
Peer-based Automatic Configuration of Pervasive Applications

Marcus Handte, Christian Becker, Kurt Rothermel
Institute of Parallel and Distributed Systems, Universität Stuttgart, Germany

firstname.lastname@informatik.uni-stuttgart.de

Abstract

Pervasive Computing envisions seamless support

for user tasks through cooperating devices that are
present in an environment. Fluctuating availability of
devices, induced by mobility and failures, requires
mechanisms and algorithms that allow applications to
adapt to changing environmental conditions without
user intervention. To ease the development of adaptive
applications, we have proposed the peer-based com-
ponent system PCOM. This system provides fundamen-
tal mechanisms to support the automated composition
of applications at runtime. In this paper, we discuss
the requirements on peer-based automatic configura-
tion of pervasive applications and present an approach
based on Distributed Constraint Satisfaction. The re-
sulting algorithm configures applications in the pres-
ence of strictly limited resources. To show the feasibil-
ity of the approach, we have integrated the algorithm
into PCOM and provide an evaluation based on simu-
lation and measurements.

1. Introduction

Pervasive Computing utilizes devices that coopera-
tively execute distributed applications in order to pro-
vide distraction-free support for complex user tasks. In
essence, pervasive applications can be seen as compo-
sitions of functionality provided by devices in the
physical environment of their users. The interaction
between applications and users is unobtrusive since
many devices become invisible through their integra-
tion in everyday objects. The devices encountered in
such environments are heterogeneous, ranging form
resource-limited specialized systems up to powerful
general purpose computers. Due to wireless communi-
cation, many devices can be mobile. Hence, the avail-
able functionality is continuously fluctuating.

Both, the heterogeneity and the dynamics of the en-
vironment increase the complexity that developers,
administrators, and users face when they are building,

operating, or using applications. While it is possible to
shift the responsibilities and thus, the arising complexi-
ties, between these parties, e.g., administration requires
more fine-tuning but usage becomes simpler, a pure
shift is not enough to cope with the complexities.

In response, a number of research projects are fo-
cusing on the development of abstractions that enable
the automation of various aspects of pervasive sys-
tems. One of these aspects is the automatic composi-
tion of applications at runtime. This automation is a
major rationale behind many pervasive infrastructures,
e.g. GAIA [16], AURA [9], and our component system
PCOM [3]. At the present time, composition is receiv-
ing attention in other research areas as well, e.g., the
multimedia [10] and the web services community [15].

In PCOM, the configuration of a component-based
application, i.e., the composition of components that
constitute an application is automatically determined at
runtime. If the resources required by components are
limited, finding a single configuration that meets all
requirements is an NP-complete problem.

In this paper, we discuss the requirements on peer-
based automatic configuration of pervasive applica-
tions. Furthermore, we propose an approach towards
automatic configuration of PCOM applications based
on existing work in the field of Distributed Constraint
Satisfaction [18]. In contrast to our previously intro-
duced greedy heuristic [3], the proposed approach is
complete. Despite the exponential runtime, our evalua-
tion suggests that a) the approach can be applied to
many real-world problems and b) even with limited
runtime it can easily outperform the greedy heuristic.

The remainder of this paper is structured as follows.
The next section introduces the underlying system
model and presents the necessary details of PCOM.
Section 3 describes the configuration process and de-
rives the requirements for its automation. The ap-
proach is motivated and detailed in Section 4. Section
5 provides an overview of the resulting algorithm that
is evaluated in Section 6. Finally, Section 7 describes
related work and Section 8 concludes the paper.

2. System Model

As presented in [3] and [4], our work focuses on
peer-based pervasive systems. In such systems, devices
within communication range connect to each other on-
the-fly using wireless communication technology, e.g.,
Bluetooth or WLAN. Devices offer their functionality
and cooperate with other devices in the vicinity in or-
der to execute applications. As a result, applications
are composed of functionalities provided by different
devices. In contrast to smart environments like GAIA
[16], AURA [9] and iROS [14], peer-based systems do
not rely on the presence of a centralized coordinating
entity. Due to user mobility, the availability of func-
tionalities is continuously fluctuating. As an example
consider a group of persons that is cooperatively work-
ing with PDAs on a business trip. In this scenario, re-
lying on a central coordinating entity, e.g., a fixed
server might prohibit cooperation.

To ease the development of adaptive applications,
we have developed the light-weight component system
PCOM. In the following, we will sketch the relevant
concepts. A detailed description can be found in [3].

PCOM differentiates between components and in-
stances. Components can be thought of as blueprints
for their instances. The number of instances is a priori
not restricted. Each component resides on exactly one
device and each device contains a container that cre-
ates and manages all local instances. An instance pro-
vides a contractual description of its offered function-
ality and its requirements. The requirements can be
split into local resource requirements and requirements
towards other instances. The container assigns the lo-
cal resources and in cooperation with other containers
it starts and manages the required instances. An appli-
cation is a tree of component instances that is con-
structed by recursively starting the required instances
of a root instance, the so-called application anchor. An
application can only be started, if all required instances
can be executed. A PCOM container must be able to
manage strictly limited resources, e.g., to model exclu-
sive resources like input devices, etc. Usually, intro-
ducing limited resources will lead to a limitation on the
number of instances that can be executed. Since in-
stances of different components can have overlapping
resource requirements, e.g., both require some mem-
ory, starting an instance of one component can prohibit
the instantiation of another one.

3. Automatic Configuration

Automatic configuration denotes the task of auto-
matically determining a composition of components

that can be instantiated simultaneously as application.
Such a composition is subject to two classes of con-
straints. The first class are structural constraints. They
describe what constitutes a valid composition in terms
of functionalities. The second class are resource con-
straints. They are a result of the limited resources.

