
Automatic Reactive Adaptation of Pervasive
Applications

Marcus Handte*, Klaus Herrmann*, Gregor Schiele+, Christian Becker+, Kurt Rothermel*

*Universität Stuttgart, +Universität Mannheim, Germany
*{firstname.lastname}@ipvs.uni-stuttgart.de, +{firstname.lastname}@uni-mannheim.de

Abstract-Pervasive Computing envisions seamless and distrac-
tion-free support for everyday tasks through distributed applica-
tions that leverage the resources of the users’ environment. Due to
the mobility of users and devices, applications need to adapt con-
tinuously to their changing execution environment. Therefore,
developers need a suitable framework in order to efficiently
create adaptive applications. In this paper, we present and eva-
luate our approach to adapting a pervasive computing application
to changes during its execution. This work is based on the minim-
al component system PCOM [2] and on an algorithm to fully au-
tomate the initial configuration of a component-based application
[11] which we have presented in earlier work. The contribution of
this paper is threefold. First, we describe a number of modifica-
tions to the component model that are required to enable fully
automatic adaptation. Secondly, we propose a simple yet powerful
cost model to capture the complexity of specific adaptations.
Thirdly, we describe an online optimization heuristic that extends
our distributed configuration algorithm in order to choose to a
low-cost configuration whenever the current configuration of a
pervasive application requires adaptation.

I. INTRODUCTION

Pervasive Computing aims at the realization of a paradox,
namely computer systems that are both, ubiquitous and invisi-
ble for the users that interact with them. To this end, Pervasive
Computing envisions seamless and distraction-free task sup-
port by combining the specific functionalities of a multitude of
computer systems that are invisibly integrated into everyday
objects. Thus, pervasive applications are inherently distributed,
and since many everyday objects are portable, the execution
environments of pervasive applications are heterogeneous and
dynamic. As a result, pervasive applications must adapt conti-
nuously to their ever-changing execution environment. The
need for continuous adaptation combined with the overall goal
of providing applications in a distraction-free way make it
practically impossible to impose the responsibility for adapting
applications on the user. Instead, adaptation must be handled
automatically.

To ease the development and to enable the adaptation of
pervasive applications, we have created the PCOM component
system [2]. With PCOM, developers specify the dependencies
between their software components using contracts. At run-
time, the system resolves dependencies using appropriate com-
ponents available in the environment. The key idea is to define
and enforce strong guarantees with respect to the set of com-
ponents that constitutes an application. More specifically,

PCOM aims at maintaining the invariant that all dependencies
are resolved by adequate components. Providing strong guar-
antees despite the ever-changing execution environment can
greatly simplify application development since a developer
does not have to deal programmatically with unresolved de-
pendencies.

As a first step towards enforcing this invariant, we have de-
veloped a configuration process for PCOM applications [11].
This process fully automates the initial configuration of a com-
ponent-based application. In this paper, we extend this work by
introducing an adaptation process that fully automates the task
of adapting an application in cases where adaptation is un-
avoidable to maintain the invariant. To minimize the distrac-
tion resulting from adaptation, the process supports paramete-
rization (equipping existing components with new contractual
parameters) and structural adaptation (replacing existing com-
ponents with new ones). The contribution of this paper is three-
fold. First, we describe a number of modifications to the origi-
nal component model that are required to enable fully automat-
ic runtime adaptation. Secondly, we introduce a cost model for
runtime adaptation of PCOM applications. Thirdly, we present
an online optimization heuristic that extends our distributed
configuration algorithm.

The structure of the remainder of this paper is as follows. In
the next section, we provide a brief description of the relevant
concepts of PCOM. Section III presents the overall adaptation
process and the modifications of the component model. Section
IV presents the cost model and the optimization heuristic as an
extension to our existing configuration algorithm. Section V
provides an evaluation regarding the resulting overhead and the
benefits. Finally, Section VI describes related approaches and
Section VII concludes the paper with a summary and an out-
look.

II. PCOM

Before we describe the details of the adaptation process in
the next section, we briefly outline the relevant concepts of
PCOM. More details can be found in [2]. PCOM components
are atomic with respect to distribution. Components reside
within a component container that is running on every device.
Each component explicitly specifies its dependencies in a con-
tract. This contract defines the functionality offered by the
component, i.e. its offer, and its requirements with respect to
local resources and other components (see Figure 1). Offered

and required functionalities are described indirectly through
interface names. To model the non-functional properties, the
syntactical description can be enriched with properties, i.e.
typed name-value pairs for offers and typed name-value-
comparator triples for requirements. Using this description, the
system can automatically determine whether an offer can satis-
fy a requirement. An offer satisfies a certain requirement if the
offer specifies a superset of the interfaces and properties con-
tained in the requirement specification and all comparators of
the requirement specification evaluate to true when the corres-
ponding properties of the requirement and offer are compared.

A component can only be used if its local resource and com-
ponent requirements can be satisfied by existing offers. Utiliz-
ing a component can lead to new requirements recursively, e.g.
in Figure 1, the Converter requires two additional components.
Thus, the application model supported by PCOM is a tree that
starts from a root component, the so-called application anchor.
Components can be embedded in multiple applications simul-
taneously. To enable this, components are instantiated for each
usage. As soon as they are no longer used, they are automati-
cally removed. To do this, PCOM defines a basic lifecycle that
consists of a START and a STOP state. The lifecycle of the
application anchor defines the overall lifecycle of the applica-
tion. If the anchor is instantiated and started by the user, the
system automatically resolves its contractually specified re-
source and component requirements recursively. If the anchor
(i.e., the whole application) is stopped, the containers release
all component instances and resources that have been allo-
cated.

