A Secure Context Distribution Framework for Peer-based Pervasive Systems

Wolfgang Apolinarski, Marcus Handte, Pedro José Marrén
Networked Embedded Systems Group
University of Duisburg-Essen and Fraunhofer IAIS
Germany
{firstname.lastname}@uni-due.de

Abstract — Pervasive computing envisions seamless and
distraction-free application support for everyday user tasks.
Achieving this requires a high degree of automation. In many
scenarios, the basis for automation is context information that
can be acquired unobtrusively by means of sensors.
Consequently, it is vital to ensure the validity of the context
information, especially, in cases where automatic decisions can
have severe security implications. In smart environments, the
validity of context information can be ensured simply using a
centralized context storage that is securely connected to all
trusted sensors. In peer-based systems such a centralized
approach cannot be applied. Instead, it is necessary to use all
devices to distribute context information which requires
additional precautions to ensure its validity. In this paper, we
derive the requirements on secure context distribution for
peer-based systems. Furthermore, we describe a generic
distribution framework to enable the usage of context
information in security critical applications. On the basis of a
prototypical implementation, we present an evaluation
indicating that the proposed framework can achieve a high
level of security while being applicable to many scenarios.

Keywords-component; context information,
secure distribution, validation, pervasive computing

peer-based,

l. INTRODUCTION

Pervasive computing envisions seamless support for
everyday user tasks by means of devices that are integrated
in the user’s environment. Due to their integration, many
devices are specialized and resource-poor and due to user
and device mobility, the resulting pervasive systems are
typically dynamic. As a consequence, many pervasive
applications are inherently distributed since a single device
alone cannot provide thorough task support. Combined with
the dynamics, this creates execution environments that
demand a high degree of configurability and adaptability.

In addition to seamlessness, pervasive computing also
strives for distraction-free task support. Thus, it is usually
not feasible to shift the responsibility of adapting an
application to the user. Instead, providing the desired user
experience requires the application developer to strike the
right balance between manual control and automation.
However, the benefit of automation can quickly be nullified
by inappropriate decisions. This is especially problemantic if
the automated decisions may have security implications, e.g.
if they may compromise the user’s privacy.

To avoid inappropriate decisions, it is often necessary to
consider a large number of variables. Besides from technical

characteristics of the execution environment such as the
available devices and services, a significant set of variables
is usually bound to the state of the physical world which is
commonly referred to as context information or simply
context. Context may entail the location of objects and
devices, for example, and it is typically supposed to be
gathered unobtrusively by means of embedded sensors.
Consequently, it is necessary to ensure the validity of context
information that is used for automation.

To ensure the validity, existing systems usually rely on a
trusted infrastructure that consists of a centralized context
service with permanent secure connections to all relevant
sensors. This approach can be applied easily to smart
environments since they are often built around a centralized
server that manages a single administrative domain. In
contrast to that, peer-based systems are typically fully
distributed since they cannot rely on the permanent
availability of any device. Moreover, they may span devices
from several administrative domains which can make it
impossible to define a single trustworthy context service.

As a consequence, it is necessary to use the available
devices to distribute context information in peer-based
systems. However, this approach requires additional
precautions to ensure the validity of the context information.
In this paper, we derive the requirements on secure context
distribution in peer-based systems. Furthermore, we describe
a generic distribution framework to enable the usage of
context information in security critical applications. On the
basis of a prototypical implementation, we present an
evaluation indicating that the proposed framework can
achieve a security level that is comparable to a centralized
system while being applicable to a broad range of scenarios.

The remainder of this paper is structured as follows. In
Section II, we introduce our basic system model. In Section
111, we provide an example scenario. Thereafter, in Section
IV, we derive the resulting requirements. In Section V, we
introduce our generic framework to enable the secure
distribution and in Section VI, we present an evaluation on
the basis of a prototypical implementation. Finally, Section
VII describes related work and Section VIII concludes the
paper with a summary and an outlook on future work.