Structural constraints can be either specified in ad-
vance, e.g., as an architectural model expressed in
some description language, or they can be individually
associated with components, e.g., as recursively speci-
fied dependencies contained in contracts. If an archi-
tectural model is available, the configuration must en-
sure the availability of a matching instance for each
modeled component. If structural constraints are speci-
fied per component, the configuration must ensure that
all recursively required instances are available.

Resource constraints can be modeled in various
ways. For the sake of simplicity, this paper relies on a
simple but powerful model that is also used in [20].
Each instance specifies its local resource requirements
in advance as an integer vector where each index de-
notes a specific resource and the integer denotes the
required amount. The vector might vary depending on
the usage of the instance. Similarly, the available re-
sources on each device can be modeled as a vector.
Since the availability of resources can change, the val-
ues might fluctuate at runtime. To satisfy the resource
constraints, the configuration has to ensure that at any
time the index-wise sum of all requirement vectors of
local instances is index-wise less than or equal to the
vector that specifies the locally available resources.

The complexity of automatic configuration arises
from the fact that both, resource and structural con-
straints must be fulfilled simultaneously. Due to the
recursive definition of structural constraints in PCOM,
it is not possible to calculate the resource requirements
of a certain sub tree in advance without determining all
possible configurations of that sub tree. But even if it
was possible, the strictly limited resource availability
might lead to exclusions between structurally possible
configurations of arbitrary sub-trees. Note that in gen-
eral finding all exclusions is as complex as finding a
configuration.

3.1. Example

In the following, we will briefly describe the proc-
ess of automatic configuration based on PCOM using
an exemplary application. Figure 1 depicts an envi-
ronment that consists of three devices. Each device has
a certain amount of resources. The PDA has a single
display (DSP), a certain amount of memory (MEM)
and CPU. Each device hosts some components. The
laptop hosts a component that enables a remote system

to access the file system (File System) and another one
that is capable of displaying a presentation (Remote
PPT). Each instance of this component requires CPU,
memory and access to the local presentation library
(PLIB). Furthermore, an instance of this component
requires two displays.

PDA
CPU
MEM
DSP

Desktop

100
100

1

CPU
MEM
DSP

100
100
1

PLIB 1
FS 1

Laptop
CPU
MEM
DSP

100
100
1

PLIB 1
FS 1

PPT Control
(Anchor)

Input Output

CPU
MEM
DSP

5
10
1

CPU
MEM
DSP

5
10
1

File System
(Input)

CPU
MEM
FS

5
10
1

CPU
MEM
FS

5
10
1

File System
(Input)

CPU
MEM
FS

5
10
1

CPU
MEM
FS

5
10
1

Imager
(Display)

CPU
MEM
DSP

5
10
1

CPU
MEM
DSP

5
10
1

Remote PPT
(Output)

Local PPT
(Output)

CPU
MEM

5
10

PLIB
DSP

1
1

CPU
MEM

5
10

PLIB
DSP

1
1

CPU
MEM
PLIB

5
10
1

CPU
MEM
PLIB

5
10
1

Display Display

PPT Control
(PDA)

CPU
MEM
DSP

5
10
1

CPU
MEM
DSP

5
10
1

File System
(Desk-/Laptop)

CPU
MEM
FS

5
10
1

CPU
MEM
FS

5
10
1

Remote PPT
(Laptop)

CPU
MEM
PLIB

5
10
1

CPU
MEM
PLIB

5
10
1

Imager
(Desktop)

CPU
MEM
DSP

5
10
1

CPU
MEM
DSP

5
10
1

Imager
(Desktop)

CPU
MEM
DSP

5
10
1

CPU
MEM
DSP

5
10
1

PPT Control
(PDA)

CPU
MEM
DSP

5
10
1

CPU
MEM
DSP

5
10
1

Local PPT
(Desktop)

CPU
MEM

5
10

PLIB
DSP

1
1

CPU
MEM

5
10

PLIB
DSP

1
1

File System
(Desk-/Laptop)

CPU
MEM
FS

5
10
1

CPU
MEM
FS

5
10
1

Unsatisfiable resource requirement
Executable

Configurations
Not Executable
Configurations

Environment

Figure 1. Environment and Configurations

If an instance of the application anchor (PPT con-
trol) is started, the container on the PDA must assign
the resources and it must resolve the dependencies
(Input and Output). In this example, Input can be re-
solved using an instance of the File System component
on the laptop or on the desktop. Output can be resolved
by Remote PPT on the laptop or Local PPT on the
desktop. If the PDA uses the Remote PPT, the laptop
must assign the resources and resolve the displays. In
this environment, there are four structural possibilities
to configure the application depending on the choice
for Input and Output (c.f. Figure 1). Since the Imager
can only be started once due to the limitation of DSP
resources, there is no way of using Remote PPT in
such a way that all constraints are met. The two execu-
table configurations use a File System on the desktop
or on the laptop and the Local PPT. This example also
demonstrates the interrelation of resource and struc-
tural constraints. Choosing an instance that represents
a locally valid option can still lead to unsatisfiable re-
quirements that can only be discovered gradually.

3.2. Requirements

The requirements towards peer-based automatic
configuration can be derived directly from the pre-
sented system model and the overall vision of Perva-
sive Computing with respect to the distraction-free
support of user tasks:

Completeness: If a valid configuration exists auto-
matic configuration should be able to determine one.
Also, it should be capable of detecting that a certain
application is currently not executable at all. Other-
wise, users might eventually become frustrated. How-
ever, since the problem of finding a single configura-
tion is NP-complete, achieving completeness for arbi-
trary problem instances is not practicable. Thus, in
practice we can only demand that automatic configura-
tion is capable of finding solutions in a broad range of
different environments. As we will discuss in the
evaluation section, a complete approach whose runtime
is limited is often preferable over a heuristic that “arbi-
trarily” ignores a number of possible solutions.