To resolve component requirements, each container is
equipped with a remote query interface that lets another con-
tainer search for matching offers. Dependencies on local re-
sources are automatically resolved by the container that hosts
the component. The resources available on a container can be
strictly limited, e.g. to model exclusive resources such as input
devices. Thus, using a certain component on a device might
prohibit the use of another component on this device due to a
lack of resources. The container guarantees that the available
resources are not allocated in a conflicting way at any point in
time.

The configuration process that is cooperatively performed by
the containers available in a given environment ensures that
only valid configurations are started. A valid configuration is
defined as a tree of components starting from an anchor where
all contractually specified component and resource require-
ments are met. Since the set of available resources and reacha-
ble devices might fluctuate at runtime, e.g. because a user un-
plugged an input device or because he carried a Laptop into
another room, the container cannot guarantee that the configu-
ration stays valid at all times. Therefore, the container addi-
tionally provides monitoring and signaling mechanisms as well
as set of generic mechanisms that can be used to adapt an ap-
plication.

The monitoring and signaling mechanisms can detect con-
tractual changes, i.e. changes to the properties of a contract,

and compositional changes, i.e. component instances that are
no longer available. Contractual changes are used to express
that a previously agreed set of properties can no longer be
guaranteed, e.g. due to changed network properties. Composi-
tional changes are a result of device mobility or failures.

Component
Instances

Component
Instances

Application
Anchor

Presenter

Powerpoint

Converter

ImageDisplay

<contract>
<offer>
<interface type=„IPresentation“>

<property name=„display.width“ val=„320“/>
<property name=„display.height“ val=„240“/>

</interface>
</offer>
<requirement>
<componentname=„Output“>

<interface type=„IImageDisplay“>
<property name=„width“ compare=„equal“ val=„320“/>
<property name=„height“ compare=„equal“ val=„240“/>
…

</interface>
</component>
<componentname=„Powerpoint“>

…
</component>
<resource type=„Memory“>

<property name=„amount“ compare=„more“ val=„100“/>
</resource>
…

</requirement>
</contract>

<contract>
<offer>
<interface type=„IImageDispaly“>

<property name=„width“ value=„320“/>
<property name=„height“ value=„240“/>
…

</interface>
</offer>
<requirement>
<resource type=„Display“>

<property name=„width“ compare=„equal“ value=„320“/>
<property name=„height“ compare=„equal“ value=„240“/>

</resource>
…

</requirement>
</contract>

Dependencies

Filesystem

Dependencies

Dependencies

Resource Requirements

Offer

Resource Requirements

Offer

Fig. 1. PCOM Concepts

To react to these changes, the original version of PCOM

provides two mechanisms. First, a component can decide to
adapt its own contract in response to a contractual change in its
parent component in the tree. Thus, contractual changes may
propagate recursively within a sub-tree. Secondly, a compo-
nent can decide to replace a component with another one. In
order to support the consistent and automatic replacement,
PCOM always replaces the complete sub-tree that starts from
this component. Using the mechanisms proposed in [12] such a
replacement works even in cases where components carry ap-
plication-specific state that can no longer be accessed.

III. ADAPTATION PROCESS

In the original version of PCOM, selecting a parameteriza-
tion or requesting a structural adaptation is a task that must be
performed programmatically within each component [2]. In
response to change, a component instance can stop its execu-
tion, adapt its own contract, or request the replacement of a
component it currently uses. While this approach allows fast
local adaptations, adaptation on a per-component basis incurs
the drawback of being inherently sub-optimal in cases where
local adaptations are conflicting with other parts of the confi-
guration. To solve this problem an adaptation must consider
the effects on the complete application configuration, i.e., it
must be executed globally on a per-application basis.

To adapt an application configuration globally, we rely on
the following adaptation process. The high-level view of this
process is straight-forward and can be explained best by walk-
ing through the lifecycle of an application as depicted in Figure
2: As soon as an application anchor is started, the configuration
process described in [11] takes care of computing and starting
a valid application configuration. As long as the application is
executed, the component containers cooperatively monitor the
application. If the configuration becomes invalid at any point
in time, e.g. due to a device failure or a change in resource
availability, the component system must detect this and it must
initiate a global adaptation. To adapt the application, the sys-
tem must compute a new valid configuration. If the current
environment supports different configurations, the computation
should select one that minimizes the resulting distraction. To
do this, we utilize the cost model and heuristics detailed in the
next section. After the new valid configuration has been com-
puted, the existing configuration must be adapted accordingly.
As soon as the new configuration is started, the system contin-
ues with monitoring until a new adaptation is necessary or the
application is stopped.

$$
Environment Costs Configuration

start stop

detect failure &
initiate adaptation

compute new
configuration

start new
configuration

Fig. 2. Adaptation Process

Following this process, the system must ensure that invalid

configurations can be detected, and it must enable the specifi-
cation of feasible adaptations. In Section III A, we discuss the
necessary refinement of the PCOM contract model to facilitate
fully automatic adaptations. If an invalid configuration has
been detected, a new valid configuration must be computed. As
this process may require some time, we extend the component
lifecycle to notify running components about the fact that the
current configuration is temporarily invalid. Finally, as soon as
an adequate adaptation has been computed, it must be applied
to the existing configuration. For stateless components, this is a
fairly straight-forward task. We need to stop all components
that are no longer used and we start all new components. For
stateful components, however, we additionally need to use the
existing replacement mechanisms described in [12]. Due to
space limitations, we do not discuss further details of this as-
pect.

