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Abstract—The lifetime requirements on wireless sensor net-
works often require the redundant deployment of sensor nodes
with appropriate management mechanisms based on node clus-
tering. Yet, existing clustering approaches do not take the pri-
mary task of sensor networks into account: performing relevant
measurements. They usually form ‘arbitrary’ clusters, e.g., using
connectivity information, and thus, the resulting measurements
are often of only limited use to the applications. This problem
can be avoided by considering application-specific semantics. For
indoor applications, the notion of a room provides a natural unit
of clustering since walls are constructed deliberately to ensure
locality. This paper shows that it is feasible to automatically
create clusters that reflect boundaries between rooms by analyz-
ing the measurements of inexpensive, broadly available sensors.
The paper first analyzes the applicability of statistical clustering
methods and based on this analysis, it proposes and evaluates a
lightweight approach to determine clusters in real deployments.

I. INTRODUCTION

The lifetime requirements of wireless sensor network de-
ployments continue to exceed the capacity of today’s battery
technology by orders of magnitude. A frequently used solution
to this problem is the redundant deployment of sensor nodes in
combination with appropriate management mechanisms such
as node clustering with temporary cluster-node deactivation
and cluster-head rotation. However, existing clustering ap-
proaches usually form ‘arbitrary’ groups, for example based
on connectivity information. As a result, the deactivation of
clustered nodes or the aggregation of values in clusters can
severely distort measurements since the results are heavily
dependent on the respective clustering.

This problem can be avoided by forming clusters in such a
way that they reflect real world semantics that are meaningful
to the application. For indoor applications, the notion of a
room provides a natural unit of clustering that is particularly
suitable for sensing, since walls are deliberately constructed to
ensure locality by blocking sound, light, temperature, humidity
and so on. Yet, the sheer number of sensor nodes in sensor
network deployments with sufficient redundancy renders man-
ual cluster configuration a prohibitively tedious and sometimes
even impossible task. At the same time, adequate location
information is often not available or too costly to acquire
indoors so that cluster membership cannot be inferred from the
position of nodes in the building. Moreover, neither connec-
tivity information nor distance measurement techniques like
RSSI or TDOA are able to separate neighboring nodes located

in adjacent areas: Despite all of their limitations indoors, these
techniques rather estimate distances or express closeness than
detecting area boundaries like walls. Thus, there is a need to
come up with other means of obtaining meaningful clusters in
sensor networks automatically.

This paper shows that it is feasible to automatically create
clusters (groups of nodes) that adhere to room boundaries
using inexpensive and broadly available sensors. To do this,
the paper first presents an off-line analysis of the applicability
of relevant data filtering and statistical data clustering methods
for the task of detecting room boundaries through sensor
measurements. Using the results of the analysis, the paper
proposes and evaluates a lightweight approach to compute
clusters in real world wireless sensor network deployments.

It is worth noting that apart from redundancy management
to improve the network lifetime, clustering information derived
on the basis of real world semantics can also be useful for
a broad spectrum of additional tasks. Examples include role
assignment as described in Frank and Romer [1], anomaly
detection [2] and room level querying.

The remainder of this paper is organized as follows. The
following section briefly reviews related work. Section III an-
alyzes the applicability of different data filtering and statistical
data clustering methods to determine clusters of nodes that
reside within the same room of a building. Based on this
analysis, Section IV derives the approach to determine clusters
of nodes in real sensor network deployments and Section
V evaluates it. Finally, Section VI concludes the paper and
discusses future work.

II. RELATED WORK

Clustering is a frequently used mechanism in wireless
sensor networks. Applications include routing, aggregation and
coordination. In most cases, clusters are formed on the basis
of connectivity information or on the basis of geographical
positions of sensor nodes. LEACH [3], for example, was one
of the first clustering protocols for wireless sensor networks
that employed the idea of cluster-head rotation in order to
improve lifetime. However, the clusters formed by LEACH
are purely based on a probability value to become a cluster-
head and the topology of the network. The same holds true
for other protocols such as HEED [4].
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The middleware presented in [5] exhibits a close relation-
ship to our work as it is also targeted at clustering nodes on
the basis of sensor measurements. However, the actual com-
parison and classification of measurements to derive clusters
is an aspect not considered by the middleware. This missing
building block is the focus of this paper.