Efficiency: As the configuration delay of complete
solutions for automatic configuration will increase
exponentially with the size of the problem, efficiency
becomes a major requirement. Since long configura-
tion delays might lead to frustrated users, automatic
configuration should include as many optimizations as
possible to enable speed-ups without overloading re-
sources or sacrificing completeness.

Optimism: Ideally, an algorithm for automatic con-
figuration should be fast in resource-poor as well as
resource-rich environments. Typically there is a trade-
off between optimizing worst- and best-case scenarios.
Since users would expect to achieve speedups by add-
ing resources, optimizations of the worst-case delays at
the cost of higher execution times in resource-rich en-
vironments are not desirable. Therefore, automatic
configuration should be optimistic.

Distribution: In peer-based systems the availability
of a powerful and reliable device cannot be guaran-
teed. As a result, the scalability of a centralized ap-
proach will be limited in environments that consist of a
large number of resource-poor devices. In order to
utilize the inherent parallelism and the resources of
such environments, automatic configuration should be
performed cooperatively by the available devices.

Resilience: The mobility of users and devices in
pervasive systems leads to continuous and possibly
unpredictable fluctuations regarding the availability of
functionalities. As a result, applications in such sys-
tems have to cope with the resulting dynamics at run-
time. Since an algorithm for automatic configuration
might be running a couple of seconds, the algorithm
itself should be capable of dealing with fluctuations
that can be detected during its execution.

4. Approach

In general, finding a single executable configuration
in the presence of strictly limited resources is an NP-

complete problem. This can be shown, for instance by
interpreting a conjunctive normal form that is known
to be NP-complete for more than three literals (3-SAT)
[5] as components with specifically constructed re-
source constraints. Thus, approaches for automatic
configuration can apply NP-complete formalisms.

As we will show in the following section, automatic
configuration can be mapped to a Constraint Satisfac-
tion Problem. Informally, Constraint Satisfaction Prob-
lems can be described as follows: Given a set of vari-
ables with finite domains and a set of constraints be-
tween variables, find a valid variable assignment such
that all constraints between the variables are met.

Due to the specifics of the peer-based system
model, centralized approaches towards solving Con-
straint Satisfaction Problems cannot fulfill the re-
quirement regarding distribution. The foundations for
distributed algorithms have been developed in the field
of Distributed Artificial Intelligence. In this field, the
notion of Distributed Constraint Satisfaction Problems
has been formalized [18]. There, the set of variables
and constraints is distributed across a number of
agents. Each agent is responsible for assigning its vari-
ables and evaluating its constraints. An overview and a
classification of distributed algorithms for solving such
problems can be found in [19].

From this set of algorithms, we show how Asyn-
chronous Backtracking (ABT) [18] can be extended to
fulfill all requirements towards peer-based automatic
configuration. ABT is a sound and complete depend-
ency-directed backtracking algorithm. It enables agents
to concurrently assign values to their variables and
thus has the potential to use the available parallelism.
As we will show later on, it is possible to construct a
mapping that enables the algorithm to start processing
without any further distribution of knowledge. In the
best case, it simply assigns all variables the right value
and terminates. In contrast to consistency algorithms
that first try to eliminate some illegal options before
they assign values to variables, this algorithm fulfils
the requirement towards optimism. Apart from that, the
dependency-direction of the algorithm reduces the
search within irrelevant possibilities by only consider-
ing options during backtracking that have the potential
to resolve the conflict. This has the potential to greatly
increase the efficiency of automatic configuration in
many environments. Finally, as we will discuss later
on, an extension to achieve resilience can be added in a
straight-forward manor.

4.1. Configuration as Constraint Satisfaction

To use ABT as basis for automatic configuration,
the functionalities present in an environment as well as

structural and resource constraints must be represented
as variables, domains and constraints between vari-
ables. To model PCOM applications, we map depend-
encies to variables, components to domains and the
structure with resource requirements to constraints.

To model structural constraints, each component in-
stance is represented as a multi-dimensional variable
where each dimension denotes a dependency towards
another instance. The domain of each dimension is
given by the available options for the corresponding
dependency. For the PPT Control (c.f. Figure 1) that
has two dependencies Input and Output, we create a
two dimensional variable. If there are two possibilities
to satisfy the dependency Output (Remote and Local
PPT) and one for the dependency Input (File System),
the domain of the variable will be [0,1],[0]. Note that
the domain solely contains direct possibilities. Due to
the recursive nature of dependencies, there might be
many possibilities to configure each of the assign-
ments, e.g., if there were multiple Imagers, there would
be multiple ways to configure a Remote PPT.

A difference between constraint satisfaction and
automatic configuration is that constraint satisfaction
determines an assignment for all variables. Automatic
configuration determines a partial solution that satis-
fies the constraints, i.e. if an instance is not required,
the dependencies of this instance must not be resolved.
To model this, the domain of each dimension is ex-
tended with the pseudo value ∅. Thus, the domain for
the previous example would be [∅,0,1],[∅,0]. One can
think of the dependencies whose component has not
been discovered and used as set to ∅. This effectively
transforms the search for a partial solution in a search
for a complete solution.