A. Refined Contract Model
To facilitate parameterization, PCOM supports runtime

changes to contracts. Since such changes are triggered pro-
grammatically, the knowledge about possible parameteriza-
tions is implicitly contained in the program logic of the com-
ponent. In order to support adaptation by parameterization, the
algorithm that computes a new configuration requires explicit
knowledge about possible parameterizations. Thus, we ex-
tended the component model to support the specification of
multiple optional contracts used to satisfy a requirement.

Since we do not want to start a global adaptation for every
single fluctuation, we additionally define thresholds in which
minor fluctuations can be compensated. To this end, we ex-
press requirements as fixed multi-dimensional ranges and of-
fers as a dynamic multi-dimensional point. Thus, the system
can detect that a changed offer no longer satisfies the corres-
ponding requirement by determining that the point lies outside
of the range. If this happens, an adaptation takes place.

B. Extended Component Lifecycle
If a configuration becomes invalid due to an unavailable

component or an unmatched requirement, the component con-
tainer that detects the invalid configuration signals this to the
container hosting the application anchor. This container then
initiates the computation of a new configuration, ensuring that
simultaneously occurring signals will only initiate a single
computation.

Started

Paused
Stopped

adaptation failed and
started again

component integrated
in application

adaptation
complete

adaptation
started

component replaced
during adaptation

application
stopped/
parent not
reachable

Fig. 3. Extended Component Lifecycle

Since computing a new configuration in the presence of

scarce resources is a time-consuming procedure that might
require multiple seconds, we additionally notify the remainder
of components reachable from the application anchor about the
invalid configuration. To do this, we introduce a PAUSED
state into the component lifecycle. The PAUSED state is recur-
sively triggered by the containers that host the application
components. After the new configuration has been computed,
all components that are still a part of the application are started
again, and components that are no longer needed are stopped.
The corresponding overall component lifecycle is depicted in
Figure 3.

IV. AUTOMATIC ADAPTATION

When a configuration of a currently executed application be-
comes invalid, a new valid one must be computed. Under the

assumption that all valid configurations are equally well suited,
this problem corresponds to the initial configuration problem.

As described in [11], this problem is defined as finding a tree
of contracts for component instances starting from the applica-
tion anchor whose leaf nodes do not require further instances
and whose resource requirements can be met by the containers
that host them. For an algorithm solving this problem, we have
identified the following requirements:
• Completeness: It should find a valid configuration if one

exists, and it should be able to determine whether a valid
configuration does exist.

• Efficiency: It should minimize the delay for finding a valid
configuration, since a user might be waiting for the applica-
tion to be started.

• Distribution: It should be able to work in all environments
without requiring a resource-rich device.

• Resilience: It should be resilient to failures that occur dur-
ing the configuration process.

Clearly, from a high-level perspective these requirements
remain valid for adaptation algorithms as well. Yet, the as-
sumption that all possible valid configurations are equally
well-suited for adaptation does not hold in general.

Usually, when an application needs to be adapted, there is
still an invalid configuration available. Clearly, this configura-
tion might lack some necessary component instances or it
might require more than the available resources. However, if
the adaptation algorithm does not take this configuration into
account, the new configuration can easily lead to the replace-
ment of a number of sub-trees that carry application-specific
state. If this happens, the adaptation delay will be increased by
the time required to restore the state of the replaced component
instances. Depending on the application and the environment,
this restoration delay might well exceed the delay caused by
the algorithm itself.

Thus, in order to achieve the overall goal of minimizing the
adaptation delay, an adaptation algorithm must minimize the
sum of its execution delay and the resulting restoration delay.
Intuitively, the execution delay and the restoration delay can-
not be minimized independently since finding a configuration
with a lower restoration delay will lead to higher execution
delays. Therefore, in order to optimize the restoration delay,
we rely on a heuristic that only imposes a minimal overhead on
the execution delay.

In the following, we first propose a cost model to capture the
restoration delay in an abstract manner. Based on the modeled
restoration cost, we then describe our heuristic that minimizes
these costs.

A. Cost Model
For our cost model, we first need to define the notion of a

replaced component instance. For this, we need to consider that
PCOM always replaces complete sub-trees in order to enable
the consistent restoration of their state. This means that PCOM
does not reuse component instances whose ancestor has been
replaced. Thus, we can define the actually replaced instances

as the set of the topmost instances of a configuration that have
been removed. To do this, we define:

),(configconfigconfig DIC = (1)

as a configuration consisting of the component instances
ci∈Iconfig and the (directed) dependencies (ci, cj)∈Dconfig. Fur-
thermore, we define:

}),(|{),(configijjconfigi DcccCcParent ∈= (2)

with Ancestor as the transitive closure of Parent. Thus, for an
existing configuration Cold and a new configuration Cnew, we
get all removed instances as:

newoldremoved III −= (3)
and the set of the topmost removed instances as:

)},((:

|{

oldijremovedjj

removediireplaced

CcAncestorcIcc
IccI

∈∧∈¬∃

∧∈=
 (4)

The amount of state that must be restored is given by the
sum of the state held by the component instances in Ireplaced and
the state of their recursively bound instances. If we define the
amount of state locally held by an instance ci as Slocal(ci), then
the state that must be restored for the replacement of an in-
stance ci with n child instances ci,1…ci,n is given as:

∑
=

+=
n

j
jitotalilocalitotal cScScS

1
,)()()((5)

and the overall amount of state that needs to be restored for a
new configuration is given by the sum:

∑
∈

=
replacedi Ic

itotal cSS)((6)

In general, the resulting restoration delay for a replaced in-
stance depends on different factors. First of all, it depends on
the amount of time required to transmit the state over the net-
work. Secondly, it depends on the time required by the new
instances to restore their internal state. Both delays basically
depend on the size of the state which is captured in our model.
We neglect any differences in the mechanisms by which dif-
ferent components restore the state internally as these will most
likely not result in significantly different delays.

In summary, we can estimate the resulting restoration delay
by computing the overall state that must be restored due to
replacement of instances. Our optimization is based on the
corresponding restoration cost.

B. Approach
To minimize the overall adaptation delay, we modify the al-

gorithm that we use to compute the initial configuration in such
a way that we do not increase its execution delay. Our configu-
ration algorithm is based on Asynchronous Backtracking [23]
which is a complete, distributed, and asynchronous algorithm.
As discussed in [11], the algorithm works well for many typi-
cal problem instances. However, due to the very nature of the
overall problem, it exhibits an exponential worst-case com-
plexity.

Even with the simplified cost model presented in the pre-
vious section, the problem of finding a valid configuration with
minimal restoration delay does not lie in NP. Thus, a complete
optimization algorithm will need to explore a large number of
possible configurations in many cases. Even in resource-rich
environments, such an approach would inevitably lead to into-
lerable execution delays.

To reduce the restoration delay without increasing the execu-
tion delay of the algorithm, we add two heuristic extensions.
Both extensions rely on a gradient descent technique and, thus,
they are sensitive to the chosen starting point. In order to miti-
gate this, we propose to execute the overall algorithm multiple
times using a randomized starting point in cases where the res-
toration delay is comparatively high and the already expe-
rienced execution time is low. This incremental approach has
the additional benefit of quickly producing a valid configura-
tion. This configuration may be used, or, if there is enough
time, a better one can be found.

C. Configuration
To explain the heuristics, we briefly describe the mapping of

configuration to a Distributed Constraint Satisfaction Problem
(DCSP), we provide an overview of some relevant aspects of
Asynchronous Backtracking (ABT) and we discuss an example
of how it can be used for initial configuration. A DCSP is de-
fined by a set of variables with finite domains that are distri-
buted across a number of agents and a set of constraints be-
tween the values of variables. The goal is to find an assignment
for all variables that does not conflict with the constraints.

To solve a DCSP with ABT, the variables have to be totally
ordered by some priority criteria. If two variables share a con-
straint, ABT uses the variable with the lower priority to check
whether the constraint occurs. To do that, a high priority varia-
ble a that shares a constraint with some low priority variable b
sends its value assignments to b. To model this, ABT relies on
directional links. As a result, all variables that share constraints
must be linked accordingly before the algorithm can be ex-
ecuted. At runtime all variables assign some value in parallel
and send their assignments across their links. If some variable
receives a value, it determines whether the current assignment
is still valid (i.e. does not conflict with some constraint). If that
is not the case, it tries to assign another value that does not
conflict with its constraints. If that is not possible, it generates
a backtracking message that contains the conflicting assign-
ments that must be changed to resolve the problem. This mes-
sage is sent to the conflicting variable with the lowest priority
contained in the conflict set. If some variable receives a back-
tracking message, it request additional links from all variables
in the conflict set, it checks whether the conflict is still present
and if this is the case, it records the conflict as a new con-
straint. Thereafter, the variable tries to assign a valid value and
the algorithm continues. ABT terminates if no valid assign-
ment can be found or if all variables have stopped sending
messages. In the latter case, the variables have found a valid
solution.

To map the initial configuration to a DCSP, we interpret the
component requirements defined in contracts (i.e. their depen-
dencies) as variables. The contracts that can be used to satisfy
them define their domain. The tree-based application structure
and the resource conflicts between components define the con-
straints. To model that we are only interested in a partial solu-
tion of the DCSP, i.e. a solution for the variables that are recur-
sively used by the application anchor, we add a pseudo value
(0) to the domain of each variable. Using constraints that are
built into the variables, we ensure that the pseudo value is cho-
sen if and only if a certain sub-tree is not required. By virtually
assigning the pseudo value to each variable, it is possible to
construct the DCSP and the links required for ABT online
without pre-computation. Thereby, variables and constraints
are created on corresponding component containers when a
contract is used by a dependency for the first time.

