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Abstract 

 
Pervasive Computing envisions seamless support 

for user tasks through cooperating devices that are 
present in an environment. Fluctuating availability of 
devices, induced by mobility and failures, requires 
mechanisms and algorithms that allow applications to 
adapt to changing environmental conditions without 
user intervention. To ease the development of adaptive 
applications, we have proposed the peer-based com-
ponent system PCOM. This system provides fundamen-
tal mechanisms to support the automated composition 
of applications at runtime. In this paper, we discuss 
the requirements on peer-based automatic configura-
tion of pervasive applications and present an approach 
based on Distributed Constraint Satisfaction. The re-
sulting algorithm configures applications in the pres-
ence of strictly limited resources. To show the feasibil-
ity of the approach, we have integrated the algorithm 
into PCOM and provide an evaluation based on simu-
lation and measurements.  
 
1. Introduction 
 

Pervasive Computing utilizes devices that coopera-
tively execute distributed applications in order to pro-
vide distraction-free support for complex user tasks. In 
essence, pervasive applications can be seen as compo-
sitions of functionality provided by devices in the 
physical environment of their users. The interaction 
between applications and users is unobtrusive since 
many devices become invisible through their integra-
tion in everyday objects. The devices encountered in 
such environments are heterogeneous, ranging form 
resource-limited specialized systems up to powerful 
general purpose computers. Due to wireless communi-
cation, many devices can be mobile. Hence, the avail-
able functionality is continuously fluctuating.  

Both, the heterogeneity and the dynamics of the en-
vironment increase the complexity that developers, 
administrators, and users face when they are building, 

operating, or using applications. While it is possible to 
shift the responsibilities and thus, the arising complexi-
ties, between these parties, e.g., administration requires 
more fine-tuning but usage becomes simpler, a pure 
shift is not enough to cope with the complexities.  

In response, a number of research projects are fo-
cusing on the development of abstractions that enable 
the automation of various aspects of pervasive sys-
tems. One of these aspects is the automatic composi-
tion of applications at runtime. This automation is a 
major rationale behind many pervasive infrastructures, 
e.g. GAIA [16], AURA [9], and our component system 
PCOM [3]. At the present time, composition is receiv-
ing attention in other research areas as well, e.g., the 
multimedia [10] and the web services community [15]. 

In PCOM, the configuration of a component-based 
application, i.e., the composition of components that 
constitute an application is automatically determined at 
runtime. If the resources required by components are 
limited, finding a single configuration that meets all 
requirements is an NP-complete problem.  

In this paper, we discuss the requirements on peer-
based automatic configuration of pervasive applica-
tions. Furthermore, we propose an approach towards 
automatic configuration of PCOM applications based 
on existing work in the field of Distributed Constraint 
Satisfaction [18]. In contrast to our previously intro-
duced greedy heuristic [3], the proposed approach is 
complete. Despite the exponential runtime, our evalua-
tion suggests that a) the approach can be applied to 
many real-world problems and b) even with limited 
runtime it can easily outperform the greedy heuristic. 

The remainder of this paper is structured as follows. 
The next section introduces the underlying system 
model and presents the necessary details of PCOM. 
Section 3 describes the configuration process and de-
rives the requirements for its automation. The ap-
proach is motivated and detailed in Section 4. Section 
5 provides an overview of the resulting algorithm that 
is evaluated in Section 6. Finally, Section 7 describes 
related work and Section 8 concludes the paper. 

 



2. System Model 
 

As presented in [3] and [4], our work focuses on 
peer-based pervasive systems. In such systems, devices 
within communication range connect to each other on-
the-fly using wireless communication technology, e.g., 
Bluetooth or WLAN. Devices offer their functionality 
and cooperate with other devices in the vicinity in or-
der to execute applications. As a result, applications 
are composed of functionalities provided by different 
devices. In contrast to smart environments like GAIA 
[16], AURA [9] and iROS [14], peer-based systems do 
not rely on the presence of a centralized coordinating 
entity. Due to user mobility, the availability of func-
tionalities is continuously fluctuating. As an example 
consider a group of persons that is cooperatively work-
ing with PDAs on a business trip. In this scenario, re-
lying on a central coordinating entity, e.g., a fixed 
server might prohibit cooperation. 

To ease the development of adaptive applications, 
we have developed the light-weight component system 
PCOM. In the following, we will sketch the relevant 
concepts. A detailed description can be found in [3].  

PCOM differentiates between components and in-
stances. Components can be thought of as blueprints 
for their instances. The number of instances is a priori 
not restricted. Each component resides on exactly one 
device and each device contains a container that cre-
ates and manages all local instances. An instance pro-
vides a contractual description of its offered function-
ality and its requirements. The requirements can be 
split into local resource requirements and requirements 
towards other instances. The container assigns the lo-
cal resources and in cooperation with other containers 
it starts and manages the required instances. An appli-
cation is a tree of component instances that is con-
structed by recursively starting the required instances 
of a root instance, the so-called application anchor. An 
application can only be started, if all required instances 
can be executed. A PCOM container must be able to 
manage strictly limited resources, e.g., to model exclu-
sive resources like input devices, etc. Usually, intro-
ducing limited resources will lead to a limitation on the 
number of instances that can be executed. Since in-
stances of different components can have overlapping 
resource requirements, e.g., both require some mem-
ory, starting an instance of one component can prohibit 
the instantiation of another one. 