Now that the variables and domains are defined, the
mapping must ensure that only structurally valid con-
figurations are generated (c.f. Figure 2). This can be
achieved by two constraints. Both can be motivated by
looking at the Output dependency. There are two pos-
sible instances (Remote and Local PPT) that can be
selected to fulfill this dependency. Since the configura-
tion requires only one at a time, we can add the con-
straints that Remote PPT needs to be considered iff its
parent instance assigns values that contain 0 in the first
dimension. Similarly, Local PPT needs to be consid-
ered iff 1 is assigned to the first dimension of the vari-
able. Furthermore, another constraint is required that
ensures that the pseudo value is used iff the component
instance is not used by its parent. Apart from these
recursively defined constraints, one additional con-
straint must ensure that the anchor is always instanti-
ated. Otherwise, the trivial configuration that contains
only a non-instantiated anchor also fulfils all structural

requirements. Finally, the configuration must consider
the resource constraints on each container. Thus, we
add a constraint to ensure that the resource consump-
tion of all instances that are executed on the container
must not exceed its available resources.

Let VAL(c, n) be defined as the current assignment for the variable dimension n of
component instance c.

Each anchor instance a with m dependencies is subject to:

(1) ∀ n ∈ {1…m} VAL(a, n) ≠ ∅ (anchors must be resolved)

Each non-anchor instance c with m dependencies that is referenced by dependency
j under the value assignment of k of its parent instance p is subject to:

(2) If VAL(p, j) ≠ k: ∀ n ∈ {1…m} VAL(c, n) = ∅ (unused instances are not resolved)
(3) If VAL(p, j) = k: ∀ n ∈ {1…m} VAL(c, n) ≠ ∅ (used instances are resolved)

Each container z that has the resources r and hosts the instances c1, …, cn that
require the resources r1, …, rn is subject to:

(4) r >= Σi (ri) with i ∈ {1…n} (resource requirements are met)

Figure 2. Configuration Constraints

To guarantee termination, ABT requires a total pri-

ority ordering between variables to create a cycle-free
constraint network. Note that this ordering also defines
the strategy for resolving conflicts during backtrack-
ing. A partial ordering is introduced by the structural
constraints of applications, i.e., each child instance
must have a lower priority than its parent. The remain-
ing degree of freedom can be filled by some arbitrary
ordering scheme. However, in order to be usable, ABT
must be able to create the scheme gradually. Otherwise
the search space would have to be unfolded upfront
which conflicts with the requirement of optimism.

To demonstrate this, consider the search space
shown in Figure 3 (a) that consists of components A-F,
with the dependencies 1-4, and containers C1 and C2
where A, B, E reside on container C1 and C, D, F re-
side on container C2. The dashed lines indicate re-
source constraints and the solid lines indicate structural
constraints. Note that the structural exclusion con-
straint between C and D is implicit since A will only
assign one value at a time for its dependency 2. Also
note that the dependencies and containers can be
thought of as variables of the CSP.

Since A is the only component that is known a pri-
ori and the others must be discoverable in parallel, we
can only introduce a local ordering as shown in Figure
3 (b) by assigning locally unique ids to dependencies
and their possible options. From these local ids, we can
create a global id by concatenating the ids along the
path (e.g, 1,2,1,1,1 for E or 1,2,2 for D). On these ids,
we can now define comparison operators to establish a
total ordering. In order to adhere to the partial ordering
introduced by the structural constraints, we must en-
sure that all ids that are totally included as a prefix in
another id have higher priority, i.e., 1,2,1,1,1 < 1,2,1.
Apart from that we can for instance either decide that
the length of an identifier is first compared and the

longer the identifier, the lower the priority and for
identifiers with equal length, we use their values for
comparison. Another possible option would be to
compare the values first before comparing the length.

That way an ordering can be established that would
lead to a backtracking strategy where lower levels
would be reconfigured before higher levels are. Alter-
natively one could define an ordering where backtrack-
ing would take place in one subtree before it moves to
the conflicting component of another subtree.

A

1 2

C

3 4

B D

E F

C1 C2

1

1 2

1

1 2

1 2

1 1

C1 C2

(a) (b)

Figure 3. Numbering Scheme Example

Figure 4 shows such orderings. Note that in order

for this ordering to work, every component needs to
know its place within the tree, i.e., the concatenated id.
Thus upon its first usage, each component needs to be
supplied with the identifier that its parent assigns for it.

For our implementation we have chosen the strategy
that reconfigures components on lower levels first. The
idea is that lower level components have less recur-
sively required instances that must be notified if their
parent changes and thus, reduces the communication
overhead. However, this is a heuristic and there might
be cases where this might lead to higher overhead.

Backtracking Direction

exclusion exclusion
Figure 4. Traversal Strategies

As stated in section 3.2, automatic configuration

must be capable of dealing with fluctuations that occur
during its execution. Such fluctuations might be the
result of the unavailability of local resources or remote
devices. In pervasive systems, these fluctuations are
typically hard to predict. Consider for instance a user

that removes a USB device from a laptop or a traveling
user that carries a number of devices. Fortunately, fail-
ure-handling for both types of fluctuations can be
added in a relatively straight-forward way. Whenever
the unavailability of a device is detected, the algorithm
on every remaining device simply creates an additional
constraint for every instance that has been used on the
unavailable device. These new constraints state that
these instances can never be used. Since ABT does not
impose any timing constraints on the reception of con-
straints, they can be added without further precautions.
Similarly, if a required resource becomes unavailable,
the corresponding constraints must be added. The new
constraints will eventually lead to a reconfiguration or
an unsuccessful termination of the algorithm.