Il. SYSTEM MODEL

As presented in [1] and [6], our work focuses on peer-
based pervasive systems. In these systems, devices that are
within communication range connect to each other on-the-fly

using short-range wireless communication such as Bluetooth
or WLAN. Due to miniaturization and specialization, the
devices encountered in these systems are often resource-
poor. As a result, they need to interact with each other in
order to provide thorough support for user tasks. Due to
mobility, the available set of devices is continuously
fluctuating. Thus, in contrast to smart environments, peer-
based systems cannot make use of a central coordinator.
Instead, they must coordinate in a decentralized manner.

In order to reduce the amount of manual user inputs, the
systems rely on context information. Usually, this context
information is gathered unobtrusively by means of sensors
that are integrated into some of the devices. As a
simplification, we assume that the information that is
gathered by the sensors is representing information about
some of the devices in their vicinity. Given that the sensing
range is often smaller than the communication range, we
argue that this simplification is not overly restricting.

From a security perspective, the devices that are
connected to each other at a particular point in time may
span multiple domains that are administered independently.
As a result, it is not safe to assume that all devices are
equally trustworthy. Instead, the devices that are part of one
administration domain may use their resources to change the
behavior of the devices from another maliciously. As a
consequence, it is necessary to ensure that critical decisions
are based solely on valid context from trustworthy devices.

IIl. EXAMPLE SCENARIO

To clarify the system model, consider the example
scenario shown in Figure 1 that depicts a research campus
similar to the institute center that hosts Fraunhofer 1AIS. To
limit the access to the campus to legitimate persons, the
whole area is enclosed by a fence and both, employees and
visitors need to pass by a gatekeeper at the main entrance.
Due to the size of the campus, there is a significant distance
between the gatekeeper’s location and the office buildings
which makes it impossible to keep track of the visitors after
they passed the gate. As a consequence, employees may have
to pick up first-time visitors at the main entrance to ensure
that they are not getting lost. In addition, the sheer size of the
campus also makes it hard to ensure that illegitimate persons
are not simply climbing over a fence.

- .
el _&
) 3
Distribution =
I " Y o |
L/
-

L --—-B

Figure 1. Example Scenario

To improve this situation, the access control performed
by the gatekeeper can be revalidated at the entrance of the

individual buildings by means of a pervasive application.
When a person enters through the main gate, a sensor
recognizes this and generates a corresponding piece of
context information. Since the gatekeeper’s office is not
continuously connected to all building entrances, the sensor
stores the context information on the mobile phone of the
person. Once the person arrives at a building entrance, an
actuator that is mounted to the entrance requests the context
information from the mobile phone and it solely unlocks the
entrance, if the person has been detected by the sensor at the
gatekeeper (cf. A) which prevents illegitimate access (cf. B).

IV. REQUIREMENTS

From the peer-based system model presented previously
and the desire to support the utilization of context
information to automate security critical decisions, we can
derive the requirements for context distribution as follows:

Decentralized provisioning: As peer-based systems
cannot provide guarantees about the availability of devices,
the context information must be made available in a
decentralized manner. More specifically, to ensure support
for arbitrary disconnections, a particular piece of information
must be stored on all devices to which it relates to.

Generic mechanisms: The mechanisms used for context
distribution should be generic with respect to the context
information that shall be distributed. This ensures that they
are applicable to a broad range of different applications.

Reliable security: In order to enable the use of context
information for security critical decisions, it is necessary to
ensure that the information has actually been generated by a
reliable source (authenticity). Furthermore, it is necessary to
ensure that the information cannot be altered when stored on
a device that is not trustworthy (integrity). Finally, in some
cases it may be necessary to ensure that the information has
been generated recently (freshness).

Configurable trust: Since peer-based systems may span
multiple administrative domains, it is not viable to rely on
the context information generated from arbitrary devices.
Instead, it is necessary to allow the configuration of trust in
order to support the secure utilization of context generated in
different domains.

Low resource usage: Last but not least, in order to be
applicable to resource-poor devices, the provisioning of the
context information should not be a resource intensive task.
Instead, the mechanisms for distribution should exhibit low
resource utilization without endangering the security.