Contract A
(Component A)

Variable A1
Domain: 0, 1, 2

Contract C
(Component C)

Contract B
(Component B)

1 2

1

1 2

Dependency

Contract

Contract

Iff parent of A selects x
reserve resources forA
select A1 with value != 0

else
release reservationof A
select A1 with value = 0

x

… …
Dependency 1

…

Instance 1
(Component A)

Instance 2
(Component B)

1 2

1

Existing Configuration

Fig. 4. DCSP Mapping

An example for such a mapping is shown on the right side of

Figure 4: There are 3 contracts (A, B, C). The contract A is
used if the value X is assigned to its parent variable. It declares
one dependency (A1) that can be satisfied with either contract
B or contract C. When A is selected for the first time, the algo-
rithm creates the variable A1 for the dependency of A, and it
initializes the domain of A1 with 0, 1, and 2 for the pseudo
value, B, and C respectively. Then the algorithm creates the
links for B and C with A1 so that the dependencies of B and C
can determine whether they are used or not. Using a number of
built-in constraints that are created for each contract, the algo-
rithm can ensure that the variable assignments and resource
reservations are always performed properly.

As a last step to apply ABT to initial configuration, we need
to establish a total ordering between variables. Since the online
mapping created by the algorithm creates links from variables
of parents to variables of children, the ordering must ensure
that parent variables have a higher priority than their children.
However, unrelated path of the tree can have an arbitrary or-
dering. In [11] we discuss how such an ordering can be created
by assigning specific IDs to variables. For the sake of brevity,
we refer to [11] for further details on the initial configuration.

D. Heuristic Extensions
In order to minimize the restoration delay, we add two addi-

tional heuristics to the algorithm. To do that, we extend the
previously introduced mapping.

The first heuristic is a value-ordering for variable values that
puts a preference on parameterization. This means that if a
certain dependency can reuse a component instance of the con-
figuration by selecting a certain set of contracts under a certain
set of value assignments, it must first search through these as-
signments before it selects another one that replaces the in-
stance.

The second heuristic makes use of the fact that the ordering
between the variables of unrelated paths of the tree can be arbi-
trary. The general idea is that during backtracking, the algo-
rithm should first change the variables that select instances
causing low costs before it changes variables that select in-
stances with high costs. Note that if two assignments conflict,
the original algorithm changes the assignment of the variable
with the lower priority first. Thus, by defining the priority on
the basis of the state Stotal carried by a potentially bound com-
ponent instance for each variable, we can achieve the desired
behavior.

While the first heuristic can be integrated in a straight-
forward manner, the integration of the second heuristic raises a
problem. The correctness of ABT is based on the fact that the
variable ordering is static. Thus, if a variable has assignments
that can either reuse or replace an existing component instance,
we could either assign the priority Stotal to reflect the reused
instance or 0 to reflect the replaced instance, but not both. An
example for such a variable can be seen in Figure 4. Under the
assumption that the usage of contract A allows PCOM to reuse
the component instance 1, selecting contract B would reuse
component instance 2. Selecting contract C instead would re-
quire the creation of a new instance of type C and the restora-
tion of the state of instance 2 in the new instance.

Contract A
(Component A)

Variable A1
Domain: -1, 0, 1

Contract C
(Component C)

Contract B
(Component B)

1 1

1

x
Instance 1

(Component A)

Instance 2
(Component B)

1 2 11 2

1

Existing Configuration

Variable PsA1
Domain: 0, 1

Iff parentof A selects x
reserve resources for A
select A1 with value != 0
preferenceon value > 0

else
release reservationof A
select A1 with value = 0

Iff A1 selects -1
selectA1 with value != 0

else
selectA1 with value = 0

Priority=Stotal(Instance 2) Priority=0

Fig. 5. Extended Mapping

Both options are suboptimal: If the algorithm already de-

tected that the existing instance cannot be used, e.g. due to a
resource conflict, changing the new instance does not increase
the cost. Thus, if a newly bound instance conflicts with other
parts of the application, it is more cost-efficient to change it

before even more parts of the application are replaced. To
avoid this problem, we split such variables into two variables,
and we partition the possible value assignments into assign-
ments that allow reuse and assignments that do not allow reuse.
Thus, the algorithm can assign the proper static priorities at
runtime. However, we additionally need to ensure that the al-
gorithm does never select a contract for both variables. There-
fore, we must introduce an additional pseudo value (-1) and a
constraint that enforces this.

As an example for this, consider the DCSP fragment shown
in Figure 4. When the algorithm initializes the domain of A1, it
detects that there are assignments that can reuse the existing
instance (A1=1) and assignments that would replace the in-
stance (A1=2). Thus, it splits the variable and creates a new
pseudo variable PsA1. The domain of the variable A1 consists
of the assignments that reuse the instance, including the pseudo
values 0 (i.e. sub-tree not required) and -1 (i.e. reuse not possi-
ble but sub-tree required). The domain of the variable PsA1 is
constructed from the assignments that do not reuse the instance
and the pseudo value 0 (sub-tree not required or reuse possi-
ble). The algorithm adds a built-in constraint that models the
fact that PsA1 must only select a value if A1 must be assigned
but cannot reuse an existing instance (A1=-1). Since PsA1 now
shares a constraint with A1, the algorithm adds a link from A1
to PsA1. As a final step, the algorithm must assign priorities to
the variables. This can now be done statically. The priority of
A1 is initialized with Stotal(instance 1) since changing a selec-
tion (>0) could add these costs. The priority of PsA1 is 0 since
changing a selection (>0) would never add costs. The result of
this procedure is shown in Figure 5.