 
3. Automatic Configuration 
 

Automatic configuration denotes the task of auto-
matically determining a composition of components 

that can be instantiated simultaneously as application. 
Such a composition is subject to two classes of con-
straints. The first class are structural constraints. They 
describe what constitutes a valid composition in terms 
of functionalities. The second class are resource con-
straints. They are a result of the limited resources. 

Structural constraints can be either specified in ad-
vance, e.g., as an architectural model expressed in 
some description language, or they can be individually 
associated with components, e.g., as recursively speci-
fied dependencies contained in contracts. If an archi-
tectural model is available, the configuration must en-
sure the availability of a matching instance for each 
modeled component. If structural constraints are speci-
fied per component, the configuration must ensure that 
all recursively required instances are available. 

Resource constraints can be modeled in various 
ways. For the sake of simplicity, this paper relies on a 
simple but powerful model that is also used in [20]. 
Each instance specifies its local resource requirements 
in advance as an integer vector where each index de-
notes a specific resource and the integer denotes the 
required amount. The vector might vary depending on 
the usage of the instance. Similarly, the available re-
sources on each device can be modeled as a vector. 
Since the availability of resources can change, the val-
ues might fluctuate at runtime. To satisfy the resource 
constraints, the configuration has to ensure that at any 
time the index-wise sum of all requirement vectors of 
local instances is index-wise less than or equal to the 
vector that specifies the locally available resources.  

The complexity of automatic configuration arises 
from the fact that both, resource and structural con-
straints must be fulfilled simultaneously. Due to the 
recursive definition of structural constraints in PCOM, 
it is not possible to calculate the resource requirements 
of a certain sub tree in advance without determining all 
possible configurations of that sub tree. But even if it 
was possible, the strictly limited resource availability 
might lead to exclusions between structurally possible 
configurations of arbitrary sub-trees. Note that in gen-
eral finding all exclusions is as complex as finding a 
configuration. 
 
3.1. Example 
 

In the following, we will briefly describe the proc-
ess of automatic configuration based on PCOM using 
an exemplary application. Figure 1 depicts an envi-
ronment that consists of three devices. Each device has 
a certain amount of resources. The PDA has a single 
display (DSP), a certain amount of memory (MEM) 
and CPU. Each device hosts some components. The 
laptop hosts a component that enables a remote system 



to access the file system (File System) and another one 
that is capable of displaying a presentation (Remote 
PPT). Each instance of this component requires CPU, 
memory and access to the local presentation library 
(PLIB). Furthermore, an instance of this component 
requires two displays.  
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Figure 1. Environment and Configurations  
 

If an instance of the application anchor (PPT con-
trol) is started, the container on the PDA must assign 
the resources and it must resolve the dependencies 
(Input and Output). In this example, Input can be re-
solved using an instance of the File System component 
on the laptop or on the desktop. Output can be resolved 
by Remote PPT on the laptop or Local PPT on the 
desktop. If the PDA uses the Remote PPT, the laptop 
must assign the resources and resolve the displays. In 
this environment, there are four structural possibilities 
to configure the application depending on the choice 
for Input and Output (c.f. Figure 1). Since the Imager 
can only be started once due to the limitation of DSP 
resources, there is no way of using Remote PPT in 
such a way that all constraints are met. The two execu-
table configurations use a File System on the desktop 
or on the laptop and the Local PPT. This example also 
demonstrates the interrelation of resource and struc-
tural constraints. Choosing an instance that represents 
a locally valid option can still lead to unsatisfiable re-
quirements that can only be discovered gradually. 
 
3.2. Requirements 
 

The requirements towards peer-based automatic 
configuration can be derived directly from the pre-
sented system model and the overall vision of Perva-
sive Computing with respect to the distraction-free 
support of user tasks: 

Completeness: If a valid configuration exists auto-
matic configuration should be able to determine one. 
Also, it should be capable of detecting that a certain 
application is currently not executable at all. Other-
wise, users might eventually become frustrated. How-
ever, since the problem of finding a single configura-
tion is NP-complete, achieving completeness for arbi-
trary problem instances is not practicable. Thus, in 
practice we can only demand that automatic configura-
tion is capable of finding solutions in a broad range of 
different environments. As we will discuss in the 
evaluation section, a complete approach whose runtime 
is limited is often preferable over a heuristic that “arbi-
trarily” ignores a number of possible solutions. 

Efficiency: As the configuration delay of complete 
solutions for automatic configuration will increase 
exponentially with the size of the problem, efficiency 
becomes a major requirement. Since long configura-
tion delays might lead to frustrated users, automatic 
configuration should include as many optimizations as 
possible to enable speed-ups without overloading re-
sources or sacrificing completeness.  

Optimism: Ideally, an algorithm for automatic con-
figuration should be fast in resource-poor as well as 
resource-rich environments. Typically there is a trade-
off between optimizing worst- and best-case scenarios. 
Since users would expect to achieve speedups by add-
ing resources, optimizations of the worst-case delays at 
the cost of higher execution times in resource-rich en-
vironments are not desirable. Therefore, automatic 
configuration should be optimistic. 