V. FRAMEWORK

In the following, we describe our framework to support
the secure distribution of context information. To do this, we
first provide an overview of the basic framework. Thereafter,
we describe the individual mechanisms and protocols. Then,
we describe some extensions to reduce the resource
utilization. Finally, we briefly outline the prototypical
implementation which we evaluate in the next section.

A. Overview

To support the decentralized provisioning of context
information while providing strong security, our framework

decouples the tasks of sensing and distributing context from
the task of validating it in space and time. To do this, the
basic version of our framework relies on asymmetric
cryptography. As we will show in the evaluation, this
approach is suitable for devices with limited resources such
as Sunspots. However, to reduce the resource requirements
even further, we provide a symmetric alternative.

As basis for asymmetric cryptography, we require that
each device belonging to the same administrative domain is
equipped with a key pair and a certificate that is signed by a
common root certificate. Thus, the root certificate represents
a single administrative domain and it can be used to identify
the domain’s trusted devices. Furthermore, we require that
devices are identified by the fingerprint of their certificate
which ensures that the identification is hard to compromise.
The generation and distribution of the keys and certificates is
done in an offline step that can be performed using standard
tools such as Openssl.

Generator Storage Validator

Sl validation Key
Storage (@EINSNEE Storage Unit

Unit Storage Protocol Storage

Figure 2. Framework Overview

On top of this setup, the basic variant of the framework
differentiates three functionalities. As depicted in Figure 2,
all functionalities rely on a key store that holds the keys and
certificates described previously. The generator functionality
is responsible for perceiving its environment by means of
some sensor and for distributing the resulting context
information. The storage functionality stores the context
information provided by generators for later usage. The
validator functionality retrieves and validates context
information and depending on the result of the validation, it
may initiate an action, e.g. by means of an actuator.

To perform the validation, the validator functionality
must determine whether the context has been issued by a
trusted generator component. To this, the framework
introduces a distribution protocol between the generator and
the storage and a validation protocol between the storage and
the validator. In the following, we provide a detailed
description of these protocols. Thereafter, we describe an
extension of the framework that replaces the distribution
protocol with a symmetric variant.

B. Distribution Protocol

When the sensing unit of a generator perceives some new
piece of information about a device, the generator stores the
information in the storage of this device. To do this, the
generator and the storage execute the distribution protocol.
As depicted in Figure 3, the distribution protocol consists of
a single update message that is initiated by the generator.

Besides the type of the context (CTP) and the actual
information (CONTEXT), the update also contains the
identifiers of the generator device (FPg) and the targeted
storage device (FPs). The context type and the actual
information can be arbitrary byte sequences. The type itself
is later on used in the validation protocol to request a
particular piece of context. As stated previously, the

identifiers refer to the fingerprints of the corresponding
certificates. Thus, they provide a strong associating between
the generator and the storage. As we explain later on, this
ensures that a piece of context information that has been
generated for one device cannot be used by another. Finally,
the update also contains a timestamp (Tg) of the generator as
well as its certificate (CERTg). During the validation, the
timestamp is used to ensure the freshness of the information.
The certificate is needed to enable the validation of arbitrary
generators without knowing them a priori.

Generator Storage
Sense UPDATE
CONTEXT CERTg, (FPg, FPs, CTR, CONTEXT, Tg)SIGs |
| Stored
UPDATE

Figure 3. Distribution Protocol

To ensure the authenticity and integrity of the update, the
identifiers as well as the context type, information and time
are signed using the private key of the generator. If
necessary, this also allows the storage device to determine
whether the context has been issued by a trustworthy
generator. To do this, storage would have to verify that
CERT has been signed by a trusted root certificate and that
SIGg is valid. However, this validation step at the storage is
not required to enforce the security goals introduced earlier.
Instead, the storage can simply store all updates as received.

C. Validation Protocol

If the validation is required, the validator is responsible
for retrieving the context. As depicted in Figure 4, this
requires a request and a response that (1) authenticates the
storage and (2) transmits the verifiable information.