The work presented in [6] considers a grouping of sensor
nodes that is — in a broader sense — quite similar to the one we
are aiming at. The grouping aims at identifying sensors that
are worn by the same person. To do this, Lester et al. rely
on acceleration sensors. Their results show that a successful
grouping can be established with high accuracy if the sensors
are worn on the same part of the body. However, the utilized
methods are not applicable to our scenario with static sensor
nodes, since the characteristics of the available sensor data are
very different.

Meka and Singh [7] cluster sensor nodes based on similarity
of sensor data. However, their approach is not oriented on real
world semantics. Instead, nodes in their clusters must only
conform to a specified minimum similarity level. Moreover,
their distributed computation is quite sophisticated, for ex-
ample requiring the nodes to organize and coordinate in a
quadtree structure.

As part of this work we use different approaches from the
area of statistical data clustering in order to classify objects
so that objects of the same class have a high degree of
similarity while objects in different classes have a low degree.
An overview of such methods and their application areas can
be found in [8]. Examples include data mining [9], health
psychology [10] and gene analysis.

An important application field for our approach is data
aggregation [11]. One aggregation approach that could specif-
ically benefit from clusters formed on the basis of real world
semantics is [12] as it aims at optimizing the transmission
structure of the network based on correlations between sensor
measurements. It can be expected that such correlations are
frequently present inside the same room of a building.

III. ANALYSIS

Before we describe the approach to cluster sensor nodes in
real wireless sensor network deployments in the next section,
we first analyse the applicability of relevant data filtering and
statistical data clustering methods to determine the groups of
sensor nodes that reside within the same room. The results
of this analysis are important for two reasons. Firstly, they
are used to select appropriate methods for the approach and,
secondly, they are used as the best-case scenario in order to
evaluate the quality of the approach.

To perform the analysis, we use a centralized experimental
setup to collect real sensor data in a building. During the ex-
periment, each participating sensor node first performs a series
of n measurements that are stored in its local flash memory.
To globally synchronize the measurements of different sensor
nodes, we use the Flooding Time Synchronization Protocol
(FTSP) [13] for TinyOS. After the measurement series has
been completed, each sensor node forwards its stored data
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Fig. 1: Processing steps

to a central base station. After all measurements have been
collected, we start with an off-line analysis using a PC. Clearly,
this setting is not suitable for real world wireless sensor
networks. However, it eliminates a number of complications
as discussed later on and ensures that multiple methods can
be run on the same set of input data.

The off-line analysis consists of three steps, namely data
preprocessing, similarity calculation and node clustering.
Since domain knowledge can greatly improve the clustering
process [8], we also discuss how it can be integrated into
the off-line analysis. Fig. 1 shows the individual steps of the
overall experiment. In the following, we describe the details
of the off-line analysis for each step.

A. Data Preprocessing

Data preprocessing or data filtering modifies or transforms
the acquired sensor data in a way that supports the fol-
lowing steps. Besides overcoming some effects of the lack
of calibration, data preprocessing is one way of including
domain knowledge into the analysis by emphasizing specific
features hidden in the sensor data. From the vast selection
of preprocessing steps we have opted for four basic methods,
since they are particularly adequate for filtering sensor data.
Each of the filters presented below is oriented towards some
specific characteristic of sensor data:

o The deviation between the output of uncalibrated sensor
chips can increase linearly with the values. The normal-
ization filter deals with this problem by bringing the
sensor data from all data sources to one common scale.

« In order to remove small amplitude jittering of sensor out-
put, a data smoothing filter can be applied. It smoothes
the incoming data signal by calculating the average of the
previous x values and uses this average as the output.

o Abstracting from more complex irregularities is the task
of the curve tendency filter. This filter solely records
whether the current sensor value is higher or lower than
the previous value, thereby producing binary output.

o The motivation for the event detection filter originates
from the observation that some types of sensors occa-
sionally experience significant changes of their values in
between two samples. An exemplary source of such a
change can be a light that is switched on or off. We
record such sudden changes using the event detection
filter. Thus, this type of filter is a way of incorporating
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domain knowledge in the preprocessing step.

B. Similarity Calculation

For the calculation of similarities there are distance metrics
and correlation coefficients. Distance metrics express how far
apart two variables are according to a certain criterion. A
correlation coefficient measures the strength of a relationship
between two variables. A large set of different distance and
correlation measures have been developed in the field of
data clustering. For the analysis, we use a set of elementary
metrics that cover the different available classes. Specifically,
we consider the Euclidean distance and the Manhattan distance
as well as the Pearson coefficient and the Phi coefficient for
binary data.

