in Network and Per-
vasive Computing, H. Schmeck, T. Ungerer, and L. Wolf, Eds. Vol. 2299. Published in Lecture
Notes in Computer Science, 67–82.

Edwards, W. K., Newman, M. W., Sedivy, J., Smith, T., and Izadi, S. 2002. Challenge: recom-
binant computing and the speakeasy approach. In Proceedings of the 8th annual international
conference on Mobile computing and networking. MobiCom ’02. ACM, New York, NY, USA,
279–286.

European Commission DG Information Society & Media. 2008. Monitoring and control:
today’s market, its evolution till 2020 and the impact of ICT on these. http://www.decision.
eu/smart/SMART 9Oct v2.pdf. Workshop presentation.

Ferscha, A., Hechinger, M., Mayrhofer, R., and Oberhauser, R. 2004. A light-weight
component model for peer-to-peer applications. In 24th International Conference on Distributed
Computing Systems Workshops. Washington, DC, USA, 520–527.

Guerra, S., Fici, G. P., and Borean, C. 2010. Wireless Sensor Network Center: a ZigBee
Network Management System. In ZigBee European Developers Conference, Munich, Germany,
27-28 April 2010.

Guinard, D., Trifa, V., Karnouskos, S., Spiess, P., and Savio, D. 2010. Interacting with the
SOA-based Internet of Things: Discovery, Query, Selection, and On-Demand Provisioning of
Web Services. IEEE Transactions on Services Computing. (accepted for publication).

Handte, M., Becker, C., and Schiele, G. 2003. Experiences - extensibility and flexibility in
base. In Workshop on System Support for Ubiquitous Computing (UbiSys) at Ubicomp 2003.
Seattle, USA.

Handte, M., Herrmann, K., Schiele, G., and Becker, C. 2007. Supporting pluggable con-
figuration algorithms in pcom. In Proceedings of the Workshop on Middleware Support for
Pervasive Computing (PERWARE), International Conference on Pervasive Computing and
Communications (PERCOM), to appear.

Handte, M., Wagner, S., Schiele, G., Becker, C., and Marrón, P. J. 2010. The base plug-in
architecture - composable communication support for pervasive systems. In 7th ACM Interna-
tional Conference on Pervasive Services. Newport Beach, CA, USA.

Haroon, M., Handte, M., and Marron, P. J. 2009. Generic role assignment: A uniform mid-
dleware abstraction for configuration of pervasive systems. In IEEE International Conference
on Pervasive Computing and Communications. Washington, DC, USA, 1–6.

Herrmann, K., Rothermel, K., Kortuem, G., and Dulay, N. 2008. Adaptable pervasive flows
- an emerging technology for pervasive adaptation. In 2008 Second IEEE Int. Conference on
Self-Adaptive and Self-Organizing Systems Workshops. Washington, DC, USA, 108–113.

Karnouskos, S., Savio, D., Spiess, P., Guinard, D., Trifa, V., and Baecker, O. 2010. Real
World Service Interaction with Enterprise Systems in Dynamic Manufacturing Environments.
In Artificial Intelligence Techniques for Networked Manufacturing Enterprises Management,
L. Benyoucef and B. Grabot, Eds. Number ISBN 978-1-84996-118-9. Springer. (in press).

Marrón, P. J., Karnouskos, S., Minder, D., and Ollero, A., Eds. 2011. The emerging domain
of Cooperating Objects. Number ISBN: 978-3-642-16945-8. Springer.

Mazzola Paluska, J., Pham, H., Saif, U., Chau, G., Terman, C., and Ward, S. 2008. Struc-
tured decomposition of adaptive applications. Pervasive Mobile Computing 4, 6, 791–806.

Mendes, J. M., Bepperling, A., Pinto, J., Leitao, P., Restivo, F., and Colombo, A. W. 2009.
Software Methodologies for the Engineering of Service-Oriented Industrial Automation: The
Continuum Project. Computer Software and Applications Conference, Annual International 1,
452–459.

Object Management Group. 2004. The common object request broker: Architecture and spec-
ification, revision 3.0.3. online publication. http://www.omg.org/.

Puttonen, J., Lobov, A., Cavia Soto, M., and Mart́ınez Lastra, J. L. 2010. A semantic
web services-based approach for production systems control. Advanced Engineering Informat-
ics 24, 3 (Aug.), 285–299.

Román, M. and Campbell, R. H. 2000. GAIA: Enabling active spaces. In Proceedings of the
9th ACM SIGOPS European Workshop. ACM, ACM Press.

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2011.

Ubiquitous Integration of Cooperating Objects · 19

Román, M., Kon, F., and Campbell, R. H. 2001. Reflective middleware: From your desk to
your hand. IEEE Distributed Systems Online Journal, Special Issue on Reflective Middleware.

Schiele, G., Becker, C., and Rothermel, K. 2004. Energy-efficient cluster-based service discov-
ery for Ubiquitous Computing. In EW 11: Proceedings of the 11th workshop on ACM SIGOPS
European workshop. ACM, New York, NY, USA, 14.

Spiess, P., Karnouskos, S., Guinard, D., Savio, D., Baecker, O., Souza, L. M. S. d., and
Trifa, V. 2009. SOA-Based Integration of the Internet of Things in Enterprise Services. In
IEEE International Conference on Web Services, ICWS 2009 , Los Angeles, CA, USA. 968–
975.

Sun Microsystems. 2004. Java remote method invocation specification. online publication.
http://java.sun.com/j2se/1.5/pdf/rmi-spec-1.5.0.pdf.

Sun Microsystems. 2006. Jini technology surrogate architecture specification, v1.0. online pub-
lication. http://surrogate.dev.java.net/specs.html.

UPnP Forum. 2008. Universal plug and play device architecture, version 1.0, document re-
vision date 24 april 2008. online publication. http://www.upnp.org/specs/arch/UPnP-arch-
DeviceArchitecture-v1.0-20080424.pdf.

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2011.