Storage Validator
Stored
UPDATE REQUEST
CERTy, (FPy, FP, CTP, NONCE)SIGy
RESPONSE
CERTS, UPDATE, (FP, FP,, NONCE, FPg, To)SIGs
Validate
RESPONSE

Figure 4. Validation Protocol

To achieve this, the request is composed of the context
type (CTP) that shall be retrieved, the identifiers of the
validator (FPy) and the storage (FPs), a nonce (NONCE) that
is generated by the validator as well as its certificate
(CERTy). The identifiers, context type and the nonce are
signed by the validator which can be used to enable the
storage device to restrict requests to trusted validators. To do
this, the storage verifies that CERT\, is signed by a trusted
root and that SIGy is valid. However, just like the validation
of the generator of an update, this is an optional step.

Similarly, the response to this request is composed of the
certificate of the identifiers FPy, and FPs and the nonce that
was included in the request. Furthermore, it includes the
identifier of the generator (FPg) and the timestamp of the
update (Tg) as well as the certificate of the storage (CERTS)
and the original update message. Finally, the message
includes a signature for the identifiers, the nonce and the
timestamp that is generated by the storage.

In order to validate the response, the validator first
determines whether the nonces are identical. Thereafter, it
determines whether the CTP in the update is as requested.
Then, it determines whether FPs, FPg and Tg in the response
are identical to the values in the update and whether the
fingerprint of CERTs and CERTg are matching FPs and FPg.
Finally, the validator verifies that the certificate of the
generator is signed by a trusted root and that the signatures in
the update (SIGg) and the response (SIGy) are valid.

Once this validation process has succeeded, the validator
can accept the context. Thereby the process ensures that the
storage device is authentic since it must be equipped with the
private key for CERTs to create SIGs and the response
cannot be a replay as it includes FPy, and the correct nonce.
Furthermore, the update message has not been changed
during the transmission since the signature SIG,, also spans
FPg and Tg and they are identical to the update. Finally, the
update has been issued for the storage device since it
includes FPg and it can be trusted since it CERT is signed
by a trusted root and thus, the generator can be trusted.

In order to determine whether the context information
itself is fresh (enough), the validator can use the timestamp
of the generator (Tg). However, this requires that the clocks
of the validator and the generator are (loosely) synchronized.
This can either be achieved by an external time source such
as a UTC or GPS receiver. Alternatively, trusted storage
devices that regularly pass the generator and the validators
can also perform the synchronization. To do this in a secure
manner, it is possible to reuse the protocols described above.
Thereby, the trusted storage device acts as a generator for the
time and the actual context generator acts as a validator. To
set the time on the context generator, the trusted storage
device simply generates an update containing the current
time that is used within the validation procedure performed
by the generator.

D. Extensions

As indicated in the framework overview, it is possible to
further reduce the resource utilization of the framework for
generators by replacing the asymmetric signatures with their
symmetric counterparts. For this to work, however, the
validators and the generators must share the same symmetric
key. If this can be achieved by means of key distribution, the
protocols described above can be applied directly by
removing CERTg from the update and by replacing SIGg
with a symmetric signature based on the shared key.

However, besides increasing the effort for key
distribution, the main drawback of this approach is a loss in
flexibility when context shall be used across different
administrative domains. In the asymmetric case, it is possible
to define unidirectional trust-relations. To do this, a validator

can simply be configured to trust the generators of a certain
(set of) domain(s). In the symmetric case, this is not possible
as the distribution of the key would result in a symmetric
trust-relationship since every validator could forge the values
of the generator.

To mitigate this problem, our framework introduces so-
called generator bridges or simply bridges. The bridges are
responsible for replacing the symmetric signatures with
asymmetric ones. To do this, they request the context
information from the storage, they validate the symmetric
signature and they create a corresponding update message.
This requires them to be configured with the symmetric key
of the generator and an asymmetric key pair that shall
represent the generator.

