
Experiences in Designing an Energy-Aware Middleware for Pervasive
Computing

Gregor Schiele∗, Marcus Handte+, and Christian Becker∗

∗Universität Mannheim
{gregor.schiele | christian.becker}@uni-mannheim.de

+Universität Bonn
handte@cs.uni-bonn.de

Abstract

Energy efficiency in pervasive computing is crucial for
devices operated by battery. To provide energy efficiency
we created an energy efficient middleware, called SAND-
MAN. It selects energy-efficient protocol stacks dynamically
and switches idle devices in an energy-efficient sleep mode.
In this paper we present an overview of the challenges we
met when realizing this approach, possible solutions and
lessons learned.

1. Introduction

Energy is a crucial resource in pervasive computing sys-
tems with mobile devices. These devices are often embed-
ded into everyday items and can not be provided with a large
battery or a fixed connection to the power grid. Thus, the ef-
ficient operation of devices with respect to energy is a major
challenge of such systems. When designing our pervasive
computing middleware BASE [2], we experienced this chal-
lenge and decided to integrate algorithms and mechanisms
for energy-efficiency in our middleware.

When starting our work, we looked at the main sources
of energy consumption. The first thing we learned is that
while a lot of work has been done to lower the energy con-
sumption for sending and receiving data, a large additional
amount of energy is consumed by idle devices waiting to
be used. As an example, it takes 805 mW to keep an IEEE
802.11 network interface up and running without sending
data [3]. Idle devices provide currently unneeded and thus
unnecessary resources and consume energy by doing so.
This energy can be saved by temporarily switching such
devices in a low-energy sleep mode. However, doing so
results in a number of challenges that must be addressed to
keep the system operational, e.g., network connectivity and
service discovery. In this paper we report on these chal-

lenges and discuss solutions to overcome them.The paper is
structured as follows. First, we define our system model and
assumptions. After that we describe the features of our pre-
existing middleware BASE that are needed to understand
our approach. Following to this we present our approach
towards an energy-efficient middleware and discuss lessons
learned when designing and implementing it. We discuss
some related work briefly, and finish the paper with a short
conclusion and outlook on future work.

2. System Model and Assumptions

Our targeted system class consists of a number of
battery-operated mobile devices. Each device is equipped
with one or more network interfaces. Using these interfaces
the devices form a number of wireless mobile ad hoc net-
works (MANETs). Basic MANET functionality, e.g., ad-
dressing, remote execution, is offered by our pre-existing
middleware, which we assume to be installed on each de-
vice. In addition, we assume that each device has two op-
erational modes: a fully operational AWAKE mode and an
energy-efficient SLEEP mode. While in SLEEP mode, the
device can not perform any operations or communicate. To
switch back to AWAKE mode, the device has an internal
timer, e.g., a watch dog timer, which reactivates the device
after a predetermined time. This simple model can be ex-
tended to multiple different operational modes. However, in
this paper we restrict ourselves to the simple model to ease
the description of the main concepts used in our approach.

3. BASE

We designed our energy-efficient middleware as a num-
ber of extensions to our existing middleware BASE. This
allowed us to concentrate on the new challenges imposed
by our need to save energy while reusing a lot of previous
work. Before describing our extensions in more detail, in



this section we present the parts of the basic middleware
that are needed to understand the extensions.

BASE is designed to be a minimal yet flexible commu-
nication middleware for pervasive computing. It does not
rely on any external infrastructure, enabling the devices to
cooperate with each other in a peer-to-peer fashion. The
middleware is structured as an extensible micro broker. The
broker itself manages interactions with remote devices and
synchronizes them with respect to the application’s desired
interaction model. To communicate, plugins are used to
add support for different communication technologies and
protocols. As an example, to access a CORBA service,
the device developer only has to integrate an IIOP plugin
into the BASE configuration. At runtime the middleware
detects nearby devices, negotiates communication abilities
with them and allows the local application to access other
devices using a service abstraction. Once an interaction
takes place, BASE automatically builds a suitable proto-
col stack by selecting and integrating multiple plugins. To
adapt to networking changes, BASE is able to reselect the
used plugins dynamically. More information about BASE
can be found in [2].