Distribution: In peer-based systems the availability 
of a powerful and reliable device cannot be guaran-
teed. As a result, the scalability of a centralized ap-
proach will be limited in environments that consist of a 
large number of resource-poor devices. In order to 
utilize the inherent parallelism and the resources of 
such environments, automatic configuration should be 
performed cooperatively by the available devices.  

Resilience: The mobility of users and devices in 
pervasive systems leads to continuous and possibly 
unpredictable fluctuations regarding the availability of 
functionalities. As a result, applications in such sys-
tems have to cope with the resulting dynamics at run-
time. Since an algorithm for automatic configuration 
might be running a couple of seconds, the algorithm 
itself should be capable of dealing with fluctuations 
that can be detected during its execution. 

 
4. Approach 
 

In general, finding a single executable configuration 
in the presence of strictly limited resources is an NP-



complete problem. This can be shown, for instance by 
interpreting a conjunctive normal form that is known 
to be NP-complete for more than three literals (3-SAT) 
[5] as components with specifically constructed re-
source constraints. Thus, approaches for automatic 
configuration can apply NP-complete formalisms.  

As we will show in the following section, automatic 
configuration can be mapped to a Constraint Satisfac-
tion Problem. Informally, Constraint Satisfaction Prob-
lems can be described as follows: Given a set of vari-
ables with finite domains and a set of constraints be-
tween variables, find a valid variable assignment such 
that all constraints between the variables are met.  

Due to the specifics of the peer-based system 
model, centralized approaches towards solving Con-
straint Satisfaction Problems cannot fulfill the re-
quirement regarding distribution. The foundations for 
distributed algorithms have been developed in the field 
of Distributed Artificial Intelligence. In this field, the 
notion of Distributed Constraint Satisfaction Problems 
has been formalized [18]. There, the set of variables 
and constraints is distributed across a number of 
agents. Each agent is responsible for assigning its vari-
ables and evaluating its constraints. An overview and a 
classification of distributed algorithms for solving such 
problems can be found in [19]. 

From this set of algorithms, we show how Asyn-
chronous Backtracking (ABT) [18] can be extended to 
fulfill all requirements towards peer-based automatic 
configuration. ABT is a sound and complete depend-
ency-directed backtracking algorithm. It enables agents 
to concurrently assign values to their variables and 
thus has the potential to use the available parallelism. 
As we will show later on, it is possible to construct a 
mapping that enables the algorithm to start processing 
without any further distribution of knowledge. In the 
best case, it simply assigns all variables the right value 
and terminates. In contrast to consistency algorithms 
that first try to eliminate some illegal options before 
they assign values to variables, this algorithm fulfils 
the requirement towards optimism. Apart from that, the 
dependency-direction of the algorithm reduces the 
search within irrelevant possibilities by only consider-
ing options during backtracking that have the potential 
to resolve the conflict. This has the potential to greatly 
increase the efficiency of automatic configuration in 
many environments. Finally, as we will discuss later 
on, an extension to achieve resilience can be added in a 
straight-forward manor. 
 
4.1. Configuration as Constraint Satisfaction 
 

To use ABT as basis for automatic configuration, 
the functionalities present in an environment as well as 

structural and resource constraints must be represented 
as variables, domains and constraints between vari-
ables. To model PCOM applications, we map depend-
encies to variables, components to domains and the 
structure with resource requirements to constraints. 

To model structural constraints, each component in-
stance is represented as a multi-dimensional variable 
where each dimension denotes a dependency towards 
another instance. The domain of each dimension is 
given by the available options for the corresponding 
dependency. For the PPT Control (c.f. Figure 1) that 
has two dependencies Input and Output, we create a 
two dimensional variable. If there are two possibilities 
to satisfy the dependency Output (Remote and Local 
PPT) and one for the dependency Input (File System), 
the domain of the variable will be [0,1],[0]. Note that 
the domain solely contains direct possibilities. Due to 
the recursive nature of dependencies, there might be 
many possibilities to configure each of the assign-
ments, e.g., if there were multiple Imagers, there would 
be multiple ways to configure a Remote PPT.  

A difference between constraint satisfaction and 
automatic configuration is that constraint satisfaction 
determines an assignment for all variables. Automatic 
configuration determines a partial solution that satis-
fies the constraints, i.e. if an instance is not required, 
the dependencies of this instance must not be resolved. 
To model this, the domain of each dimension is ex-
tended with the pseudo value ∅. Thus, the domain for 
the previous example would be [∅,0,1],[∅,0]. One can 
think of the dependencies whose component has not 
been discovered and used as set to ∅. This effectively 
transforms the search for a partial solution in a search 
for a complete solution.  