E. Implementation

To evaluate the framework, we have implemented it as
an extension to BASE [1], our communication middleware
for peer-based pervasive systems. BASE is implemented in
Java (on top of J2ME CLDC) and provides basic middleware
services for spontaneous interaction such as device discovery
and local as well as remote communication. In addition,
BASE provides a light-weight service abstraction that we
used to implement the framework functionalities.

We have implemented individual services for symmetric
and asymmetric generators, storages, validators and bridges.
These services provide interfaces to distribute arbitrary
context information that can be wused in different
applications. Towards this end, the generator services must
be extended with a sensing unit that creates the context
information. The validators must be extended with an
actuation unit that requests the context information. In
addition to these services, we have implemented a service to
distribute the root certificates within an administration
domain. Although not being secure, in general, this service
enables the user to detect new root certificates and to decide
whether they want to trust them. In addition, it could be used
to distribute certificate revocation lists, however, our current
prototype does not support this.

All services share a common key store functionality
which is used to configure the device and its trust-relations.
Thus, besides from storing the certificate and key of a
device, the key store also stores trustworthy and un-trusted
(but discovered) certificates. To represent these certificates,
we rely on the X.509 standard. In order to associate the
fingerprints of the certificates with devices, we use them as
BASE’s system identifier.

To realize the cryptographic algorithms, we reuse the
implementations of the J2ME version of Bouncycastle
library [2]. This allows the utilization of RSA and ECC as
asymmetric methods. Both can be used at the same time by
different generators or administrative domains. For
symmetric authentication, we rely on HMAC [8] using the
SHA-1 hash algorithm. Of course, other types could easily
be added, so our framework does not depend on a particular
cryptographic algorithm.

Since Bouncycastle is applicable to all devices that
provide a Java virtual machine with J2ME CLDC support,
the library itself is not optimized for a particular type of

device. Thus, to get realistic estimations for the overhead of
the framework, we are basing our evaluation on an optimized
implementation for Sunspots. This implementation makes
use of the Sunspot SSL library which provides a fast 160-bits
ECC implementation using SECP160rl. The resulting
encryption strength is comparable to RSA1024. However, it
is noteworthy that the optimized version of our prototype can
interact with non-optimized versions without modification.

VI. EVALUATION

In the following, we evaluate the framework with respect
to the requirements identified in Section IV. We first discuss
the qualitative characteristics. Thereafter, we provide a set of
benchmarks to quantify the resource utilization.

A. Discussion

Due to the fact that the update messages explicitly
identify the source and the target of the context information
by means of fingerprints, there is a strong association
between the generator and the storage. By authenticating the
storage and the context information during validation, some
other storage cannot illegitimately use the context
information. As a consequence, our framework supports the
utilization of devices that are not trustworthy per se and thus,
it allows decentralized operation.

Our validation framework is generic as it can be used to
distribute any type of context since the services do not make
assumptions on the data representation. In our current
implementation, the services use byte sequences with
equality matching. Yet, the integration of more complex type
systems and matching operators would be straight forward.

With respect to reliable security, the signatures ensure
that the context information cannot be altered and that a
storage device must poses the appropriate private key to use
the context. While this prevents attacks such as copying or
modifying the context information, the presented framework
cannot stop a device from sharing its private key which
makes devices indistinguishable. For example in the scenario
introduced in Section Ill, a visitor that legitimately passed
the gatekeeper could share the context information with an
intruder that jumps over the fence. However, if the visitor
and the intruder are cooperating, the visitor could also simply
use his storage device to open the door for the intruder. Thus,
it is not possible to prevent such attacks technically by solely
using cryptography in general. The second possible attack
that is not prevented by the framework is a man-in-the-
middle in the validation protocol. Instead of responding
directly to the request message, an intruder could simply
forward it to the legitimate storage that holds the context.
Once the legitimate device responds, the intruder then
forwards the response to the validator. When the message
arrives at the validator, the validation succeeds since the
validator actually validates the legitimate device. Yet, for
this attack to work, the intruder must mask as the legitimate
device (e.g. by copying the fingerprint) and it must be
connected to both, the legitimate device and the validator
device, simultaneously. From a scenario perspective, this is
similar to an intruder that is slipping through the door that
has been opened by a legitimate user. Thus, it is possible to

complicate such attacks by reducing the communication
range. From a protocol perspective, it is possible to initiate
the validation on the storage device or to have the user
accept an incoming request message manually. As a result,
the attack would no longer be possible or could be detected
at the price of an increased level of manual interaction.