ABT terminates unsuccessfully if an empty con-
straint set is generated during the execution, i.e., if
there is no further choice that can be reconsidered in
order to resolve an unsatisfied constraint. Due to the
tree structure of applications, such an empty set can
only be generated by the anchor. All other component
instances can always ask their parents to reconfigure
themselves in such a way that they are no longer used.
Thus, an unsuccessful run will be recognized by the
anchor. The successful termination of the algorithm is
achieved if all participating devices stopped generating
new messages and all messages have been delivered
and processed. Therefore, detecting the successful ter-
mination is an instance of a Distributed Termination
Problem. As the termination protocol must be resilient
to mobility, a simple protocol as described in [6] is not
enough. Although, our current implementation does
not incorporate such a protocol, its addition as de-
scribed in [12] should be possible.

Clearly, due to the unpredictable nature of perva-
sive systems, no termination protocol can guarantee
that a successful termination of the algorithm will al-
low a successful application start up. If a resource be-
comes unavailable at exactly the same instant of time
when the successful termination is detected, there is
nothing that can be done. At the present time, the only
approach that we can propose is to start the configura-
tion process all over again if such a situation occurs.
Another possibility is to start the partial configuration
and determine possible adaptations. This, however, is
subject of our current research and a discussion lies
beyond the scope of this paper.

5. Algorithm

In the following, we provide an overview of the re-
sulting algorithm and we describe some interesting
details of our implementation. For the sake of clarity,

the pseudo code of the algorithm (c.f. Figure 5, 6) does
not consider different applications. Also, the algorithm
does not contain optimizations, e.g. only sending mes-
sages to containers that require it. The layout borrows
from the description of ABT [18]. Note that we need to
extend the algorithm with the capability of hosting
multiple instances and the resource validation proce-
dure. Furthermore, in order to support the dynamic
discovery of components, we add a method that per-
forms discovery and initializes the variables. In this
paper, the algorithm is modeled as a reactive process
that responds to incoming messages (receive_XXX
procedures). Our PCOM implementation allows batch
processing of messages.

receive_update(identifier, component, value)
// config denotes the local knowledge about an instance
config = getConfig(identifier)
// this happens if the instance is selected for the first time
if (! config exists)
// here the variables and their domains are determined
config = createConfig(identifier,component)

// this adds the variable assignment to the local knowledge
config.add(value)
// finally, all consistency checks are performed
check_constraints(config)

receive_backtrack(identifier, conflicts)
// determine whether the conflicts are still conflicting
if (! conflicts outdated)
// retrieve the addressed conflict
config = getConfig(identifier)
// add the conflicts as a new constraint
config.addConstraint(conflicts)
for each id in conflicts

if (! connected id)
// create links to keep informed about changed values
create link between parent of id and config
// add the value of the conflict to the local knowledge
config.add(identifier)

// temporarily copy the currently selected components
copy = config.getAssignment()
// perform the consistency checks
check_constraints(config)
if (copy == config.getAssignment())

// if the values have been consistent also send updates
send_update(identifier, copy) across links

check_constraints(config)
// if there are unmatched constraints
if (! config.isConsistent())

// determine whether a valid assignment can be found
if (! config.assignConsistent())

// if not, start or continue backtracking
backtrack(config)

else if (reserve_resources(config))
// else determine whether local resource constraints are met
assignment = config.getAssignment()
// if they are met, send the updated assignment
send_update(identifier, assignment) across links

backtrack(config)
if (config.isAnchor())

terminate unsuccessfully
else

// determine conflicting instances sets
conflict_sets = minimum conflict sets
for each conflicts in conflict_sets

// send a backtrack message to the lowest instance
id = minimum identifier in conflicts
// this message could be remote or local
send_backtrack(id, conflicts)
// remove the conflicting assignment
config.remove(id)

check_constraints(config)

Figure 5. Algorithm (1)

Since each container can host multiple component
instances, the algorithm must be capable of uniquely
identifying them. To globally identify an instance and

its position within the application, our implementation
uses the generated ID discussed in Section 4.1. The
application anchor has the ID {}, the first instance for
the first dependency of the anchor is identified by
{(0)[0]}. The second instance for this dependency is
identified by {(0)[1]}. Thus, IDs are arbitrarily long
sequences of pairs, where the first index of a pair de-
notes the dependency and the second index denotes the
instance used to satisfy this dependency.

reserve_resources(config)

// if the instance is selected by its parent
if (config.isInstantiated())
// and the resources are not reserved
if (! config.isReserved())

// try to reserve the required resources
if (reserve resources for config)
config.setReserved(true)
// if the reservation succeeds, continue
return true

else
// if the reservation fails determine conflict sets
conflict_sets = minimum conflict sets
// a flag that indicates whether the conflict has been resolved
reservable = true
for each conflicts in conflict_sets

// pick the instance with the lowest identifier
id = minimum identifier in conflicts
// backtrack to the parent of the lowest instance
send backtrack to parent of id with conflicts
// deactivate the instance that caused backtracking
c = getConfig(id)
c.remove(id)
check_constraints(c)
// determine whether the current instance is a conflict cause
if (config.getIdentifier() == id)
// if it is, it will be uninstanciated after the backtracking
reservable = false

if (reservable)
// the cause of all conflicts has been removed
reserve resources for config
config.setReserved(true)
return true

else
// the instance has already been deactivated
return false

else
// if the instance is not used by the parent
if (config.isReserved())

// remove the resource reservation
remove reservation for config
config.setReserved(false)

return true
Figure 6. Algorithm (2)

To describe the algorithm, we will use the presenta-

tion application example introduced earlier (c.f. Figure
7). When the user starts the application, the container
calls the receive_update procedure with the ID {}, an
identifier that locally identifies the PPT Control com-
ponent and the value {}. This signals that an anchor
should be started (a). Since this is the first time that the
configuration algorithm sees an update for {}, it cre-
ates a configuration object for this instance. Using the
contract of the instance, it determines that PPT Control
has two dependencies, thus it creates a two-
dimensional variable [Input],[Output]. To determine
the domain of the variable, i.e. possible options to sat-
isfy the dependencies, the container performs local and
remote lookups (b). Thereby, the algorithm discovers
the following options: File System (desktop) {(0)[0]},
File System (laptop) {(0)[1]}, Remote PPT (laptop)

{(1)[0]} and Local PPT (desktop) {(1)[1]}. Thus, the
domain is [∅,0,1],[∅,0,1]. For the new variable, the
initial assignment is [∅],[∅].

