
Supporting Pluggable Configuration Algorithms in PCOM

Marcus Handte*, Klaus Herrmann*, Gregor Schiele+, Christian Becker+
*IPVS, Universität Stuttgart, Germany

+ Universität Mannheim, Germany
{firstname.lastname}@{ipvs.uni-stuttgart.de|uni-mannheim.de}

Abstract

Pervasive Computing envisions distributed applica-
tions that optimally leverage the resources present in
their ever-changing execution environment. To ease
the development of pervasive applications, we have
created a pervasive component system (PCOM).
PCOM automates the configuration and runtime adap-
tation of a component-based application using a built-
in distributed configuration algorithm. In this paper,
we present an architectural extension that allows
switching between different algorithms. This enables
PCOM to dynamically select an algorithm that suits
the computational resources present in an environ-
ment. To validate the extended architecture, we com-
pare the overheads of a distributed and a centralized
configuration algorithm in two different environments.

1. Introduction

Pervasive Computing envisions seamless task sup-
port through applications that are cooperatively ex-
ecuted by devices invisibly integrated into everyday
objects. Due to mobility, the set of devices that is
present in an environment is changing continuously.
As a result, applications are forced to adapt to the
capabilities of their current execution environment.

In order to reduce the complexities arising from the
development of distributed applications for dynamic
environments, we have created a pervasive component
system (PCOM) [1]. Using its component framework,
developers are able to create reusable components that
explicitly specify their offered functionality and their
dependencies with respect to other components and
local resources. At runtime, the PCOM component
container ensures that each executed component has
enough resources and can access all required compo-
nents. If a required component becomes unavailable,
e.g. because the device that hosted it is no longer
reachable, the container automatically selects a suitable

replacement. Since using a different component can
result in resource conflicts, PCOM containers are
equipped with an algorithm that performs resource-
aware application configuration and adaptation.

In order not to constrain the applicability of PCOM
to environments that contain resource-rich devices, the
configuration algorithm is fully distributed, i.e. each
component container configures and adapts its hosted
components. While this approach reduces the compu-
tational resources required on a single device, it in-
creases the overall amount of communication required
to compute a configuration.

Clearly, in environments where resource-rich de-
vices are available, the overhead introduced by confi-
guration can be reduced by computing the configura-
tion on a single powerful device. However, in order to
deal with environments consisting of resource-poor
devices, relying solely on a centralized algorithm is not
a viable option. Thus, in order to guarantee the optimal
performance while maintaining a broad applicability,
the system should be able to adapt the degree of distri-
bution depending on the available resources.

In this paper, we present an architectural extension
to PCOM that enables the system to switch between
configuration algorithms at runtime. This enables the
development and usage of configuration algorithms
that are optimized for different environments. In order
to validate the approach, we have implemented a fully
distributed and a centralized algorithm using the new
architecture. The comparison of these algorithms
shows that our architecture is flexible enough to ex-
ploit the performance benefits achievable in different
environments without adding intolerable overhead.

The remainder of this paper is structured as follows.
In the next section, we briefly describe the configura-
tion process performed by PCOM. In Section 3, we
present the goals that guided our design decisions and
in Section 4, we describe the architectural extensions
to support multiple configuration algorithms. To dem-
onstrate the validity of the extensions and to evaluate
them, we present a comparison of a centralized and a

distributed configuration algorithm in Section 5. In
Section 6, we describe some related work. Section 7
concludes the paper with on outlook on future work.

2. PCOM Configuration and Adaptation

In the following, we will outline the core concepts
of PCOM and the actions required to configure and
adapt an application. Thereby, we omit the details of a
specific configuration algorithm. Instead, we focus on
the tasks performed by the component container. A
more detailed description can be found in [1].

PCOM components are atomic with respect to dis-
tribution. Each device is equipped with a component
container that manages its hosted components. A com-
ponent specifies its offered functionality and its de-
pendencies using contracts. A contract defines the
offered functionality in terms of implemented interfac-
es. The interface descriptions can be extended with
properties to describe non-functional parameters. Simi-
larly, the dependencies on other components are de-
fined in terms of required interfaces and properties. In
addition, a component can contractually define re-
source requirements that must be met by its container
in order to use the component. The contractual descrip-
tion of provided and required functionality enables the
container to determine whether the offer of a compo-
nent can be used to satisfy a certain requirement.

The application model supported by PCOM is a tree
of components that starts at a root component, the so-
called application anchor. The lifecycle of the applica-
tion anchor defines the lifecycle of the application.
When a user starts an application anchor, the container
resolves its dependencies by recursively starting com-
ponents that satisfy the specified requirements. As
soon as the anchor is stopped, the containers that host
components of the application will stop them.