With respect to configurable trust, the framework enables
validators to freely model trust on the devices of different
administrative domains by means of a configuration of the
key store. Due to the use of asymmetric cryptography, it is
possible to model unidirectional relationships as well. This is
especially useful in the context of business environments
where the devices of an employee may trust the sensors of
the company but not vice versa. In addition to the not-trusted
and trusted categorization performed by our current
prototype, it would be straight-forward to integrate a less
coarse-grained notion of trust by introducing detailed
classification of root certificates in the key store.

B. Measurements

In order to quantify the resource utilization of the
framework, we installed our prototypical implementation on
Sunspot devices (RED SDK) and we computed a series of
benchmarks shown in Table 1. To get meaningful numbers,
we repeated each measurement 20000 times for HMAC and
200 times for ECC. Table 1 shows the mean and the 95%
confidence interval of the repetitions.

TABLE I. COMPUTATION TIME IN MILLISECONS
Mechanism Mean (95% Confidence Interval)
HMAC 11.34 (8.98, 13.69)

ECC (Signature) 644.57 (473.14, 816.00)
ECC (Validation) 796.07 (607.12, 985.01)

To distribute some piece of context information, a
generator must create a single signature in addition to
transmitting the context information which results in an
additional overhead of 644.57 ms. By using the symmetric
mechanism, this overhead can be even further reduced to
11.34 ms. |If the storage wants to perform the optional
validation of the signature, it needs to perform 2 validations
which increase the total delay by 1592.14 ms.

To use a previously distributed piece of context
information, a validator must first generate the signed
request and then it needs to perform one validation of the
storage and two validations of the contained update which
results in a total overhead of 3032.78 ms. In addition to that,
the storage must also create a signature for the response
which corresponds to 644.57 ms. If a storage wants to
validate the request, this introduces another 2 validations.

As a consequence, the total overhead for context
distribution and usage boils down to 7506.2 ms, if the
storage performs all validations and 4321.92 ms, if the
storage simply accepts all updates and requests. Clearly, this
overhead makes it impossible to use the framework for
context information that is changing at a high rate. However,
if the context exhibits this behavior, it is likely that the
context generator and the context consumer are directly

connected. Thus, it is easier to ensure the validity of context
by securing the connection. In cases, where direct
connections are not possible, the additional overhead is not
unreasonably high. As a consequence, we argue that this
approach is applicable to a broad range of scenarios.

VIl. RELATED WORK

Most other comparable approaches to utilize context
information are based on a central server that is trustworthy.
As a consequence, such approaches are not applicable to
peer-based systems. In [5], Al-Muhtadi et al. present a
context based security suite for the GAIA environment.
There a central server saves all data encrypted with a key
based on the context (e.g. the location). Accessing the
encrypted data will be possible, if the central server can
verify the needed context information. GAIA uses a
centralized data storage and access control. All the
encryption that the mobile devices are performing is based
on symmetric group keys. Furthermore, the context based
data will be en- and decrypted by the central server, who also
determines the current context of all devices.

The security in the virtual home environment [3] is also
focused on a central authority that allows securing the
communication and enables access control. All requests are
routed to a central server which decides if the requesting
device is allowed to perform the request. In contrast to this
approach, ours allows the data to be distributed through the
whole network, so every device carries the data while
preserving integrity. Also the verification process is
distributed and every device in the network can validate
context information.