Remote PPT
Laptop: {(1)[0]}

Imager
Desktop: {(1)0[0]}

PPT Control
PDA: {}

Local PPT
Desktop: {(1)[1]}

File System
Desktop: {(0)[0]}

File System
Laptop: {(0)[1]}

PPT Control
PDA: {}

update
({}, PPT Control, {})

Variable: [∅] [∅]
Domain: ?
Reserved: false

Local/remote lookup

PPT Control
PDA: {}

Variable: [0] [0]
Domain: [∅, 0, 1] [∅, 0, 1]
Reserved: true

update
({(0)[0]}, File System, {(0)[0]}) update

({(1)[0]}, Remote PPT, {(1)[0]})

Remote PPT
Laptop: {(1)[0]}

Local PPT
Desktop: {(1)[1]}

File System
Desktop: {(0)[0]}

File System
Laptop: {(0)[1]}

PPT Control
PDA: {}

Variable: [0] [0]
Domain: [∅, 0, 1] [∅, 0, 1]
Reserved: true

Variable: -
Domain: -
Reserved: true

Variable: [∅] [∅]
Domain: ?
Reserved: false

Remote PPT
Laptop: {(1)[0]}

Local PPT
Desktop: {(1)[1]}

File System
Desktop: {(0)[0]}

File System
Laptop: {(0)[1]}

Variable: -
Domain: -
Reserved: true

Variable: [0] [0]
Domain: [∅, 0] [∅, 0]
Reserved: true

Local/remote lookup

Imager
Desktop: {(1)0[1]}

Variable: -
Domain: -
Reserved: true

Variable: -
Domain: -
Reserved: false

backtrack
({(1)[0]}, {(1)0[0]} & {(1)[0](1)[0]})

(a) (b)

(c)

(d)

(e)

backtrack
({}, {(1)[0]})

Remote PPT
Laptop: {(1)[0]}

Variable: [∅] [∅]
Domain: [∅, 0] [∅, 0]
Constraints: Not [0][0]
Reserved: false

update
({(1)0[0]}, Imager, {(1)0[∅]})

update
({(1)[0](1)[0]}, Imager, {(1)[0](1)[∅]})

(f)

PPT Control
PDA: {}

Variable: [0] [1]
Domain: [∅, 0, 1] [∅, 0, 1]
Constraints: Not [][0]
Reserved: true

update
({(1)[1]}, Local PPT, {(1)[1]})

PPT Control
PDA: {}

File System
Desktop: {(0)[0]}

Local PPT
Desktop: {(1)[1]}

start

startstart

(g) (h)

Figure 7. Example

The algorithm continues to add the value {} to the

local knowledge which states that the instance bound
to the configuration object is instantiated. Thereafter,
the algorithm calls the check_constraints procedure
and determines that the current assignment [∅],[∅] is
not valid, since the instance is used according to the

local knowledge. Note that this is a result of the built-
in constraints shown in Figure 2. Next, the algorithm
determines a valid assignment [0],[0] and reserves the
resources using the reserve_resources procedure. The
reservation finishes successfully and the algorithm
continues to send parallel update messages to the File
System {(0)[0]} and the Remote PPT {(1)[0]} (c).

When the update message for the File System ar-
rives, the algorithm creates the configuration object,
adds the value to the local knowledge, performs the
resource reservation, and stops without sending further
messages (d). In response to the update for the Remote
PPT, the algorithm sends two updates to the Imager
({(1)0[0]} and {(1)[0](1)[0]}). The first update
message creates a new configuration object and fin-
ishes successfully. The second update fails due to a
lack of resources. Thus, the reserve_resources proce-
dure determines that the minimum conflicting sets con-
sist of exactly one set of component instances that con-
tains both instances of the Imager component (e).

Note that although the File System is also running
on the desktop, its identifier will not be added to the
conflict set since it has nothing to do with the shortage
on displays. Furthermore, the algorithm does not need
to add the complete path to the anchor to the constraint
as it can be gradually generated whenever a conflict is
escalated. Following the traversal strategy,
{(1)[0](1)[0]} is picked as the smallest identifier and a
backtrack message is sent to is parent. Additionally,
the instance is deactivated and all potentially reserved
resources and required instances are released by call-
ing check_constraints.

When the backtracking message arrives at the Re-
mote PPT, the component will determine whether it
has to create any new links. Since both identifiers con-
tained in the conflict set are local variables, no new
link must be created. Therefore, the algorithm contin-
ues to add a mutual exclusion constraint between
{(1)0[0]} and {(1)[0](1)[0]} to the local knowl-
edge. In cases where added conflicts are not conflicts
between linked instances, the addition of new links
between the assigning instance and the instance that
recorded the constraint are necessary to ensure that the
constraint evaluation always considers all relevant
variable assignments of the present situation.