4. SANDMAN

To add energy efficiency support to our existing middle-
ware BASE, we extended it with a number of system ser-
vices to allow an energy-efficient operation of each device.
The resulting new middleware system is called SAND-
MAN. It stays fully compatible with existing BASE instal-
lations. SANDMAN is designed around two main con-
cepts to save energy: First, it reduces the energy consumed
by transferring data by selecting the most energy-efficient
communication protocols that are available in a given situ-
ation. Second, it switches idle devices to their low power
SLEEP mode to reduce unnecessary standby energy con-
sumption. The first concept can be realized easily with
BASE using its existing ability to select plugins dynami-
cally. To do so, the plugin descriptions must be enhanced
with information about their energy consumption and a suit-
able selection strategy must be provided and integrated.
Whenever a new protocol stack is selected, the selection
strategy accesses the plugin descriptions and selects the
most energy efficient configuration. The second concept,
the deactivation of idle devices presented us with a number
of challenges, which we discuss in the following sections.

4.1 Transition Scheduling

The first challenge when deactivating idle devices is to
schedule deactivations properly. Often, it is not easy to de-
cide whether a device is unused and can be deactivated. It

may be idle at the moment but play a crucial role in the ex-
ecution of an application in the near future. As an initial
approach, we relied on a transition strategy with a fixed in-
activitiy threshold. Such approaches are well known from
the area of Dynamic Power Management. They can be im-
plemented very efficiently even on resource-restricted de-
vices. In addition, we added an interface to the middle-
ware that allows application code, e.g., service implemen-
tations, to explicitly specify that the device is currently in
use and should not be deactivated. Further information is
provided by the BASE microbroker, which notifies SAND-
MAN about incoming and pending requests. This rather
simple approach works well in cases where specific usage
patterns are difficult to determine. In other scenarios, more
complex idle detection mechanisms, e.g., based on statisti-
cal approaches, could be beneficial. Finally, BASE handles
each interaction between a client and a service individually.
While this results in a very flexible system, we decided to
add an additional abstraction for service usages, so-called
sessions. Using a session, a client can specify that it cur-
rently uses a given service. This information is then for-
warded to SANDMAN which will not deactivate the device
offering the service, even if there is no client interaction
for some time. To cope with suddenly disappearing clients,
leases are used. In addition, sessions can be used by clients
to negotiate with the service that the latter may sleep even
while the client is using it, e.g., because the client can cope
with a given latency. Client and server can also negotiate
synchronization times, i.e., they will communicate at given
times only, allowing both to temporarily sleep. In our im-
plementation, the ability to open a session is provided but
negotiation strategies are subject to future work and must
be provided by application developers at this time.

4.2 Service Discovery

Before using a device, a client must first discover it.
However, existing discovery approaches like UPnP or Jini
cannot handle deactivated devices and wrongly assume that
they have left the system. Thus, before deactivating a de-
vice, we must make sure, that it stays discoverable. To do
so, we developed a self-adaptive discovery protocol that can
handle deactivated devices. Our approach works as follows:
at startup time, each device operates autonomously and an-
swers discovery requests from remote clients directly. In
this state the system resembles a classical UPnP discov-
ery system. During the system operation, the devices clus-
ter themselves with neighboring devices that have the same
mobility pattern as themselves. This ensures that the result-
ing clusters are highly stable, which is necessary to achieve
long sleep times without introducing errors in the discov-
ery process. Otherwise, devices that left the communication
range of their clusters while sleeping could lead to phan-



tom discoveries. Each cluster has a single leader, the so-
called cluster head (CH). Once a cluster is formed and a
CH elected, all devices in the cluster switch their discovery
system to a registry-based approach, resembling Jini. The
CH collects information about all services in its cluster and
answers discovery requests from clients for them as shown
in Figure 1. This allows all other devices in the cluster to
switch to their SLEEP mode, while the CH keeps advertis-
ing them. In addition to this, the CH can act as a proxy to
detect new services for sleeping client devices. To accept
new client requests or receive information about newly de-
tected services, each device in a cluster awakes regularly.