Now that the variables and domains are defined, the 
mapping must ensure that only structurally valid con-
figurations are generated (c.f. Figure 2). This can be 
achieved by two constraints. Both can be motivated by 
looking at the Output dependency. There are two pos-
sible instances (Remote and Local PPT) that can be 
selected to fulfill this dependency. Since the configura-
tion requires only one at a time, we can add the con-
straints that Remote PPT needs to be considered iff its 
parent instance assigns values that contain 0 in the first 
dimension. Similarly, Local PPT needs to be consid-
ered iff 1 is assigned to the first dimension of the vari-
able. Furthermore, another constraint is required that 
ensures that the pseudo value is used iff the component 
instance is not used by its parent. Apart from these 
recursively defined constraints, one additional con-
straint must ensure that the anchor is always instanti-
ated. Otherwise, the trivial configuration that contains 
only a non-instantiated anchor also fulfils all structural 



requirements. Finally, the configuration must consider 
the resource constraints on each container. Thus, we 
add a constraint to ensure that the resource consump-
tion of all instances that are executed on the container 
must not exceed its available resources.  

 
Let VAL(c, n) be defined as the current assignment for the variable dimension n of
component instance c.

Each anchor instance a with m dependencies is subject to:

(1) ∀ n ∈ {1…m} VAL(a, n) ≠ ∅ (anchors must be resolved)

Each non-anchor instance c with m dependencies that is referenced by dependency 
j under the value assignment of k of its parent instance p is subject to:

(2) If VAL(p, j) ≠ k: ∀ n ∈ {1…m} VAL(c, n) = ∅ (unused instances are not resolved)
(3) If VAL(p, j) = k: ∀ n ∈ {1…m} VAL(c, n) ≠ ∅ (used instances are resolved)

Each container z that has the resources r and hosts the instances c1, …, cn that 
require the resources r1, …, rn is subject to:

(4) r >= Σi (ri) with i ∈ {1…n}   (resource requirements are met)  
 

Figure 2. Configuration Constraints 
 
To guarantee termination, ABT requires a total pri-

ority ordering between variables to create a cycle-free 
constraint network. Note that this ordering also defines 
the strategy for resolving conflicts during backtrack-
ing. A partial ordering is introduced by the structural 
constraints of applications, i.e., each child instance 
must have a lower priority than its parent. The remain-
ing degree of freedom can be filled by some arbitrary 
ordering scheme. However, in order to be usable, ABT 
must be able to create the scheme gradually. Otherwise 
the search space would have to be unfolded upfront 
which conflicts with the requirement of optimism. 

To demonstrate this, consider the search space 
shown in Figure 3 (a) that consists of components A-F, 
with the dependencies 1-4, and containers C1 and C2 
where A, B, E reside on container C1 and C, D, F re-
side on container C2. The dashed lines indicate re-
source constraints and the solid lines indicate structural 
constraints. Note that the structural exclusion con-
straint between C and D is implicit since A will only 
assign one value at a time for its dependency 2. Also 
note that the dependencies and containers can be 
thought of as variables of the CSP.  

Since A is the only component that is known a pri-
ori and the others must be discoverable in parallel, we 
can only introduce a local ordering as shown in Figure 
3 (b) by assigning locally unique ids to dependencies 
and their possible options. From these local ids, we can 
create a global id by concatenating the ids along the 
path (e.g, 1,2,1,1,1 for E or 1,2,2 for D). On these ids, 
we can now define comparison operators to establish a 
total ordering. In order to adhere to the partial ordering 
introduced by the structural constraints, we must en-
sure that all ids that are totally included as a prefix in 
another id have higher priority, i.e., 1,2,1,1,1 < 1,2,1. 
Apart from that we can for instance either decide that 
the length of an identifier is first compared and the 

longer the identifier, the lower the priority and for 
identifiers with equal length, we use their values for 
comparison. Another possible option would be to 
compare the values first before comparing the length.  

That way an ordering can be established that would 
lead to a backtracking strategy where lower levels 
would be reconfigured before higher levels are. Alter-
natively one could define an ordering where backtrack-
ing would take place in one subtree before it moves to 
the conflicting component of another subtree. 
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Figure 3. Numbering Scheme Example 
 
Figure 4 shows such orderings. Note that in order 

for this ordering to work, every component needs to 
know its place within the tree, i.e., the concatenated id. 
Thus upon its first usage, each component needs to be 
supplied with the identifier that its parent assigns for it.  

For our implementation we have chosen the strategy 
that reconfigures components on lower levels first. The 
idea is that lower level components have less recur-
sively required instances that must be notified if their 
parent changes and thus, reduces the communication 
overhead. However, this is a heuristic and there might 
be cases where this might lead to higher overhead. 

 
Backtracking Direction

exclusion exclusion  
Figure 4. Traversal Strategies 

 
As stated in section 3.2, automatic configuration 

must be capable of dealing with fluctuations that occur 
during its execution. Such fluctuations might be the 
result of the unavailability of local resources or remote 
devices. In pervasive systems, these fluctuations are 
typically hard to predict. Consider for instance a user 



that removes a USB device from a laptop or a traveling 
user that carries a number of devices. Fortunately, fail-
ure-handling for both types of fluctuations can be 
added in a relatively straight-forward way. Whenever 
the unavailability of a device is detected, the algorithm 
on every remaining device simply creates an additional 
constraint for every instance that has been used on the 
unavailable device. These new constraints state that 
these instances can never be used. Since ABT does not 
impose any timing constraints on the reception of con-
straints, they can be added without further precautions. 
Similarly, if a required resource becomes unavailable, 
the corresponding constraints must be added. The new 
constraints will eventually lead to a reconfiguration or 
an unsuccessful termination of the algorithm. 