In order to consider the priorities during backtracking, we
need to replace the existing ID-based variable ordering. As
discussed earlier, the online DCSP mapping performed by the
algorithm requires that a parent variable has a higher priority
than its children. The definition of Stotal already ensures that a
parent has at least the same Stotal than its child with the highest
Stotal. Thus, a parent will never have a lower priority. Yet, Stotal
does not guarantee a total ordering. In order to create such an
ordering, we can combine the priority-based partial ordering
resulting from Stotal with the lexicographic ID-based total or-
dering introduced in [11]. For two variables A and B, we de-
fine:

))()()()((
))()((

BIDAIDBpriorityApriority
BpriorityApriorityBA

<∧==
∨<⇔<

 (7)

Since the extensions require Stotal, the algorithm needs to
compute it for each existing instance. This can be done with a
wave of messages sent through the configuration. Such a wave
is already sent in order to toggle the PAUSED state of the in-
stances. Thus, these messages can be used for piggy-backing
cost information. This ensures that each component container
knows Stotal of the instances it hosts. Furthermore, the algo-
rithm needs to ensure that Stotal is always available on compo-
nent containers that require it for a comparison. This can be

done by including Stotal in all update and backtracking messag-
es for all contained variables.

V. EVALUATION

To evaluate the approach, we have measured the time re-
quired to pause an application, to initialize the cost model, and
the time required to start a new configuration that solely
changes the parameterization for varying application sizes.
Note that the proposed adaptation heuristic does not impose
any other additional execution delays. Thus, apart from these
overheads, the measurements and simulations discussed in [11]
remain valid and, therefore, we do not discuss them in this pa-
per.

The measurements shown in Figure 6 have been gathered us-
ing 4 MDA Pro devices connected via IEEE802.11 on which
we placed 1-12 components that form a binary application tree.
The figure shows the average delay and the deviation of 500
runs per value. As indicated by the step increases at 2, 4, and 8,
the overhead depends mainly on the height of the tree and on
the latency for performing a remote call.

Initia ting Adaptation

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12

Num ber of Components

Ti
m

e
in

 M
illi

se
co

nd
s

Applying a Transformation

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12

Number of Components

Ti
m

e
in

 M
illi

se
co

nd
s

Fig. 6. Pausing (top) and Starting (bottom) a Configuration with Varying

Number of Components

To measure the effects of the heuristics on the restoration de-

lay (i.e. the costs S), we have implemented them using an
event-discrete simulator, and we performed a variety of simu-
lations. The simulation scenarios were set up using the follow-
ing procedure:

 We create a binary tree consisting of 15 contracts that origi-
nate from different components. This tree constitutes the run-

ning application. The cost Slocal is randomly initialized using a
standard distribution with an average of 10 and a deviation of
10. We use an abstract metric for the state size since we are
only interested in the relative differences. The assumption here
is that most components will carry a similarly low amount of
state, yet, there are some components that carry high amounts
of state information. In order to create alternative configura-
tions, we randomly pick d sub-trees of the application and for
each, we create a additional sub-tree that can be used as its
replacement. For each contract of the new sub-tree, we decide
with a probability p, whether the contract is a parameterization
of the corresponding existing component (i.e. it can be reused).
If it is not a parameterization, we create a new component for
the contract. The resource requirements are initialized random-
ly such that each component requires 1 and 10 instances of a
single abstract resource type. Then we create 4 containers on
which we place the components randomly. Each container pro-
vides 30 resource instances. Finally, we increase the resource
requirements of one of the contracts of the original application
to 31 to simulate that the chosen configuration can no longer
be executed.

To measure the quality of a solution found by the heuristic,
we compute the distance of a solution cost (see definition of S
in Section IV A) from the minimal solution cost achievable in
each scenario, and we normalize the distance using the maxi-
mum and minimum solution costs of the scenario. As a result,
each solution can be classified on a scale between 0 and 1
where 0 denotes the optimal and 1 denotes the worst solution
with respect to costs. Using this quality measure, we now dis-
cuss a number of exemplary simulations. In order to get repre-
sentative results despite the randomization, each experiment is
based on 10000 simulations.

0

20

40

60

80

%
 o

f s
ol

ut
io

ns

normalized distance

p=10

p=20

p=30

p=40

p=50

p=60

p=70

p=80

p=90

Fig.7. Single-Run Solution Quality for Increasing Parameterization Probability

(d=20)

Figure 7 shows nine histograms of solutions grouped into 10

categories according to their solution quality for 20 duplicated
sub-trees (d=20) and varying parameterization probabilities
(p=20 to 80). Note that these histograms denote the solutions
found after the first run of the algorithm. For a parameteriza-
tion probability of 20%, the heuristics are able to find a solu-

tion that has a maximum normalized distance of 0.1 from the
optimum in 58% of the simulations. Intuitively, if the probabil-
ity is increased, the solution quality becomes worse up to a
certain point where it increases again. The reason for this lies
in the fact that if the probability is relatively low, there are only
few parameterizations and, thus, the value-ordering heuristic
works effectively. If the probability is high, most duplicated
sub-trees will not inflict any costs and, thus, each parameteri-
zation leads to a similar (high) quality. If the parameterization
probability lies around 50%, the scenario is likely to exhibit a
number of parameterizations whose selection will indirectly
introduce costs since they lead to the replacement of some
child instance. Thus, the value-ordering becomes less effective.