The Euclidean distance and the Manhattan distance are
two distance metrics that are most popular for their use in the
field of geometry:

dpuect(T,y)=+/2 1= (Ti—yi)?,

The main idea of Pearson’s product-moment correlation
coefficient is to measure the tendency of two variables to
increase and decrease together assuming a linear relationship
of these variables. Equation 2 shows how it is calculated for
two variables x and y when a series of n samples has been
taken. T and ¥/ are the mean values and o, and o, the standard
deviations calculated over the n samples of the variables = and
y respectively.
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The Phi coefficient works on data with only two magnitudes
like the data generated by the event filter or the curve tendency
filter. It is calculated as shown in the equation in Fig. 2 (a)
based on information about how often the binary values of x
and y match and how often they conflict (see Fig. 2 (b)).

C. Node Clustering

The last step is to use a data clustering algorithm to
calculate a clustering of nodes based on the acquired similarity
information. For this step, we use hierarchical and partitional
clustering.

The basic idea of hierarchical clustering is to arrange
the individual elements of a set in a tree so that short
branch distances between elements in the tree express a high
level of similarity and long branch distances express a small
level of similarity. The clustering process can either be done

agglomerative or divisive. Agglomerative methods start with
each element being its own cluster and then form larger
clusters step by step. Divisive clustering works the other way
around. We only discuss agglomerative clustering here since
it outperformed divisive clustering in our experiments.

In each step of the clustering process, the two most sim-
ilar elements are joined together to form a new aggregated
element. This is repeated until all elements are part of one
large aggregated element. This creates a tree data structure
with the individual elements forming the leafs of the tree
and the union of all elements forming the root of the tree.
Different methods are available to compare the similarity
among aggregated elements, e.g., minimum similarity (single
linkage), maximum similarity (complete linkage) or average
similarity (average linkage). If the number of clusters is
known, it is possible to deduce the desired set of clusters by
stopping the agglomerative clustering once the desired number
is reached.

The class of partitional clustering approaches represents
all algorithms that directly calculate a specified number of
clusters. For our analysis, we used the k-means clustering
algorithm which is the most popular representative of the
square error clustering methods. Applying it requires knowl-
edge about the number of clusters to be found in the system.
Initially, the individual elements are randomly assigned to one
of the k clusters. Then, for each cluster, the mean vector of the
cluster elements (the “centroid”) is calculated. Each element is
then reassigned to the cluster whose centroid has the highest
similarity to the data vector of the respective element. The
computation of the cluster centroids and the reassignments of
the elements is repeated until some convergence criterion is
met (e.g., the assignment does not change anymore). Due to
the random initialization, each run of the k-means algorithm
can yield different results.

D. Combining Clustering Trees

With more than one information source available (e.g., mul-
tiple sensors), it is desirable to be able to combine information
acquired from these sources in order to improve the resulting
clustering quality and to balance weaknesses and strengths of
different criteria. An example of a weakness of one criterion in
a specific scenario is light sensor data in a room with extremely
irregular lighting conditions like some sensors being exposed
to direct sunlight while other sensors lie in much darker areas.

However, combining distance or correlation information
from different sources is non-trivial and cannot be done by
simply calculating the average distance or correlation matrices
as the range of values strongly depends on the properties of the
sensor, the preprocessing methods and the similarity measure.

We found a suitable solution to this problem coming from
the field of biology where the average consensus supertree
(ACS) [14] method has been developed to find a consensus
based on multiple clustering trees. The basic idea of ACS is
to calculate path length matrices for each of the input trees
then take the average matrix of these path length matrices and
use it as input for a second round of clustering. The path length



TABLE I: Average correlation

Home scenario 1 Home scenario 2
Inside | Between rooms | Inside | Between rooms
Humidity 0.87 0.22 0.86 -0.02
Light PAR 0.96 0.50 0.93 0.20
Light TSR 0.98 0.39 0.95 0.34
Temperature 0.83 0.35 0.77 0.18

(a) inside rooms / between rooms

Home scenario 1 | Home scenario 2
Temp. — Light TSR 0.52 0.17
Temp. — Light PAR 0.44 0.15
Temp. — Humidity 0.17 0.28
Li. TSR — Li. PAR 0.88 0.94
Li. TSR — Humidity 0.08 0.07
Li. PAR — Humidity 0.03 0.04

(b) among different sensors

matrix of a tree contains for each pair of nodes the number
of branches between the nodes in the input tree. While the
original version of ACS used a least-squares algorithm for the
second cluster calculation we simply use the same clustering
algorithm that was used to calculate the input clustering trees.
Due to space limitations, we refer to [14] for a more detailed
description of ACS.