ABT terminates unsuccessfully if an empty con-
straint set is generated during the execution, i.e., if 
there is no further choice that can be reconsidered in 
order to resolve an unsatisfied constraint. Due to the 
tree structure of applications, such an empty set can 
only be generated by the anchor. All other component 
instances can always ask their parents to reconfigure 
themselves in such a way that they are no longer used. 
Thus, an unsuccessful run will be recognized by the 
anchor. The successful termination of the algorithm is 
achieved if all participating devices stopped generating 
new messages and all messages have been delivered 
and processed. Therefore, detecting the successful ter-
mination is an instance of a Distributed Termination 
Problem. As the termination protocol must be resilient 
to mobility, a simple protocol as described in [6] is not 
enough. Although, our current implementation does 
not incorporate such a protocol, its addition as de-
scribed in [12] should be possible. 

Clearly, due to the unpredictable nature of perva-
sive systems, no termination protocol can guarantee 
that a successful termination of the algorithm will al-
low a successful application start up. If a resource be-
comes unavailable at exactly the same instant of time 
when the successful termination is detected, there is 
nothing that can be done. At the present time, the only 
approach that we can propose is to start the configura-
tion process all over again if such a situation occurs. 
Another possibility is to start the partial configuration 
and determine possible adaptations. This, however, is 
subject of our current research and a discussion lies 
beyond the scope of this paper. 
 
5. Algorithm 
 

In the following, we provide an overview of the re-
sulting algorithm and we describe some interesting 
details of our implementation. For the sake of clarity, 

the pseudo code of the algorithm (c.f. Figure 5, 6) does 
not consider different applications. Also, the algorithm 
does not contain optimizations, e.g. only sending mes-
sages to containers that require it. The layout borrows 
from the description of ABT [18]. Note that we need to 
extend the algorithm with the capability of hosting 
multiple instances and the resource validation proce-
dure. Furthermore, in order to support the dynamic 
discovery of components, we add a method that per-
forms discovery and initializes the variables. In this 
paper, the algorithm is modeled as a reactive process 
that responds to incoming messages (receive_XXX 
procedures). Our PCOM implementation allows batch 
processing of messages. 

 
receive_update(identifier, component, value)
// config denotes the local knowledge about an instance
config = getConfig(identifier)
// this happens if the instance is selected for the first time
if (! config exists)
// here the variables and their domains are determined
config = createConfig(identifier,component)

// this adds the variable assignment to the local knowledge
config.add(value)
// finally, all consistency checks are performed
check_constraints(config)

receive_backtrack(identifier, conflicts)
// determine whether the conflicts are still conflicting
if (! conflicts outdated)
// retrieve the addressed conflict
config = getConfig(identifier)
// add the conflicts as a new constraint
config.addConstraint(conflicts)
for each id in conflicts

if (! connected id)
// create links to keep informed about changed values
create link between parent of id and config
// add the value of the conflict to the local knowledge
config.add(identifier)

// temporarily copy the currently selected components
copy = config.getAssignment()
// perform the consistency checks
check_constraints(config)
if (copy == config.getAssignment())

// if the values have been consistent also send updates
send_update(identifier, copy) across links

 
check_constraints(config)
// if there are unmatched constraints
if (! config.isConsistent())

// determine whether a valid assignment can be found
if (! config.assignConsistent())

// if not, start or continue backtracking
backtrack(config)

else if (reserve_resources(config))
// else determine whether local resource constraints are met
assignment = config.getAssignment()
// if they are met, send the updated assignment
send_update(identifier, assignment) across links

backtrack(config)
if (config.isAnchor())

terminate unsuccessfully
else

// determine conflicting instances sets
conflict_sets = minimum conflict sets
for each conflicts in conflict_sets

// send a backtrack message to the lowest instance
id = minimum identifier in conflicts
// this message could be remote or local
send_backtrack(id,  conflicts)
// remove the conflicting assignment
config.remove(id)

check_constraints(config)   
 

Figure 5. Algorithm (1) 
 

Since each container can host multiple component 
instances, the algorithm must be capable of uniquely 
identifying them. To globally identify an instance and 



its position within the application, our implementation 
uses the generated ID discussed in Section 4.1. The 
application anchor has the ID {}, the first instance for 
the first dependency of the anchor is identified by 
{(0)[0]}. The second instance for this dependency is 
identified by {(0)[1]}. Thus, IDs are arbitrarily long 
sequences of pairs, where the first index of a pair de-
notes the dependency and the second index denotes the 
instance used to satisfy this dependency.  

 
reserve_resources(config)

// if the instance is selected by its parent
if (config.isInstantiated())
// and the resources are not reserved
if (! config.isReserved())

// try to reserve the required resources
if (reserve resources for config)
config.setReserved(true)
// if the reservation succeeds, continue
return true

else
// if the reservation fails determine conflict sets
conflict_sets = minimum conflict sets
// a flag that indicates whether the conflict has been resolved
reservable = true
for each conflicts in conflict_sets