0

20

40

60

80

100

0.
0-

0.
1

0.
1-

0.
2

0.
2-

0.
3

0.
3-

0.
4

0.
4-

0.
5

0.
5-

0.
6

0.
6-

0.
7

0.
7-

0.
8

0.
8-

0.
9

0.
9-

1.
0

%
 o

f s
ol

ut
io

ns

normalized distance

run 1

run 2

run 3

run 4

run 5

run 6

run 7

run 8

run 9

run 10

Fig.8. N-Run Solution Quality (d=20, p=60)

To improve the quality of the solutions, the algorithm is ex-

ecuted iteratively starting with a randomized variable assign-
ment on each run, and the best configuration is used for the
application. The resulting solution qualities after 1 to 10 runs
for d=20 and p=60 are shown in Figure 8. The figure indicates
that the quality can be increased significantly by running the
algorithm a second time. Since the execution delay in these
simulated scenarios is moderate (~100 messages/run), a second
execution is likely to be worthwhile in cases where the first
solution exhibits high costs.

0

20

40

60

80

%
 o

f s
ol

ut
io

ns

normalized distance

d=5

d=10

d=15

d=20

d=25

d=30

d=35

d=40

d=45

Fig.9. Single-Run Solution Quality for Increasing Duplicates (p=50)

Finally, in order to show the effects of a changing number of
possible solutions, we have varied the number of duplicated
sub-trees for a fixed parameterization probability (p=50). Fig-
ure 9 shows that the solution quality is reduced if the number
of duplicated sub-trees is raised. This is most likely a result of
the fact that the relative number of solutions with average cost
increases disproportionately high. Again, this can be mitigated
by executing multiple runs. However, in real world scenarios,
the number of parameterizations supported by one component
will be limited since each parameterization needs to be pro-
grammed and tested.

VI. RELATED WORK

The ability to adapt to various environmental conditions is
one of the key requirements for pervasive applications and
there exists an extensive body of research in system support for
adaptive applications.

In environments where changes occur infrequently, an appli-
cation can be adapted manually [14], [5]. When changes occur
frequently this is not a viable option.

In smart environments, adaptation is typically coordinated
by a central entity that is hosted on a resource-rich device. In
GAIA [20] and AURA [7], for instance, adaptation is per-
formed by a coordinator that has a global knowledge of the
services available in the environment. With PCOM we focus
on environments where the availability of a resource-rich de-
vice cannot be guaranteed. To this end, the presented approach
is fully decentralized.

Similarly, in GAIA the notion of adaptation differs from the
one discussed in this paper. If an application is moved from
one environment to another, this is a special instance of initial
configuration. Adaptation in the same environment is initiated
proactively by the user and not reactively [20]. The approach
towards fault tolerance presented in [3] uses heartbeats to
detect device failures. In addition to that PCOM uses contracts
to model invalid configurations resulting from fluctuating re-
sources.

Infrastructures like iRos [18] are based on the idea of loosely
coupled applications. Such systems do not provide strong
guarantees with respect to composition. This makes them hard
to program in cases where coordination is required.

A number of systems target at application offloading in or-
der to utilize remote resources [17], [8]. These systems auto-
matically distribute an application. Typically, they do not pro-
vide means to deal with device failures which limits their ap-
plicability.

Odyssey [16] provides adaptation support for applications
that access remote information. The system monitors the prop-
erties of the network between a client and a server and informs
the client applications about changes. In PCOM such changes
can be captured using contractual changes. In addition, PCOM
can also switch between different configurations of a server.

Resource-aware application support has been investigated in
the area of distributed multimedia applications [22], [1]. Mul-

timedia systems typically focus on wired networks and assume
a static set of devices. Thus, they perform the initial configura-
tion [10] and add network or media-based adaptation to com-
pensate congestion or loss [15]. The approach in [9] proposes
structural adaptation but it requires a central manager to com-
pute and store alternative configurations.

The PCOM contract model exhibits a number of similarities
with generic QoS specification languages like QML [6]. This
paper not only discusses how to model contracts, it also dis-
cusses how they can be used to fully automate adaptation deci-
sions.

Finally, there has been a lot of research on support for con-
text-aware applications [4], [13]. Thereby, context is gathered
to enable proactive adaptation [21]. While this type of adapta-
tion is desirable, it is not sufficient in order to deal with
changes that cannot be predicted reliably. Adaptation support
for such changes is the focus of this paper.

VII. CONCLUSION

In this paper, we have presented an integrated approach for
automatic reactive adaptation of pervasive applications. To
enable full automation, we have introduced mechanisms that
enable us to let the component system take care of all adapta-
tion decisions. Furthermore, we have proposed a cost model
and an optimization heuristic that are geared towards minimiz-
ing the adaptation delay in order to reduce the distraction expe-
rienced by users due the adaptations. The evaluation of our
system indicates that in the majority of all cases it will be able
to find a nearly optimal solution while adding only a minimal
overhead for initializing the cost model. In cases where the
solution quality is not satisfactory, a second randomized execu-
tion can significantly increase the quality.

We are currently implementing the heuristic as part of
PCOM in order to test it with existing applications. Further-
more, we are working on strategies for deciding how many
runs of the algorithm should be executed, based on prior solu-
tion costs and the execution times.

ACKNOWLEDGMENT

This work is partly funded by the German Research Founda-
tion (DFG) as part of the Priority Programme 1140 – Middle-
ware for Self-organizing Infrastructures in Networked Mobile
Systems.