E. Experimental Analysis

For the analysis of the described methods we used Tmote
Sky sensor nodes providing temperature, humidity and light
sensors in the form of photosynthetically active radiation
(PAR) as well as total solar radiation (TSR). In each scenario,
we distributed twelve nodes to four different rooms with three
nodes being placed in each room. The sensor nodes were
attached to the wall or to furniture in different parts of the
monitored rooms at different heights (ranging from the floor to
the ceiling) and with different orientations. We paid attention
to the fact that none of the sensor chips was directly covered by
other artifacts of the room. However, effects like some nodes
lying in the shadow of an artifact or lying in the airflow of a
window were deliberately not avoided.

1) Validating assumptions: In a first step we validated the
assumption that there exists a significantly higher correlation
among sensor values of nodes located in the same area than
of nodes located in different areas using the complete data
sets collected in our exemplary scenarios and the Pearson
coefficient. The results shown in Table I (a) confirm this and
also illustrate interesting differences among different sensors
and scenarios.

As a second step, Table I (b) shows potential correlations
among different types of sensors again using the average value
of the Pearson coefficient. This time it is calculated for all pairs
of different sensors on the same sensor node. If two types of
sensor output are highly correlated then operating both sensors
on the same node cannot provide much additional information.
Such a correlation only exists between the TSR light sensor
and the PAR light sensor. But even in this case the correlation
tends to be smaller than the correlation among different nodes
in the same area when considering a single sensor type.

2) Results: We evaluated different reasonable combinations
of preprocessing, similarity calculation and data clustering
approaches. The basic evaluation criterion in this analysis
is the correctness of the clustering result expressed by the
percentage of groups that have been calculated correctly. A
correctly calculated group contains all nodes belonging to this
group (in our case: all nodes lying in the same room) and
does not contain any node belonging to another group. This
is more complicated for hierarchical clustering as we need to
differentiate between node groups that form a correct part of
the clustering tree and node groups that additionally can be
correctly deduced during the calculation of the clustering tree
as described in Section III-C.

Among the four sensor types we experimented with, the
TSR light sensor proved to be the most reliable one that
provided useful results over a large number of cases. While
the PAR light sensor and the humidity sensor are also useful
in many cases, temperature showed to be a surprisingly weak
criterion.

The event detection filter is the only preprocessing step
that consistently proved to be useful in a large set of cases
across all experiments. The curve tendency filter also provided
good clustering results, however, it required a large number
of samples or tended not to stabilize which disqualifies it for
use in real applications. Improvements by data smoothing and
normalization were not reproducible across experiments.

Concerning the similarity among nodes, the analysis of our
collected data showed that the Pearson correlation coefficient
is the most reliable similarity metric. It works well for all
sensor types albeit requiring different numbers of data samples
to stabilize (See data in Table II (a)). The Euclidean and the
Manhattan metrics work well in a smaller set of scenarios with
only some types of data. No clear advantage of one of the two
over the other can be detected. The Phi coefficient works well
in combination with the event filter.

Both the hierarchical clustering algorithms and the k-means
clustering algorithm worked well with a similar quality. For
that reason the following discussions will only consider com-
plete linkage hierarchical clustering and only show its results.
Due to space limitations, we defer the analysis of combining
multiple criteria using ACS to the evaluation in Section V.

Table II (a) shows some exemplary node clustering results
with different combinations of filters and similarity measures
recorded for the two home scenarios. Both experiments were
started in the evening and the analysis is based on data samples
taken every 200 seconds. For each combination the table
shows the percentage of clusters correctly identified and the
number of steps (= the number of data samples) required
for the algorithm to stabilize. We use a dash to indicate the
case where the algorithm fails to find a stable solution. !
Table II (b) summarizes the results of our analysis of the
centralized approach considering the usefulness of the data

UIf the number of steps is supplemented by a star (*) then the result shown
is for the number of correct clusters being part of the tree and not for the
number of clusters correctly deduced during the calculation of the clustering
tree as described above.