In addition to centralized approaches, some authors also
tried to use context information based security mechanisms
in a de-centralized fashion. Robinson et al. [9] creates a
shared secret which depends on the room acoustics. So every
device in a room should have the same key since they are
time-synchronized and therefore creating their key at the
same time. This idea depends on the assumption that the
room acoustics is almost the same, independent from the
place where the device is located. While this could be the
case in some rooms, not all rooms fulfill this special
condition. They suggest a periodical re-keying, to re-enable
the communication with devices which calculated a different
key. This key can only be used to secure communication in a
room, not to allow secured communication within one
company. Our solution enables the verification of context
information by every device in a domain which can span an
arbitrary big area. In addition, our framework also allows
inter-domain context validation, if desired.

Kagal et al. [7] distributes trust to devices of a foreign
domain by using the personnel that is working in the domain
as room managers. These managers can grant other persons
or devices the same rights that they currently own in this
room. So a manager could allow a guest device to use the
office printer that he is also allowed to use. Personal trust is
used as a substitute for secure context information. Also the
room managers are responsible for granting their access
rights to someone else. Our approach does not depend on

personal trust as is not superior in comparison with secured
information, especially when considering social engineering.

VIIl. CONCLUSION

Achieving the vision of pervasive computing requires the
usage of context information for automation. Especially in
cases where automated decision may have security
implications, ensuring the validity of context information is
unavoidable. In this paper, we derived the requirements on
secure context distribution and usage in peer-based systems.
Furthermore, we described a generic framework to satisfy
them. Our evaluation suggests that the framework can
achieve a high level of security that keeps up with current
Internet standards while being applicable to many scenarios.

At the present time, we are integrating the presented
context distribution framework into our generic role
assignment system [6] as part of the PECES European
project. This will enable the secure distribution of roles to
dynamically form smart spaces and to enable their
interaction across insecure networks such as the Internet.

ACKNOWLEDGMENT

This work has been partially supported by CONET
(Cooperating Objects Network of Excellence) and PECES
(PErvasive Computing in Embedded Systems), both funded
by the European Commission under FP7 with contract
numbers FP7-2007-2-224053 and FP7-224342-1CT-2007-2.

REFERENCES

[1] C. Becker, G. Schiele, H. Gubbels, K. Rothermel, “BASE - A Micro-
broker-based Middleware For Pervasive Computing”, First IEEE
International ~ Conference on Pervasive Computing and
Communications (PerCom 03), pp. 443-451, March 23-26, Fort
Worth, USA, 2003

[2] “Bouncy Castle Java lightweight
http://www.bouncycastle.org, version 1.44 |
October 2009

[3] U. Biiker, M. Kuehle ,Virtual Home Environment: Security
Architecture for Ticket Based Services", Proceedings of ITEA VHE
Workshop, Shaker Verlag, Aachen, 2002

[4] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, W. Polk,
“RFC 5280: Internet X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile”, May 2006

[5] J. Al-Muhtadi, R. Hill, R. Campbell and M. D. Mickunas, ,,Context
and Location-Aware Encryption for Pervasive Computing
Environments®, Fourth IEEE International Conference on Pervasive
Computing and Communications Workshops, (PERCOMW'06),
pages 283-289, 2006

[6] M. Haroon, M. Handte, P. Marrén, “Generic Role Assignment: A
Uniform Middleware Abstraction for Configuration of Pervasive
Systems”, PerWare Workshop at the Seventh Annual IEEE
International ~ Conference on Pervasive Computing and
Communications (PerCom 2009), March 2009.

[7]1 L. Kagal, T. Finin, A. Joshi, ,Moving from Security to Distributed
Trust in Ubiquitous Computing Environments“, IEEE Computers,
December 2001

[8] H. Krawczyk, M. Bellare, R. Canetti, “RFC 2104: HMAC: Keyed-
Hashing for Message Authentication”, February 1997

[91 P. Robinson, M. Beigl, ,, Trust Context Spaces: An Infrastructure for
Pervasive Security in Context-Aware Environments“, Lecture Notes
in Computer Science, Security in Pervasive Computing, pages 157-
172, First International Conference, Boppard, Germany, March 12-
14, 2003

cryptography API”,
released on the 6"