Since the Remote PPT cannot create a valid as-
signment, it creates a backtracking message that con-
tains its own identifier and sends it to its parent.
Thereafter, the Remote PPT is deactivated and its con-
straints are checked again. Thereby, the algorithm re-
leases all resources, assigns [∅],[∅] and creates up-
dates that will eventually release previously bound
instances (f). When the PPT Control receives the back-
tracking message, it adds the constraint that the Re-

mote PPT can never be started and assigns another
value for the Output dependency. It selects the Local
PPT {(1)[1]} and it creates an update (g). When the
update arrives, the Local PPT will be reserved and the
algorithm stops.

If the Laptop becomes unavailable, the algorithm
simply creates backtracking messages for each used
component instance provided by the laptop. These
backtracking messages solely contain the identifier.
The same procedure is performed, if some reserved
resource becomes unavailable. The algorithm deter-
mines the conflicting sets and creates the correspond-
ing backtracking messages.

A termination protocol can be added by wrapping
the receive_XXX procedures and the send statements.
The necessary steps that need to be performed depend
on the chosen protocol. A simple protocol for double
counting messages would increase the send and re-
ceive counters whose state is later on compared by a
wave of termination messages that is sent along the
tree structure. A resilient termination protocol would
have to perform further steps (see [12] for details).

When the algorithm succeeds, the application must
still be started. Therefore, an asynchronous traversal of
the tree-structure starting from the application anchor
is sufficient. This will not result in conflicts, since each
configuration object has already reserved the resources
for the chosen bindings (h).

Since the algorithm above is a modified instance of
ABT, the proof of correctness follows the argumenta-
tion provided in [18]. Due to space restrictions, we
would like to refer the reader to this paper for further
details. However, an interesting difference between
ABT in general and the special instance discussed in
this paper is that the application anchor can detect an
over-constrained environment due to the tree-structure
of applications.

6. Evaluation

As discussed in Section 4, ABT fulfills the re-
quirements regarding completeness, optimism, distri-
bution and resilience. In this section, we discuss effi-
ciency as the last remaining requirement.

ABT resolves unrelated conflicts simultaneously
and it reconsiders only those instances that have the
potential to resolve a conflict. Thus, the configuration
complexity depends on the induced width, i.e. the size
of sub problems that can be solved independently, and
not the total width of the search space [2]. The induced
width of automatic configuration depends on the num-
ber of structurally valid configurations and the locality
of resource conflicts, i.e. the number of instances that

have conflicting requirements towards the same re-
sources. In many pervasive systems, resource conflicts
can be assumed to be relatively local. To justify this,
consider that the worst-case runtime occurs, if many
instances are executed on one device and a widely
used resource (e.g. memory or CPU) is not available.
However, the integration of devices into everyday ob-
jects leads to environments where the majority of de-
vices are specialized embedded systems. Just like eve-
ryday objects, they will be tailored towards a small
number of specific functionalities, which will increase
the locality.

The number of structurally valid configurations de-
pends on the number of available components that can
be used within the application and thus it heavily de-
pends on the capabilities of the environment. To ana-
lyze the effects of an increasing number of possibilities
we ran a number of simulations with a discrete event
simulator. Within one time step, the simulator proc-
esses all messages that have been sent and creates all
new messages before it moves on to the next time step.

The simulated environments have been constructed
using the following procedure: we create an applica-
tion that consists of n instances by adding n compo-
nents to a binary tree from left to right, top to bottom.
Then we create one container and place the anchor on
it. For the remaining (n-1) components we create m
containers and place them on the containers round-
robin. Thereby, we set the resource requirements of
each component to one unit of one resource that is
used by all components on the container. Furthermore,
we set the available amount of the resource to the
number of components that are hosted on this con-
tainer. Then we randomly pick k components and rep-
licate them on randomly selected containers. Hereby,
we set their resource requirements for the commonly
used resource on that container to two without increas-
ing the resources on this container. Thus, increasing k
will lead to a higher potential for conflicting selections
during automatic configuration and decreasing the
number of containers m will decrease the locality of
the resulting conflicts.

Note that there will always be exactly one configu-
ration that can be started which consists solely of in-
stances provided by the initially placed components.
The exact amount of messages might vary depending
on the arrival time of messages. For instance, if a de-
vice requires a long time to detect or propagate a local
conflict, the number of messages as well as the re-
quired duration might increase or decrease depending
on the scenario.

Figure 8 depicts simulation results in cases where
the locality of conflicts is high, i.e. m = (n-1) / 2, for
different application sizes (n = 8, 12, 17) and a differ-

ent number of conflicting components (k = 0 to 30).
Each measurement shows the average, respectively the
maximum, of 100 runs.

Average Number Of Structural Possibilities

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Conflicting Components (k)

Po

ss
ib

ili
tie

s

n = 8 Components
n = 12 Components
n = 17 Components

Maximum Duration (m = (n-1)/2)

0

50

100

150

200

250

300

350

400

450

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Conflicting Components (k)

Ti
m

e
St

ep
s

n = 8 Components
n = 12 Components
n = 17 Components

Average Number of Messages (m = (n-1)/2)

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Conflicting Components (k)

M

es
sa

ge
s

n = 8 Components
n = 12 Components
n = 17 Components

Maximum Number of Messages (m = (n-1)/2)

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Conflicting Components (k)

M

es
sa

ge
s

n = 8 Components
n = 12 Components
n = 17 Components

Figure 8. Simulation Results with Locality

The simulations show that the number of messages
required to determine configurations grows exponen-
tially. For k ~ 17 the maximum number of messages
exceeds 400. This is a result of the exponential in-
crease of structural possibilities for configurations
which in turn can be attributed to the (exponential)
way conflicts are created, i.e. by cloning components.
Note that the number of messages does not necessarily
lead to a high configuration delay as the solution is
found in less than 90 time steps.