TABLE II: Results of the analysis

Home scenario 1 Home scenario 2
Success Steps Success Steps
Humidity Pearson 100% 50 75-100% -
PAR Pearson 100% 70 100% 70
TSR Pearson 100% 70 100% 70
Temperature Pearson 100% 500 75% 900*
TSR Euclidean 75-100% - 100% 10%
TSR Manhattan 75-100% - 100% 10*
TSR Event10.0 Phi 100% 90* 100% 80*
TSR Event20.0 Phi 100% 40%* 100% 10%*
TSR Event30.0 Phi 100% 60 100% 70
(a) Exemplary results
T(n) S(n) Usefulness
Normalization O(n) O(n) Limited
Data smoothing O(n) O(1) Limited
Curve tendency O(n) O(1) Limited
Event detection O(n) O(1) High
Euclidean O(n) O(1) High
Manhattan O(n) o(1) High
Pearson O(n) o(1) High
Phi O(n) O(1) High
Hier. single link. | O(mZlogm) | O(m?) High
Hier. compl. link. | O(mZlogm) | O(m?) High
Hier. avg. link. | O(mZlogm) | O(m?) High
k-means O(klmn) O(kn) High

(b) Result overview

preprocessing steps, the similarity calculation methods and
the node clustering algorithms as well as their respective time
complexities (7'(n)) and space complexities (S(n)).

While Table II (a) illustrates that a correct clustering of
nodes can be found with the help of different criteria using
only a small number of data samples, it does not show the
dependency of the clustering result on the start time of the
analysis. Our experiments showed that node clustering works
best when the data collection is started in the evening with
human activity present in the rooms. To illustrate this, Fig.
3 (a) shows the progress of the Pearson coefficient over time
for TSR light sensor data collected in home scenario 1 over
a period of approximately two days. The figure distinguishes
between node pairs of the same group and of different groups.
While the average correlation coefficient quickly approaches
1 for node pairs of the same group, one can also see two time
periods (colored in the figure) that significantly increase the
average correlation among nodes of different groups which in
turn complicates the clustering.

The first colored time period corresponds to the first night
during which all light sensors record similar values in the
range of 0 — irrespective of their group affiliation. This makes
the nodes appear more similar and expresses itself in an
increasing correlation coefficient as can be seen in the figure.

We can use this knowledge about the existence of time
periods without sensor activity to remove the data samples
from the calculation of the Pearson coefficient for a pair of
nodes using a simple rule: Interrupt the recording of data
samples if both values of the data sample pair have been
below a specified threshold th for more than [ consecutive data

sample pairs. Resume the calculation once one value lies above
th again. Fig. 3 (b) shows the result of applying this heuristic
(using th = 3 and [ = 5) to the collected data. As can be seen,
the average correlation among nodes belonging to the same
group still grows quickly while the average correlation among
nodes belonging to different groups does not grow anymore
during the night time (Maximum of 0.37 instead of 0.59).

The second colored time interval represents the time period
from forenoon to noon. Here, the problem is that bright sun-
light experienced by many nodes causes high data values that
quickly dominate the much smaller values collected during
the evening and the night. A small number of these samples
then suffices to loose much of the useful similarity information
acquired previously. Only after some time this is compensated
and the average correlation among nodes located in different
rooms starts to decrease again.

Coping with the negative effects of the second time interval
is more challenging. The simplest solution is to time the
data collection appropriately. As an alternative, it is possible
to collect and analyze the data from different value ranges
separately. As shown later in the evaluation, a final option
is to balance weaknesses of individual sensors by combining
node clustering data using ACS. Interestingly, our experiments
showed that the performance of the humidity and the temper-
ature sensor also depend on the time of the day and on the
presence of human activity. This indicates that the recording
of phenomena (for example triggered by human activity) is an
important factor in the successful clustering of nodes.

Another result of our analysis is the insight that it is
difficult to achieve a correct clustering quickly using a high
sampling rate. Instead, it is possible to save on the number
of required data values and consequently on the number of
required messages by increasing the data sampling interval.
This is illustrated by Fig. 4 which shows the number of steps
required for stabilization for the TSR light and the humidity
sensors depending on the sampling rate in home scenario 1.
It shows that the number of samples required for stabilization
increases with the sampling rate due to the comparatively low
volatility of the recorded criteria.

3) Complexity: The complexity values shown in Table II
(b) are based on the number of clusters k, the number of
iterations [, the number of nodes m and the number of data
samples n. The complexities given for the data preprocessing
methods are per node and the complexities for the similarity
calculation methods are per node pair.

The literature on statistical data clustering (e.g., [8]) iden-
tifies k-means clustering as more efficient to calculate than
hierarchical clustering. On the one hand, this is due to the fact
that for most applications the size of the data vector n of each
cluster element is usually small and fixed. Consequently, it is
ignored in the complexity calculations. On the other hand, the
number of elements to be clustered m can be extremely large.
The situation is different in our scenario where the number of
elements (nodes) stays comparatively small whereas the size of
the data vectors collected can be significant. The consequence
for our approach is that hierarchical clustering is typically
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less costly than k-means clustering as the number of samples
n only influences the similarity calculation and not the node
clustering itself.