b

a

cluster

zz
z

z

zz
z

z

a
b

CH

client

Figure 1. SANDMAN Approach

An overview of the protocol used by SANDMAN to put
devices to their SLEEP mode is given in Figure 2. In this
example, we assume that a cluster consisting of two devices
n1 and n2 has already been formed and omit the messages
necessary for cluster management. At the beginning, n2

starts its inactivity threshold timer. If n2 is idle for tis, it de-
cides to go to sleep and sends a SLEEP ANC message to
its CH n1, including the desired sleep time tsd. The CH can
modify this sleep time to allow cooperative scheduling al-
gorithms as discussed later. It stores the new sleep time ts in
its local database for n2 and sends back a SLEEP ACK
message with the sleep time. After receiving this message,
n2 configures its internal watch dog timer to reawake after
tss and transitions to its sleep mode. Meanwhile, a client
device n3 contacts the CH to search for services. The CH
finds that n2 offers a service suitable for n3 and announces
this to the client device. In this message, it includes the
service descriptions, the plugins that can be used to contact
the device as well as the remaining sleep time of n2 (zero if
the device is awake). The client waits for the specified time
until n2 awakes. Then, it contacts n2 directly and uses its
service. A special case arises, if the device wants to sleep
shortly after a client device discovered one of its services.
The CH cannot know, if the client will contact the device
and thus denies any sleep requests from a device, if the time
between its last discovery and the sleep request is smaller
than a given threshold ta. Once a service is no longer used,
its device restarts its inactivity threshold timer and the al-
gorithm starts anew. More information about the service

n3 :: Client n1 :: CH n2 :: CN

tiSLEEP_ANC {tsd}

SLEEP_ACK {ts}

ts

tiSLEEP_ANC {tsd}

SLEEP_NACK {ta}

< ta

SLEEP_ANC {tsd}
ti

SLEEP_ACK {ts}

ts

LOOKUP

ANC {n2}

Figure 2. SANDMAN Protocol Overview

discovery approach and the protocols used (e.g., for cluster-
ing) can be found in [8] and [9].

4.3 Connectivity Preservation

In addition to keeping the devices discoverable, the net-
work connectivity must be maintained. If we deactivate de-
vices at will, we will most likely lower the connectivity of
the network. We may even induce network partitioning.
Luckily, we can reuse the solution chosen for the discov-
ery and put the responsibility for routing on the CHs. In
addition, we have to make sure that the CHs form a con-
nected overlay network and can reach all nodes. To do so
we design our clustering approach such that it not only uses
the mobility patterns of devices for its clustering decision
but also the current neighbor graph of the devices. Two de-
vices are clustered iff they have the same neighbors. This
makes sure that each one of them can act as CH and will be
able to reach all neighbors. An example for this are devices
carried by the same user. These devices are nearby and typ-
ically have the same neighbors. Note that to really ensure
this property, we have to recheck it regularly to cope with
later connectivity changes.

This approach consumes additional energy, first because
fewer devices are clustered and second to perform the reg-
ular check. If we can accept a certain (small) loss in con-
nectivity, we can schedule the rechecks to occur only rarely
or omit them altogether. In addition we can accept a certain
amount of difference in neighboring sets when clustering
devices, e.g., we cluster devices when their neighborhoods
overlap by at least 90%. Using these parameters we can
adapt the system behaviour between more connectivity pre-
serving and more energy-efficient as needed.



4.4 Interaction Latency

When a device is asleep it cannot be reactivated prelim-
inarily, e.g., to handle an unexpected request by the user.
Clearly, in some cases the user might be able to manually re-
activate a device prior to its scheduled awake time by press-
ing a special button, etc. However, we do not assume that
this is always possible or even the normal case. Thus, a
client wanting to use a sleeping device must wait until the
device awakes on its own. This slows down the client’s exe-
cution and may consume additional energy. Therefore, it is
important to lower the experienced interaction latency. To
do so, we propose to cooperatively schedule the sleep times
of all devices in a cluster. To realize this, SANDMAN al-
lows CHs to manage the sleep schedule of its whole cluster
locally and to coordinate all devices accordingly. Currently,
we are examining two cooperative scheduling algorithms:
the first interweaves the sleep times of devices offering the
same service such that the time until one of these devices
awakes is minimized. The second keeps one device awake
all the time, allowing clients to use a service without any
additional delay. The device that must stay awake is cho-
sen by the CH in a round-robin fashion. Our current im-
plementation includes only a simple scheduling algorithm
that operates on isolated devices. Cooperative scheduling
algorithms are subject to current and future work.