A single component can be used in multiple appli-
cations simultaneously. To do this, components are
instantiated for each usage and they are removed when
they are no longer needed. The number of instantia-
tions is solely limited by the amount of available re-
sources. Since resources can be limited, using one
component might prohibit the usage of another one.

A configuration algorithm that is cooperatively ex-
ecuted by the containers of an environment ensures
that only valid configurations are started. A valid con-
figuration is thereby defined as a configuration that
does not have unresolved dependencies, i.e. for each
requirement specified in a contract of a used compo-
nent there is a component whose offer satisfies the
requirement and all resource requirements of the used
components can be met by their container.

At runtime, the containers continuously monitor the
executed components. If a required resource or a com-
ponent becomes unavailable, the container will report
the invalid configuration to the container that hosts the
application anchor. This container will then recursively
signal the problem to the remaining components of the
application by pausing them. After all components
have been paused, the containers will compute a new
valid configuration. As soon as a valid configuration
has been found, the containers will reconfigure the
components that need to be changed and start new
components when necessary. Thereafter, the applica-
tion continues its execution until another adaptation is
required or the application is stopped.

3. Architectural Design Goals

In its initial version, the PCOM component contain-
ers contained all logic required to configure, start,
monitor, pause, adapt, and stop an application. To
support switching between different configuration
algorithms, we must define the individual responsibili-
ties of a configuration algorithm and the component
container as well as their interaction. Clearly, there are
numerous possibilities of dividing the responsibilities
and defining appropriate interaction schemes. To eva-
luate different options and to select the most appropri-
ate one, we focus on achieving the following goals:

Resilience to failures: A fundamental design ratio-
nale of PCOM is the enforcement of strong guarantees
with respect to application configurations. Specifically,
PCOM aims at enforcing the invariant that all depen-
dencies of an anchor are recursively resolved with
suitable components that have sufficient resources.
Enforcing this invariant can greatly simplify compo-
nent development as a developer does not have to deal
with unavailable components and resources. Thus, our
paramount goal for the separation of container and
algorithm is resilience to this kinds of failures.

Efficiency & minimalism: Separating the configu-
ration algorithm from the component container bears
the risk of adding runtime overhead. Since the goal of
supporting different algorithms is performance optimi-
zation, such overhead is clearly undesirable. Apart
from minimizing additional overhead during the confi-
guration, the architectural extensions should also be
minimal with respect to code size, in order to be usable
on resource-poor devices. Since the extensions facili-
tate the development of multiple algorithms, minimal-
ism also requires that common functionality is pushed
into the container to avoid duplicate implementation.

Simplicity & extensibility: Since the goal of ex-
tending the original architecture is supporting multiple

configuration algorithms, the interface of a configura-
tion algorithm should be simple and easy to imple-
ment. Furthermore, in order to support various algo-
rithm implementations, the container should be able of
providing all information that might be required by a
configuration algorithm.

4. Extended Architecture

To achieve the design goals described in the pre-
vious section, we split the functionality of the original
component container into three distinct services run-
ning on top of our communication middleware BASE
[2]. All services are equipped with a remote interface
that exports their functionality to the other services.
Since these services are accessed indirectly through
BASE, we can flexibly adapt their distribution.

The first service, the so-called application manager
is responsible for managing the lifecycle of an applica-
tion and selecting a configuration algorithm whenever
a valid configuration must be computed. Using this
service, a user can request that a certain anchor should
be started or a running anchor should be stopped.

The second service, the assembler, implements the
functionality of computing a valid configuration. Note
that there might be different assembler implementa-
tions available in a given environment, e.g. a centra-
lized and a distributed one. Clearly, using a fully dis-
tributed assembler, for instance, requires the availabili-
ty of an instance of this assembler on each device.

To configure an application, an assembler relies on
the inputs of the third system service, the component
container. The remaining task of this revised service is
the management of resources and components as well
as the monitoring of hosted components. The resulting
shift in the system structure is depicted in Figure 1.

Figure 1 – Architectural Extension

By externalizing the code required to compute a va-

lid configuration in an independent system service
with a unified remote interface, we can support differ-
ent implementations and distributions without chang-
ing the container. However, since we can no longer
guarantee that a container runs on the same device as
the assembler used to configure its components, we
must deal with additional failures resulting from re-

mote communication. In order to achieve our goal of
resilience, we must specifically ensure that no failure
causes the startup of an invalid configuration.