// pick the instance with the lowest identifier
id = minimum identifier in conflicts
// backtrack to the parent of the lowest instance
send backtrack to parent of id with conflicts
// deactivate the instance that caused backtracking
c = getConfig(id)
c.remove(id)
check_constraints(c)
// determine whether the current instance is a conflict cause
if (config.getIdentifier() == id)
// if it is, it will be uninstanciated after the backtracking
reservable = false

if (reservable)
// the cause of all conflicts has been removed
reserve resources for config
config.setReserved(true)
return true

else
// the instance has already been deactivated
return false

else 
// if the instance is not used by the parent
if (config.isReserved())

// remove the resource reservation
remove reservation for config
config.setReserved(false)

return true  
Figure 6. Algorithm (2) 

 
To describe the algorithm, we will use the presenta-

tion application example introduced earlier (c.f. Figure 
7). When the user starts the application, the container 
calls the receive_update procedure with the ID {}, an 
identifier that locally identifies the PPT Control com-
ponent and the value {}. This signals that an anchor 
should be started (a). Since this is the first time that the 
configuration algorithm sees an update for {}, it cre-
ates a configuration object for this instance. Using the 
contract of the instance, it determines that PPT Control 
has two dependencies, thus it creates a two-
dimensional variable [Input],[Output]. To determine 
the domain of the variable, i.e. possible options to sat-
isfy the dependencies, the container performs local and 
remote lookups (b). Thereby, the algorithm discovers 
the following options: File System (desktop) {(0)[0]}, 
File System (laptop) {(0)[1]}, Remote PPT (laptop) 

{(1)[0]} and Local PPT (desktop) {(1)[1]}. Thus, the 
domain is [∅,0,1],[ ∅,0,1]. For the new variable, the 
initial assignment is [∅],[∅].  
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Figure 7. Example 
 
The algorithm continues to add the value {} to the 

local knowledge which states that the instance bound 
to the configuration object is instantiated. Thereafter, 
the algorithm calls the check_constraints procedure 
and determines that the current assignment [∅],[∅] is 
not valid, since the instance is used according to the 



local knowledge. Note that this is a result of the built-
in constraints shown in Figure 2. Next, the algorithm 
determines a valid assignment [0],[0] and reserves the 
resources using the reserve_resources procedure. The 
reservation finishes successfully and the algorithm 
continues to send parallel update messages to the File 
System {(0)[0]} and the Remote PPT {(1)[0]} (c).  

When the update message for the File System ar-
rives, the algorithm creates the configuration object, 
adds the value to the local knowledge, performs the 
resource reservation, and stops without sending further 
messages (d). In response to the update for the Remote 
PPT, the algorithm sends two updates to the Imager 
({(1)[0](0)[0]} and {(1)[0](1)[0]}). The first update 
message creates a new configuration object and fin-
ishes successfully. The second update fails due to a 
lack of resources. Thus, the reserve_resources proce-
dure determines that the minimum conflicting sets con-
sist of exactly one set of component instances that con-
tains both instances of the Imager component (e).  

Note that although the File System is also running 
on the desktop, its identifier will not be added to the 
conflict set since it has nothing to do with the shortage 
on displays. Furthermore, the algorithm does not need 
to add the complete path to the anchor to the constraint 
as it can be gradually generated whenever a conflict is 
escalated. Following the traversal strategy, 
{(1)[0](1)[0]} is picked as the smallest identifier and a 
backtrack message is sent to is parent. Additionally, 
the instance is deactivated and all potentially reserved 
resources and required instances are released by call-
ing check_constraints.  

When the backtracking message arrives at the Re-
mote PPT, the component will determine whether it 
has to create any new links. Since both identifiers con-
tained in the conflict set are local variables, no new 
link must be created. Therefore, the algorithm contin-
ues to add a mutual exclusion constraint between 
{(1)[0](0)[0]} and {(1)[0](1)[0]} to the local knowl-
edge. In cases where added conflicts are not conflicts 
between linked instances, the addition of new links 
between the assigning instance and the instance that 
recorded the constraint are necessary to ensure that the 
constraint evaluation always considers all relevant 
variable assignments of the present situation.  

Since the Remote PPT cannot create a valid as-
signment, it creates a backtracking message that con-
tains its own identifier and sends it to its parent. 
Thereafter, the Remote PPT is deactivated and its con-
straints are checked again. Thereby, the algorithm re-
leases all resources, assigns [∅],[∅] and creates up-
dates that will eventually release previously bound 
instances (f). When the PPT Control receives the back-
tracking message, it adds the constraint that the Re-

mote PPT can never be started and assigns another 
value for the Output dependency. It selects the Local 
PPT {(1)[1]} and it creates an update (g). When the 
update arrives, the Local PPT will be reserved and the 
algorithm stops. 

If the Laptop becomes unavailable, the algorithm 
simply creates backtracking messages for each used 
component instance provided by the laptop. These 
backtracking messages solely contain the identifier. 
The same procedure is performed, if some reserved 
resource becomes unavailable. The algorithm deter-
mines the conflicting sets and creates the correspond-
ing backtracking messages.  