IV. DISTRIBUTED APPROACH

Forwarding the collected sensor data from all nodes in the
network with a sufficiently high sampling rate creates a high
traffic load despite potential optimizations like aggregation.
Thus, to be applicable to real sensor network deployments,
significant parts of the previously described off-line analysis
must be implemented on the sensor nodes in a distributed
manner. Thereby, it is imperative to avoid complex and ex-
pensive tasks such as time synchronization or measurement
rounds. Note that this type of distribution is not related to
established distributed data clustering methods whose primary
goal is to distribute calculations in order to achieve a higher
performance.

The basic idea behind our approach is that each sensor
node periodically reads its own sensor data every p seconds
(beacon send interval). The node broadcasts the collected
data in a beacon message to its neighbors. When a node
receives a beacon message it reads its own sensor data and
compares the two data samples to extract information required
for the similarity calculation. This way, data preprocessing and

Pearson correlation coefficient

Node pairs same group
‘che pai‘rs differeql groups -

o L et L
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Number of samples

(b) with removing samples

-0.

coefficient for the TSR light sensor

similarity calculation are directly done on the individual sensor
nodes. Only the last step of the clustering process — the actual
computation of the node clustering — cannot be distributed
as it requires a global view on similarity information among
all nodes. However, collecting the similarity information at a
central point is much less expensive than collecting complete
vectors of sensor data.

Based on the results of our previous analysis the only
data preprocessing step still supported for our exemplary
scenario is the detection of events. For other scenarios, most
other filters could be added if needed. The only exception
is the normalization filter whose space complexity impedes a
distributed implementation.

Implementing similarity measurements and clustering tech-
niques on sensor nodes requires that they can be calculated
on-line with a single pass, i.e., without storing the previous
measurements. Both the Euclidean and the Manhattan dis-
tance can fulfill this requirement. A sensor node solely needs
to store two values, a sum for the distance and a counter for the
samples. Similarly, the Pearson correlation coefficient can be
used by reformulating Equation 2 into Equation 3. Together
with a reformulation of the formula for the standard deviation
as shown in Equation 4 this results in the following list of six
values that must be collected by a sensor node:
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To compute the Phi coefficient, the sensor nodes only need
to collect the four counter values from the table in Fig. 2 (b).
Compared to other collected values, the advantage of the Phi
counter values is that their range is small since the value of all
four counters is less than or equal to the number of samples.

The different types of hierarchical clustering discussed
in section III-C base their calculation on the distance or
correlation matrix containing similarity information among all
nodes. If the similarity values collected by the individual nodes
are collected at a central base station then the hierarchical



clustering can be calculated as discussed in the previous
section.

The situation is different for the k-means clustering algo-
rithm since the algorithm requires the computation the mean
vector of the data vectors of all objects in a cluster in each
iteration. This is not possible when the sensor nodes only store
and provide similarity values calculated out of the data vectors.

A. Inaccuracies

The distributed approach described above introduces a new
set of inaccuracies that can affect the clustering results. The
first inaccuracy is introduced by the delay between the mea-
surements on a pair of nodes caused by the time required for
the message transfer. The impact of this delay depends on the
volatility of the respective sensor data. The second inaccuracy
is caused by lost beacon messages, e.g., due to collisions.
Without precautions, this can result in differing numbers of
samples recorded at different node pairs. Given a sufficient
number of samples, this is can be neglected for the Phi and the
Pearson coefficient as their values are by definition normalized
between —1 and 1. However, the values of the Euclidean or
Manhattan distance increase monotonically with the number
of samples so that only distance values based on the same
number of samples are comparable. An efficient solution for
this problem is to collect a predefined number of samples for
each node pair. However, this can still lead to samples being
recorded in different time periods for different node pairs.

A more fundamental potential source of inaccuracies results
from the fact that it is not feasible to compute the similarities
between arbitrary node pairs in a distributed manner. Doing
so would require the global distribution of measurements, e.g.,
by flooding beacons. However, in many application scenarios,
this problem can be mitigated by limiting the beaconing scope
(i.e., its hop count) using domain knowledge. In our particular
indoor scenario for instance it is feasible to limit the scope to
1 since it is reasonable to assume that sensors residing within
the same room are direct neighbors and nodes that are not
direct neighbors are not within the same room. In such cases
we use this domain knowledge to assign an infinite distance
(or a correlation value of 0) to the remaining node pairs.