To do this, we design the interaction between the
container and the assembler in such a way that the
container remains in control during the whole configu-
ration and adaptation process. Therefore, all traversals
that start, pause, and stop an application remain the
responsibility of the container, while providing the
appropriate configuration action for each component is
pushed into the assembler. By keeping the traversal in
the container we can additionally reduce the amount of
functionality that must be implemented in an assembler
which supports our desired goal of minimalism.

In the following, we describe the dynamic coopera-
tion of the three system services by walking through
the lifecycle of an application. Thereby, it is important
to realize that the initial configuration of an application
is essentially a special instance of adaptation, i.e. the
initial configuration must find a suitable “replacement”
for all dependencies of the anchor. Thus, we start our
discussion with an application that has been configured
and started already.

Figure 2 depicts the sequence of calls required to
initialize the adaptation process for an exemplary ap-
plication consisting of four components (A, B, C, D)
running on 4 devices (1, 2, 3, 4) that needs to be
adapted because device 4 is no longer reachable.

Figure 2 – Distributed Adaptation

When a component used by the application is no

longer available the container that hosts the parent
component detects this and sends a message to the
application manager that started the application (1).
The application manager then selects the assembler
that shall perform the adaptation and calls a prepare
method on the assembler (2). In response, the assemb-
ler can prepare its internal data structures and if it
requires other assembler instances, it can initialize
them. After the call returns, the application manager

signals the container to pause the anchor (3). Thereby,
it passes the remote reference of the assembler to the
container. The container will then send a pause signal
to the anchor (4) and prepare a setup object that de-
scribes the anchor, its contractually specified depen-
dencies, and the remote systems that host child com-
ponents for these dependencies. The setup object is
sent to the assembler represented by the remote refer-
ence and the assembler returns a remote reference to an
assembler for each component declared in the setup
object (5). Thereafter, the container sends the pause
request to all containers that host children of the anc-
hor. As part of the call, the container passes the remote
reference of the corresponding assembler to the con-
tainer (6). Since the remote references are generated by
the assemblers, neither the container nor the applica-
tion manager must be aware of the distribution degree
of the assembler. As soon as initial pause call returns,
the application manager sends a configure call to the
assembler (9). In response, the assembler will prepare
a valid configuration. If one of the remote calls fails,
the container detects this and signals the failure as
return value of the corresponding pause call. This
allows the application manager to restart the process.

When the configure call is sent to the assembler, the
assembler has received a setup object for each compo-
nent of the application. Thus, the assembler can deter-
mine which dependencies need to be resolved in order
to transform the current invalid configuration into a
valid one. To compute a valid configuration, the as-
sembler needs to be able to determine the set of re-
sources that is available on each device and it needs to
be able to find the components that can be used to
resolve a dependency. To this end, each container
offers a remote query interface that provides informa-
tion about its hosted components and resources.

As soon as the assembler has computed a valid con-
figuration, it returns the configuration to the applica-
tion manager as return value of the configure call. In
order to provide efficient support for different distribu-
tion degrees, the result must not necessarily contain the
complete configuration. Instead, the data structure used
to describe the tree of components can either contain
the full configuration data or a reference to the as-
sembler that can provide the configuration data for a
certain sub-tree upon request. Using this data structure,
the configuration data can be retrieved lazily.

Figure 3 shows the sequence of actions for the pre-
vious example required to transform the running
invalid configuration into a valid configuration. To do
this, the component B running on device 3 is replaced
with component B’ on device 4. Note that the example
assumes that the configuration is stored in each as-
sembler and is returned lazy upon request.

Figure 3 – Distributed Startup

After receiving the configuration, the application

manager sends a start request to the anchor (1). There-
by, it passes the configuration data received by the
assembler. The container retrieves the configuration
for each child component required by the anchor (2).
Using the configuration, the container decides whether
the child must be reused or replaced. If the child must
be replaced, the container first stores its internal state
and releases it by sending a stop call (3, 4). Thereafter,
the container will send a start call to the container that
hosts the new component (5). The start call then con-
tains the state of the stopped component. If the compo-
nent is reused, the container simply sends a start call to
the container of the reused component. As part of the
start call, the container sends the configuration for the
child and the recursion continues. The return value of a
start call signals whether a child has been started suc-
cessfully. If all start calls for all children of a certain
component have returned successfully, the component
itself is started and all state is restored (6, 7). After the
component and its children have been started recur-
sively, the start call returns the status. If this procedure
fails at any point in time, e.g. because a device is no
longer available, the start calls will simply return that
the startup is not successful. The application manager
can then restart the complete adaptation process which
pauses the components that have been started. When
the start call returns, the application manager sends a
remove call to the assembler (8). This allows the as-
sembler to remove all data stored for the application. If
the assembler used instances on other devices, it can
forward the remove call to release their data, too.