A termination protocol can be added by wrapping 
the receive_XXX procedures and the send statements. 
The necessary steps that need to be performed depend 
on the chosen protocol. A simple protocol for double 
counting messages would increase the send and re-
ceive counters whose state is later on compared by a 
wave of termination messages that is sent along the 
tree structure. A resilient termination protocol would 
have to perform further steps (see [12] for details).  

When the algorithm succeeds, the application must 
still be started. Therefore, an asynchronous traversal of 
the tree-structure starting from the application anchor 
is sufficient. This will not result in conflicts, since each 
configuration object has already reserved the resources 
for the chosen bindings (h). 

Since the algorithm above is a modified instance of 
ABT, the proof of correctness follows the argumenta-
tion provided in [18]. Due to space restrictions, we 
would like to refer the reader to this paper for further 
details. However, an interesting difference between 
ABT in general and the special instance discussed in 
this paper is that the application anchor can detect an 
over-constrained environment due to the tree-structure 
of applications. 
 
6. Evaluation 
 

As discussed in Section 4, ABT fulfills the re-
quirements regarding completeness, optimism, distri-
bution and resilience. In this section, we discuss effi-
ciency as the last remaining requirement.  

ABT resolves unrelated conflicts simultaneously 
and it reconsiders only those instances that have the 
potential to resolve a conflict. Thus, the configuration 
complexity depends on the induced width, i.e. the size 
of sub problems that can be solved independently, and 
not the total width of the search space [2]. The induced 
width of automatic configuration depends on the num-
ber of structurally valid configurations and the locality 
of resource conflicts, i.e. the number of instances that 



have conflicting requirements towards the same re-
sources. In many pervasive systems, resource conflicts 
can be assumed to be relatively local. To justify this, 
consider that the worst-case runtime occurs, if many 
instances are executed on one device and a widely 
used resource (e.g. memory or CPU) is not available. 
However, the integration of devices into everyday ob-
jects leads to environments where the majority of de-
vices are specialized embedded systems. Just like eve-
ryday objects, they will be tailored towards a small 
number of specific functionalities, which will increase 
the locality. 

The number of structurally valid configurations de-
pends on the number of available components that can 
be used within the application and thus it heavily de-
pends on the capabilities of the environment. To ana-
lyze the effects of an increasing number of possibilities 
we ran a number of simulations with a discrete event 
simulator. Within one time step, the simulator proc-
esses all messages that have been sent and creates all 
new messages before it moves on to the next time step. 

The simulated environments have been constructed 
using the following procedure: we create an applica-
tion that consists of n instances by adding n compo-
nents to a binary tree from left to right, top to bottom. 
Then we create one container and place the anchor on 
it. For the remaining (n-1) components we create m 
containers and place them on the containers round-
robin. Thereby, we set the resource requirements of 
each component to one unit of one resource that is 
used by all components on the container. Furthermore, 
we set the available amount of the resource to the 
number of components that are hosted on this con-
tainer. Then we randomly pick k components and rep-
licate them on randomly selected containers. Hereby, 
we set their resource requirements for the commonly 
used resource on that container to two without increas-
ing the resources on this container. Thus, increasing k 
will lead to a higher potential for conflicting selections 
during automatic configuration and decreasing the 
number of containers m will decrease the locality of 
the resulting conflicts.  

Note that there will always be exactly one configu-
ration that can be started which consists solely of in-
stances provided by the initially placed components. 
The exact amount of messages might vary depending 
on the arrival time of messages. For instance, if a de-
vice requires a long time to detect or propagate a local 
conflict, the number of messages as well as the re-
quired duration might increase or decrease depending 
on the scenario. 

Figure 8 depicts simulation results in cases where 
the locality of conflicts is high, i.e. m = (n-1) / 2, for 
different application sizes (n = 8, 12, 17) and a differ-

ent number of conflicting components (k = 0 to 30). 
Each measurement shows the average, respectively the 
maximum, of 100 runs.  
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Figure 8. Simulation Results with Locality 
 



The simulations show that the number of messages 
required to determine configurations grows exponen-
tially. For k ~ 17 the maximum number of messages 
exceeds 400. This is a result of the exponential in-
crease of structural possibilities for configurations 
which in turn can be attributed to the (exponential) 
way conflicts are created, i.e. by cloning components. 
Note that the number of messages does not necessarily 
lead to a high configuration delay as the solution is 
found in less than 90 time steps.  
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Figure 9. Completeness with Locality 

 
One might argue that the worst-case message over-

head prohibits the application of the algorithm. There-
fore, we have compared the achievable completeness if 
the number of messages is limited to 100, 200, 300 and 
400 with the completeness that can be gained from a 
greedy heuristic that selects sub trees recursively with-
out ever reconsidering a choice as proposed in [3]. 
Figure 9 shows the success rates for an application 
with 12 instances. In average, the heuristic produced 
23-100 messages, but for k = 15, it can only find the 
configuration in 8 cases whereas backtracking finds 59 
with 100 and all with 400 messages. Thus, even if the 
complete algorithm would have been manually 
aborted, the success rate would have been higher.  

If we construct a scenario where there is no valid 
configuration by increasing the resource requirements 
of one initially placed component by one, the number 

of transferred messages increases by approximately a 
factor of two. This can be attributed to the min-conflict 
value ordering heuristic that is used to select instances. 
However, in over-constrained search spaces aborting 
the process does not affect completeness.  