Special care is also required for the detection of events
in a distributed manner as the time interval between two
data samples recorded by a node can be arbitrarily small as
data is sampled whenever a beacon message from a neighbor
arrives. This causes unbalanced conditions for the detection of
events. Our solution to this problem is to let the node store
the previous two sensor values it collected in reaction to its
own time trigger (and not in reaction to receiving a beacon
message) as reference values. When sensor data is sampled
following a received beacon message the node selects one of
the two reference values for the comparison according to the
following rule: If the difference of the current time and the
time stamp of the younger reference value is smaller than half
of the beacon send interval then use the old reference value.
Use the younger reference value otherwise.

B. Optimizations

The sampling overhead, which depends on the number of
beacon messages, can be reduced using the following two
optimizations: First, it is not necessary to sample if the last
sample is still very fresh (less than ¢ seconds old). Second,
sensor data originally sampled for calculations can be directly
sent out in a beacon message if the next scheduled send time
is less than r seconds away.

Another possible optimization reduces the amount of state
stored by each sensor for the calculation of similarity in-
formation for neighboring nodes. In the basic approach, two
neighboring nodes x and y both collect information about their
similarity with respect to each other. While in most cases the
two similarity values will not be identical (as they are based
on different data sample pairs) their information should be the
same or very similar. So we can practically split the number
of neighboring nodes clustering information must be collected
for in half by selecting only one node to store the information.
This can either be done explicitly through negotiation or by
applying a static rule based on node identifiers.

C. Implementation

As for the experimental analysis, we used Tmote Sky
sensor nodes to implement the distributed approach. The
implementation was done in nesC for the TinyOS 2.0 operating
system. The implementation supports the Euclidean distance,
the Pearson correlation coefficient and the Phi correlation
coefficient. The three criteria differ in the amount of memory
consumed by the data required for the calculation: 7 bytes
per sensor and node pair for the Euclidean distance, 25 bytes
for the Pearson coefficient and 8 bytes for the Phi coefficient
(reserving between 2 and 5 bytes per value to avoid overflows).
The considerably higher memory consumption of the Pearson
coefficient data motivates why considering the other criteria is
still worthwhile despite the superior performance the Pearson
coefficient showed in the centralized analysis.

V. EVALUATION

This section evaluates the performance of the distributed
node clustering approach in different situations using real-
world measurements. For this purpose, nodes were distributed
in two home scenarios with 15 nodes in 5 different rooms
with 3 nodes per room in each scenario. We prepared five
experiments in the two scenarios (200 seconds beacon send
interval) started at different times in the evening reflecting our
knowledge that this time period provides the best data for the
clustering of nodes.

One important result of the experiments is that basing
the clustering decision on a single criterion allows us to
reach good node clustering results with acceptable effort
only in a limited share of the experiments. For example,
while considering the TSR light sensor alone led to correct
and stable clustering after around 100 data samples in some
experiments it failed to detect more than 80% of the groups
correctly or failed to stabilize at all in other experiments. This
highlights the need for combining node clustering information
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Fig. 5: Percentage of groups clustered correctly for various
criteria

from different criteria with the help of ACS. While such
combinations also show weaknesses in a subset of experiments
their results vary less across experiments and are in general
more stable over time. Consequently, the best performing
node clusterings all combine two or more different criteria.
An analysis of the average percentage of correctly clustered
groups calculated over all experiments is shown for five
particularly well performing combinations in Fig. 5.

In our scenarios, the light sensors are again indispensable
information sources. However, both temperature and humidity
sensors can play an important role as stabilizing elements that
can compensate periods of weaknesses of the light sensors.
Relying on temperature or humidity alone is difficult in the
settings we tested and would increase the required number of
samples considerably.

Due to space limitations Fig. 5 can only present a small part
of the result space. Note, however, that a lot of different criteria
and combinations of criteria were able to correctly cluster
80% and more of the groups correctly using a relatively small
number of samples. In general, the experiments confirmed our
expectations that a successful node clustering is more difficult
to achieve due to the challenges of the distributed approach
but still possible with only a limited amount of effort.

We have identified different numbers of samples recorded
by different node pairs as a source of inaccuracies and as
a challenge to the successful clustering of nodes. The table
in Fig. 6 (a) analyzes the severity of this problem for four
different data collections showing the range of the number of
samples recorded by different node pairs. Fig. 6 (b) exempli-
fies this for one data collection from the first scenario and
shows the number of samples recorded for each node pair.
The analysis shows that such irregularities in the number of
samples recorded are the normal case rather than an exception
and that the standard deviation is significant in some cases.
Interestingly, there are even considerable differences among
experiments conducted in the same scenario.