REFERENCES
[1] C. Aurrecoechea, A. T. Campbell, L. Hauw, “A Survey of QoS Architec-

tures”, Multimedia Systems, 6(3), 138-151, 1998
[2] C. Becker, M. Handte, G. Schiele, K. Rothermel, “PCOM – A Component

System for Pervasive Computing”, IEEE 2nd Intl’ Conference on Perva-
sive Computing and Communications (PERCOM’04), 67-76, 2004

[3] S. Chetan, A. Ranganathan, R. H. Campbel, ”Towards Fault Tolerant Per-
vasive Computing”, IEEE Technology and Society, 24(1), 38-44, 2005

 [4] A. K. Dey, D. Salber, G. D. Abowd, “A Context-based Infrastructure for
Smart Environments”, 1st Intl’ Workshop on Managing Interactions in
Smart Environments (MANSE’99), 114-128, 1999

[5] W. K. Edwards, M. W. Newman, J. Sedivy, T. Smith, S. Izadi, “Challenge:
Recombinant Computing and the Speakeasy Approach”, 8th ACM Intl’
Conference on Mobile Computing and Networking (MobiCom 2002),
23-28, 2002

 [6] S. Forlund, J. Koistinen, “Quality of Service Specification in Distributed
Object Systems Design”, 4th USENIX Conference on Object-Oriented
Technologies and Systems (COOTS), Santa Fe, New Mexico, April 27-
30, 1998

[7] D. Garlan, D. Siewiorek, A. Smailagic, P. Steenkiste, “Project Aura: To-
wards Distraction-Free Pervasive Computing”, IEEE Pervasive Compu-
ting, 1(2), 22-31, April 2002

[8] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, D. Milojicic, “Adaptive
offloading inference for delivering applications in pervasive computing
environments”, IEEE 3rd Intl’ Conference on Pervasive Computing and
Communications (PERCOM’03), 107-114, 2003

[9] A. Hafid, G. Bochmannn, “Quality of Service Adaptation in Distributed
Multimedia Applications”, Multimedia Systems, 6 (5), 299-315, 1998

[10] A. Hagin, G. Dermler, K. Rothermel, G. Shchemelev, “Distributed Mul-
timedia Application Configuration Management”, IEEE Transactions on
Parallel and Distributed Systems, 11(7), 669-682, July 2000

[11] M. Handte, C. Becker, K. Rothermel, “Peer-based Automatic Configura-
tion of Pervasive Applications”, Journal on Pervasive Computing and
Communications (JPCC), 1(4), 251-264, December 2005

[12] M. Handte, G. Schiele, S. Urbanski, C. Becker, “Adaptation Support for
Stateful Components in PCOM”, Workshop on Software Architectures
for Self-Organization: Beyond Ad-Hoc Networking at Pervasive, 2005

[13] F. Hohl, U. Kubach, A. Leonhardi, K. Rothermel, M. Schwehm, “Next
Century Challenges: Nexus – An Open Global Infrastructure for Spatial-
Aware Applications”, 5th Intl’ Conference on Mobile Computing and
Networking (MobiCom’99), 249-255, Seattle, USA, 1999

[14] J. Humble, A. Crabtree, T. Hemmings, K.-P. Akesson, B. Koleva, T.
Rodden, P. Hansson, “Playing with the Bits User-Configuration of Ubi-
quitous Domestic Environments”, 5th Intl’ Conference on Ubiquitous
Computing (UBICOMP 2003), 256-263, 2003

[15] K. Nahrstedt, R. Steinmetz, “Resource Management in Multimedia Net-
worked System”, Handbook of Multimedia Networking, 153-162, LNCS
1209, 1997

[16] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn, K.
R. Walker, “Agile Application-Aware Adaptation for Mobility”, 16th
ACM Symposium on Operating Systems Principles, 276-287, 1997

[17] S. Ou, K. Yang, A. Liotta, “An adaptive multi-constraint partitioning
algorithm for offloading in pervasive systems”, IEEE 4th Intl’ Confe-
rence on Pervasive Computing and Communications (PERCOM’06),
116-125, 2006

[18] S. R. Ponnekanti, B. Johanson, E. Kiciman, A. Fox, “Portability, extensi-
bility and robustness in iROS”, IEEE 1st Intl’ Conference on Pervasive
Computing and Communications (PERCOM’03), 11-19, 2003

[19] M. Roman, C. K. Hess, R. Cerqueira, A. Ranganathan, R. Campbell, K.
Nahrstedt, “Gaia: A Middleware Infrastructure to Enable Active Spaces”,
IEEE Pervasive Computing, 74-83, October-December 2002

[20] M. Roman, H. Ho, R. Campbell, “Application Mobility in Active Spaces”,
1st International Conference on Mobile and Ubiquitous Multimedia,
2002

[21] B. Schilit, N. Adams, R. Want, “Context-aware Computing Applications”,
IEEE Workshop on Mobile Computing Systems and Applications, 85-90,
1994

[22] A. Vogel, B. Kerherve, G. v. Bochmann, J. Gecsei, “Distributed Multime-
dia and QoS: A Survey”, IEEE Multimedia, 2(2), 10-19, 1995

[23] M. Yokoo, E. Durfee, T. Ishida, K. Kuwabara, “The Distributed Con-
straint Satisfaction Problem: Formalization and Algorithms”, IEEE
Transactions on Knowledge and Data Engineering, 10(5), 673-685, 1998

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