Finally, Figure 10 shows the success rate in a case 
where the locality assumption of conflicts does not 
hold. Instead of increasing the number of containers as 
the size of the application grows, we fix the number to 
4. Despite the increasing message overhead, the com-
plete algorithm is still able to outperform the greedy 
heuristic in terms of completeness. 
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Figure 10. Completeness without Locality 
 
To determine the configuration delays in a real sys-

tem, we have implemented a prototypical version of 
the algorithm as part of PCOM. To provide values for 
small devices, we placed an application with 7 compo-
nents on 2 Pocket PCs (XScale 400MHz / 10 MBit 
WLAN) using the procedure described above. Since 
all components were using the same resource on each 
of the Pocket PCs, this experiment reflects a situation 
where the locality of conflicts is low. We ran 7 scenar-
ios with 0, 2, 4, 6, 8, 10 and 12 randomly created con-
flicting components. For each number of conflicting 
components we performed 10 measurements. Figure 9 
shows the results of these measurements with respect 
to configuration delay (including distributed termina-
tion detection using a simple credit-based protocol and 



application startup), number of local and remote mes-
sages created by the greedy and the backtracking algo-
rithm as well as the achievable completeness of the 
backtracking algorithm within bounded delays.  
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Figure 11. Measured Results without Locality 

 
The measurements indicate that there is a high cor-

relation between the number of remote messages and 
the configuration delay. This can be attributed to the 
fact that the locality of conflicts is low. However, the 
completeness that can be achieved with bounded delay 
is always higher, even if the delay is limited to 10 sec-
onds (only slightly higher than the average runtime of 
the greedy algorithm with ~8-9 seconds). 
 
7. Related Work 
 

As most projects in Pervasive Computing deal with 
distributed functionalities, they have to address the 
management of compositions. The degree of automa-

tion varies heavily depending on the focused system 
model. The GAIA project [16] for instance separates 
the implementation of functionalities from the compo-
sition of applications using two externalized mappings. 
Since GAIA assumes a partially static environment, it 
is not necessary to automate these mappings. The 
AURA project [9] uses a task abstraction that is 
mapped onto functionalities available in a certain envi-
ronment. The mapping is done by a centralized envi-
ronment manager that coordinates the functionalities of 
its environment. In contrast to PCOM and GAIA, func-
tionalities in AURA are self-contained entities that 
solely interact implicitly through users. The iROS [14] 
system provides a generic mechanism that enables in-
teraction between functionalities. Since iRos does not 
impose constraints on the available components, the 
management of the composition must be performed 
manually. Similarly, One.World [8] does not support 
the automated management of compositions. Instead, 
the system shifts this responsibility to the developer.  

The Pebbles project [17] uses an abstraction called 
goal to model an application and it uses a planning 
engine that automates the creation of valid configura-
tions at runtime. To the best of our knowledge Pebbles 
uses a centralized planning engine. Another system 
that uses centralized planning to configure component-
based applications is Planit [1]. Planit uses temporal 
refinement planning to adapt and configure applica-
tions at runtime. In contrast to the proposed approach, 
centralized approaches require a global view of the 
components and resources of the environment. 

Automatic configuration as discussed in this paper 
can be seen as instance of a distributed resource alloca-
tion problem. In the past, research has been applied to 
distinct domains, e.g. job scheduling [11] or patient 
scheduling [7]. However, these domains are different 
from automatic configuration since they try to allocate 
a set of tasks that is known in advance. In the dis-
cussed approach the set of components is discovered at 
runtime. This requires that the set of variables and do-
mains can be gradually created from the discovered 
components.  

More recently, researchers developed the notion of 
Dynamic Distributed Constraint Satisfaction Problems, 
e.g. to perform distributed monitoring in sensor net-
works [13]. To deal with the dynamics of the environ-
ment, constraints need to be added or removed depend-
ing on a predicate. This is similar to the required ex-
tension for resilience as all constraints depend on a 
predicate that continuously evaluates the availability of 
devices and resources. However, the approach pre-
sented in [13] does not deal with discovery. 
 



8. Conclusion 
 

In this paper, we have discussed the requirements 
on automatic configuration in peer-based pervasive 
systems. Furthermore, we have presented a mapping 
that enables the automatic configuration of component-
based applications in PCOM using Distributed Con-
straint Satisfaction techniques. The feasibility of this 
approach has been evaluated using simulation and a 
prototypical implementation of the algorithm. The re-
sults indicate that the presented complete approach is 
preferable over the greedy heuristic. Although it is 
possible to construct scenarios in which the complete 
algorithm will have an unacceptable delay, we are con-
fident that many real-world problems will exhibit the 
locality to keep the delay within acceptable bounds.  

In the near future, we will extend the presented 
work towards runtime adaptation where the cost for 
reconfiguring an executed partial application must be 
taken into account. Also, we are planning to investi-
gate hybrid systems that might contain coordinating 
entities at certain times. In such systems, a fragment of 
the state of the environment could be collected at each 
of the available coordinators which in turn could there-
after cooperatively configure applications.  
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