5. Lessons Learned

We implemented the aforementioned extensions to
BASE and tested our system in different settings. In this
section we discuss a number of lessons that we learned from
this work.

5.1 Energy savings

Considerable energy savings are indeed possible using
SANDMAN’s energy-efficiency concepts. We performed a
number of experiments to evaluate this and show some re-
sults for the deactivation of idle devices in the following. A
much more detailed evaluation of the system can be found
in [8]. For our experiments we used the Network Emulation
Toolkit (NET) [5], a Linux-based emulation environment.
We defined scenarios with different mobility characteristics,
e.g., device speed and device group size. Figure 3 shows the
resulting energy savings for three scenarios with a device
speed of 2 m/s and three different group sizes: (1) single
devices (Scenario D), (2) groups of 4 (Scenario E) and (3)
groups of 10 devices (Scenario F). Clearly, a group size of
one leads to the well known random waypoint model. The
results are shown for different sleep times ∆ts and are av-
eraged over all devices in a single cluster, i.e., they include
the overhead experienced by the CH.

-100

0

100

200

300

400

500

30 60 90 120 150

ts [s]

en
er

g
y 

sa
vi

n
g

s 
p

er
 s

ec
o

n
d

 [
m

W
]

Scenario D
Scenario E
Scenario F

Figure 3. Energy Savings

In Scenario D, the devices consume more energy than
without SANDMAN. This is due to the fact that devices
are clustered rarely and the message overhead due to clus-
tering consumes more energy than is saved by sleeping de-
vices. Therefore, for this scenario, SANDMAN is not ben-
eficial and should not be used. However, for larger group
sizes, the devices are able to save up to 484 mW per node
for ∆ts=150 s and a group size of 10. This is a saving of
approximately 60% per device, including CHs and unclus-
tered devices. For scenarios with other movement speeds
the results are accordingly, while total values for higher
speeds are lower. This is the case, as with higher mobil-
ity, clusters become less stable and devices must recluster
more often. We can observe the same effect when compar-
ing scenarios with identical group sizes but different move-
ment speeds. The achieved energy savings are lower for
higher speeds.

5.2 Transition Latencies

In addition to the experiments using NET, we performed
a number of experiments using two HP IPAQ H5550 run-
ning Microsoft Windows CE 2003 and IBM J9 JVM. We
measured the current of an IPAQ using a digital multi-
meter. During the experiments, both IPAQs where con-
nected with their built-in IEEE 802.11b adapters running
in ad hoc mode. In order to deactivate and reactivate their
adapters programmatically, we issued NDIS power down
requests to the driver of the adapter using the Java Native
Interface. This led to an electric current of 210 mA (with 5
V) when the adapter was deactivated and 470 mA when it
was activated. Interestingly, the network card took up to 10
s to reconnect to the network after a powerup - much longer
than what we initially anticipated. Clearly, this system is
not optimized for periodic deactivation. While our middle-
ware is able to operate with such long reactivation latencies,
it lessens the achievable energy savings. In addition, it ren-
ders short sleep times useless.



5.3 Service Selection

Finally, we found that a major issue in energy-efficient
service oriented systems is currently not covered by SAND-
MAN: energy-aware service selection. If multiple services
are available, the client should use the one which leads to
the most energy efficient application configuration. How-
ever, without system support, the client cannot decide which
one this is. The resulting energy consumption depends on
many factors and cannot predetermined with total certainty.
As some prominent examples, the energy consumption de-
pends on the amount and frequency of communications be-
tween client and server, the local execution cost of the ser-
vice on its device, and the additional consumption if the
service uses additional services to provide its functional-
ity. In addition, the stability of the resulting configuration
must be taken into account. A service might be highly en-
ergy efficient but is expected to become unavailable in short
time, leading to another application reconfiguration with ad-
ditional costs.