5. Evaluation

To evaluate the runtime overhead of the presented
extension, we have measured the time required to
perform a local call to a BASE system service through
the request broker and the time required for a method

call on a MDA Pro (PXA270, 128MB RAM). A call to
a service is 450 times slower, however, the absolute
time of 0.12ms and the low number of calls indicate
that these costs can be neglected. Furthermore, we
have measured the increase in code size induced by the
extension. While the size of the original container
(126KB) decreased by approximately 8% the overall
size for a system equipped with an application manag-
er, a container and an assembler increased by 31KB.

The goal of the presented extension of PCOM is to
support a variety of pluggable algorithms that are op-
timized for different environments. To show that the
architecture supports this, we have implemented two
greedy assemblers, a fully distributed and centralized
one. We have measured the delay introduced by adapt-
ing applications consisting of 4-12 components in a
resource-rich and a resource-poor environment. The
resource-poor environment consists of 4 MDA Pro
connected via 802.11b. Each MDA hosts an instance
of a distributed assembler and one MDA hosts a cen-
tralized assembler. For the resource-rich environment,
we replace the MDA hosting the centralized assembler
with a Tablet PC (1.8 GHz Pentium M, 1024MB
RAM). The applications are binary trees that have
been placed onto the devices in such a way that the
dependencies of each component must be resolved
using a component on a remote device. Figure 4 shows
the average adaptation delay of 10 runs with the distri-
buted (DIST) and the centralized assembler (CENT) in
the resource-rich (RR) and the resource-poor (RP)
environment. The standard deviation lies below 9%.

Figure 4 – Adaptation Delay

The values show that replacing the PDA reduces the

overall delay, but both algorithms have different asso-
ciated tradeoffs. In the resource-rich environment, the
centralized algorithm outperforms the distributed by
20% for an application with 12 components. In the
resource-poor environment, the centralized algorithm
introduces an overhead of 20%. While this simple
experiment is not a thorough analysis, i.e. it does not
consider factors like the application structure, place-

ment and resource conflicts, it shows that the architec-
ture enables significant performance optimizations by
supporting pluggable configuration algorithms.

6. Related Work

At the present time, there is no system software for
pervasive applications that supports switching between
different configuration algorithms at runtime. Many
system software solutions [3-5] in the Pervasive Com-
puting domain focus on support for smart rooms and
thus, they can guarantee the availability of a resource-
rich device. As a result, these systems typically use
centralized approaches to solve the configuration prob-
lem. With the presented extension of PCOM, we spe-
cifically target at system support that is suitable for a
broad spectrum of possible application scenarios, rang-
ing from coordinated smart environments to uncoordi-
nated ad-hoc environments of resource-poor devices.

7. Conclusion

In this paper, we presented an extension to the orig-
inal architecture of PCOM that effectively separates
the tasks of computing a configuration from the task of
executing an application. This separation enables the
development of specialized configuration algorithms
for different environments. The evaluation shows that
the extended architecture enables significant perfor-
mance optimizations without introducing intolerable
costs. At the present time, we are thoroughly analyzing
the effects of various algorithms in different scenarios.
The ultimate goal is the development of a set of algo-
rithms and selection strategies resulting in optimal
performance.

8. References

[1] Becker, C., Handte, M., Schiele, G., Rothermel, K.:
PCOM – A Component System for Pervasive Computing,
Intl. Conference on Pervasive Computing and Communica-
tions (PerCom, 04), 2004
[2] Becker, C. Schiele, G., Gubbels, H. Rothermel, K.:
BASE – A Micro-broker-based Middleware for Pervasive
Computing, Intl. Conference on Pervasive Computing and
Communications (PerCom, 03), 2003
[3] Román, M., Hess, C., Cerqueira, R., Ranganathan, A.,
Campbell, R., Nahrstedt, K.: A Middleware Infrastructure for
Active Spaces, IEEE Pervasive Computing, 1(4), 2002
[4] Garlan, D., Siewiorek, D., Smailagic, A., Steenkiste, P.:
Project Aura: Towards Distraction-Free Pervasive Compu-
ting, IEEE Pervasive Computing, 1(2), 2002
[5] Saif, U., Pham, H., Paluska, J., Waterman, J., Terman, C.,
Ward, S.: A Case for Goal-oriented Programming Semantics,
UbiSys Workshop at UbiComp, 2003