We see a direct connection between the radio irregularities
and an inferior performance of the Euclidean distance metric
that fails to confirm the promising results from the centralized
analysis. While the calculation is based on the same number

Max | Min | Avg | Std dev
1040 0 829 335

Scenario 1 - Experiment 1

Scenario 1 - Experiment 2 | 1130 0 924 332
Scenario 2 - Experiment 1 660 0 582 152
Scenario 2 - Experiment 2 | 670 410 | 630 31

(a) Analysis
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200

Node ID
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Fig. 6: Number of samples

of samples in all cases, the samples of different node pairs
might have been recorded at different points in time under
completely different external conditions. Consequently, the
Euclidean distance metric only produced useful results in
experiments with a low variance in the number of samples
and should therefore only be used in scenarios with relatively
stable communication links between all node pairs.

Node clustering works best when started in a time period
with artificial light and considerable human activity. To explore
how well our method works under common, less optimal
conditions — normal daylight scenarios without any human
activity — we started two experiments (home scenario 2, data
collected every 200 seconds) in the morning and made sure
that there was no human activity in the covered rooms for
at least the first eight hours. The most interesting result of
these experiments is that all types of sensors are negatively
affected by the lack of human activity and consequently
the list of criteria stabilizing on a successful clustering in
an acceptable amount of time is smaller. Fig. 7 a) shows
the number of groups correctly detected over the number of
samples considered for a set of criteria performing reasonably
well in this setting.

In another experiment we explored the other extreme — how
explicit human activity can positively influence the clustering
of nodes. We recorded sensor data every 10 seconds and
alternately turned on or turned off the light in one of the rooms
every 20 seconds as an explicit trigger. While the temperature
and humidity sensors were not able to generate useful results in
a short time interval, with the TSR light sensor the clustering
stabilized on a correct result after only a little more than three
minutes. The PAR light sensor and the combination of both
light sensors took a little longer to stabilize as shown in Fig.
7 b) and the PAR light sensor alone was not able to identify
all groups correctly.



Average percentage of correctly clustered groups

Light TSR PHI+PEARSON ——
o ) ) ) Iright TSB + LighI‘F'AFl Euglidean R
0 50 100 150 200 250 300 350 400 450 500

Number of samples

(a) without activity

100

80

60

Percentage of correctly clustered groups

20

Light PAR ——
Light TSR
o ) ) ) ‘ACS Light P‘arlLightTS‘R R
0 20 40 60 80 100 120 140

Number of samples

(b) supported by explicit triggers

Fig. 7: Node clustering

VI. CONCLUSION

Clustering is a powerful technique. For many sensor net-
work applications, however, it is beneficial and sometimes
even mandatory to form clusters on the basis of real world
semantics.

In this paper, we have shown that it is feasible to auto-
matically create clusters that reflect rooms by analyzing the
measurements of inexpensive and broadly available sensors.
To this end, we have performed an extensive analysis of
the suitability of relevant data filtering and statistical data
clustering methods. Based on the results of this analysis,
we have devised an approach to automatically determine
clusters that adhere to room boundaries in real deployments.
The evaluation shows that added domain knowledge leads to
significant quality improvements that allow for a successful
clustering under real world conditions.

At the present time, we are investigating whether it is pos-
sible to perform the data clustering in a completely distributed
fashion. A key problem thereby is the definition and reliable
detection of adequate stabilization criteria. In the future, we
would like to extend the presented approach to other scenarios
that do not exhibit the comparatively clear correlations as
present in and between individual rooms. In this context it
might be useful to perform a thorough analysis of fuzzy data
clustering approaches.

We are sure that the idea of clustering devices based on
sensor data does not have to be limited to sensor nodes but

could also be useful in other application domains. With the
availability of cheap, high-quality sensor chips it might even be
reasonable to add sensor chips to devices for the sole purpose
of grouping devices together. Potential applications that come
to mind include self-configuring home entertainment systems,
home automation systems or alarm systems.

We also plan to generalize our concept beyond the appli-
cation of clustering nodes. For example, information about
correlations among the sensor data of nodes could be used
for lossy data aggregation or for doing node duty cycling
without calculating a clustering first. Nodes can keep histories
of their sensor values correlation to neighboring nodes and
use this data to decide whether the data (or the node itself) is
redundant.
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