6. Related Work

There are a number of existing energy-efficient middle-
ware systems complementing our approach. The GRACE
project [7] aims at reducing the energy-consumption of mo-
bile devices that process multimedia data. It combines sys-
tem functions like process scheduling, CPU power manage-
ment and data encoding to enable global adaptation. The
MillyWatt project [10] enables battery-powered devices to
run for a predefined period of time. To do so, active de-
vices are deactivated periodically for a specific fraction of
time. In contrast to this, we deactivate idle devices, only.
The Power Aware Reconfigurable Middleware (PARM) [4]
and the Remote Processing Framework (RPF) [6] shift en-
ergy intensive tasks to resource rich devices. Our approach
is able to do this by modeling such tasks as services that
can be executed remotely. However, we currently do not
support clients in selecting whether a given service should
be executed locally or remotely. Another approach is taken
by MagnetOS [1]. Through the continuous redistribution of
application parts across the available devices of a mobile ad
hoc network, MagnetOS reduces the communication cost
by reducing the length of data paths.

Regarding energy-efficient service discovery, the DEAP-
Space system enables devices to safely deactivate their
communication adapters. To keep devices discoverable, it
uses synchronized time windows to broadcast service an-
nouncements in a single hop environment. Our approach is
aimed at multi hop networks and does not require synchro-
nized devices, enabling optimized interaction latencies.

7. Conclusion and Future Work

In this paper, we have presented our energy-efficient
middleware SANDMAN. SANDMAN is realized as a num-
ber of extensions to BASE, our minimal and adaptive com-
munication middleware for peer-based pervasive comput-
ing environments. It supports energy-efficient communica-
tion by selecting energy-efficient protocol stacks, and deac-
tivates idle devices to reduce the idle standby energy con-
sumption. To do so, SANDMAN clusters devices dynami-
cally depending on their mobility patterns and neighboring
devices. This allows to deactivate devices while preserving
the network connectivity and the discovery of the devices.

Work is going on in different directions. Most promi-
nently, we expect energy efficient service selection to
emerge as a major enhancement to save additional energy.
To do so, the future energy consumption of different appli-
cation configurations must be predicted, e.g. using suitable
analytical models or historical measurements. In addition,
we plan to add enhanced transition strategies, using proba-
bilistic and learning algorithms.

References

[1] R. Barr, J. Bicket, D. Dantas, B. Du, T. Kim, B. Zhou, and
E. Sirer. On the need for system-level support for ad hoc and
sensor networks. ACM SIGOPS Operating Systems Review,
36(2), Apr. 2002.

[2] C. Becker, G. Schiele, H. Gubbels, and K. Rothermel. Base
– a micro-broker-based middleware for pervasive comput-
ing. In Proc. of PerCom, Mar. 2003.

[3] L. M. Feeney and M. Nilsson. Investigating the energy con-
sumption of a wireless network interface in an ad hoc net-
working environment. In Proc. of INFOCOM, Anchorage,
AK, USA, April 2001.

[4] S. Mohapatra and N. Venkatasubramanian. PARM: Power
aware reconfigurable middleware. In Proc. of ICDCS, May
2003.

[5] NET - Network Emulation Testbed. Webpage.
http://net.informatik.uni-stuttgart.de/.

[6] A. Rudenko, P. L. Reiher, G. J. Popek, and G. H. Kuen-
ning. The remote processing framework for portable com-
puter power saving. In Proc. of SAC, Feb. 1999.

[7] S. Sachs, W. Yuan, C. Hughes, A. Harris, S. Adve, D. Jones,
R. Kravets, and K. Nahrstedt. GRACE: A hierarchical
adaptation framework for saving energy. Tech. Report
UIUCDCS-R-2004-2409, University of Illinois, Feb. 2004.

[8] G. Schiele. System Support for Spontaneous Pervasive Com-
puting Environments. PhD thesis, University of Stuttgart,
2007.

[9] G. Schiele, C. Becker, and K. Rothermel. Energy-efficient
cluster-based service discovery. In Proc. of ACM SIGOPS
European Workshop, September 2004.

[10] H. Zeng, X. Fan, C. Ellis, A. Lebeck, and A. Vahdat.
ECOSystem: Managing energy as a first class operating sys-
tem resource. In Proc. of ASPLOS, Oct. 2002.