Greedy Completeness

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Conflicting Components (k)

Su

cc
es

sf
ul

 C
on

fig
ur

at
io

ns

n = 7 Components
n = 12 Components
n = 17 Components

Backtracking Completeness with Limited Messages

(n = 12 Components)

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Conflicting Components (k)

Su

cc
es

sf
ul

 C
on

fig
ur

at
io

ns

< 100 Messages
< 200 Messages
< 300 Messages
< 400 Messages

Figure 9. Completeness with Locality

One might argue that the worst-case message over-

head prohibits the application of the algorithm. There-
fore, we have compared the achievable completeness if
the number of messages is limited to 100, 200, 300 and
400 with the completeness that can be gained from a
greedy heuristic that selects sub trees recursively with-
out ever reconsidering a choice as proposed in [3].
Figure 9 shows the success rates for an application
with 12 instances. In average, the heuristic produced
23-100 messages, but for k = 15, it can only find the
configuration in 8 cases whereas backtracking finds 59
with 100 and all with 400 messages. Thus, even if the
complete algorithm would have been manually
aborted, the success rate would have been higher.

If we construct a scenario where there is no valid
configuration by increasing the resource requirements
of one initially placed component by one, the number

of transferred messages increases by approximately a
factor of two. This can be attributed to the min-conflict
value ordering heuristic that is used to select instances.
However, in over-constrained search spaces aborting
the process does not affect completeness.

Finally, Figure 10 shows the success rate in a case
where the locality assumption of conflicts does not
hold. Instead of increasing the number of containers as
the size of the application grows, we fix the number to
4. Despite the increasing message overhead, the com-
plete algorithm is still able to outperform the greedy
heuristic in terms of completeness.

Greedy Completeness

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Conflicting Components (k)

Su

cc
es

sf
ul

 C
on

fig
ur

at
io

ns

n = 8 Components
n = 10 Components
n = 12 Components

Backtracking Completeness with Limited Messages

(n = 12 Components)

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Conflicting Components (k)

Su

cc
es

sf
ul

 C
on

fig
ur

at
io

ns

< 100 Messages
< 200 Messages
< 300 Messages
< 400 Messages

Figure 10. Completeness without Locality

To determine the configuration delays in a real sys-

tem, we have implemented a prototypical version of
the algorithm as part of PCOM. To provide values for
small devices, we placed an application with 7 compo-
nents on 2 Pocket PCs (XScale 400MHz / 10 MBit
WLAN) using the procedure described above. Since
all components were using the same resource on each
of the Pocket PCs, this experiment reflects a situation
where the locality of conflicts is low. We ran 7 scenar-
ios with 0, 2, 4, 6, 8, 10 and 12 randomly created con-
flicting components. For each number of conflicting
components we performed 10 measurements. Figure 9
shows the results of these measurements with respect
to configuration delay (including distributed termina-
tion detection using a simple credit-based protocol and

application startup), number of local and remote mes-
sages created by the greedy and the backtracking algo-
rithm as well as the achievable completeness of the
backtracking algorithm within bounded delays.

Configuration Delay (m=2, n=7)

0

10000

20000

30000

40000

50000

60000

70000

80000

0 2 4 6 8 10 12 14

Conflicting Components (k)

D
el

ay
 (m

s)

Backtracking
Greedy

Messages (m=2, n=7)

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14

Conflicting Components (k)

M

es
sa

ge
s

Remote
Local

Completeness (m=2, n=7)

0

2

4

6

8

10

12

0 2 4 6 8 10 12

Conflicting Components (k)

S

uc
ce

ss
fu

l C
on

fig
ur

at
io

ns

Greedy
< 10000 ms
< 20000 ms
< 40000 ms

Figure 11. Measured Results without Locality

The measurements indicate that there is a high cor-

relation between the number of remote messages and
the configuration delay. This can be attributed to the
fact that the locality of conflicts is low. However, the
completeness that can be achieved with bounded delay
is always higher, even if the delay is limited to 10 sec-
onds (only slightly higher than the average runtime of
the greedy algorithm with ~8-9 seconds).

7. Related Work

As most projects in Pervasive Computing deal with
distributed functionalities, they have to address the
management of compositions. The degree of automa-

tion varies heavily depending on the focused system
model. The GAIA project [16] for instance separates
the implementation of functionalities from the compo-
sition of applications using two externalized mappings.
Since GAIA assumes a partially static environment, it
is not necessary to automate these mappings. The
AURA project [9] uses a task abstraction that is
mapped onto functionalities available in a certain envi-
ronment. The mapping is done by a centralized envi-
ronment manager that coordinates the functionalities of
its environment. In contrast to PCOM and GAIA, func-
tionalities in AURA are self-contained entities that
solely interact implicitly through users. The iROS [14]
system provides a generic mechanism that enables in-
teraction between functionalities. Since iRos does not
impose constraints on the available components, the
management of the composition must be performed
manually. Similarly, One.World [8] does not support
the automated management of compositions. Instead,
the system shifts this responsibility to the developer.

The Pebbles project [17] uses an abstraction called
goal to model an application and it uses a planning
engine that automates the creation of valid configura-
tions at runtime. To the best of our knowledge Pebbles
uses a centralized planning engine. Another system
that uses centralized planning to configure component-
based applications is Planit [1]. Planit uses temporal
refinement planning to adapt and configure applica-
tions at runtime. In contrast to the proposed approach,
centralized approaches require a global view of the
components and resources of the environment.

Automatic configuration as discussed in this paper
can be seen as instance of a distributed resource alloca-
tion problem. In the past, research has been applied to
distinct domains, e.g. job scheduling [11] or patient
scheduling [7]. However, these domains are different
from automatic configuration since they try to allocate
a set of tasks that is known in advance. In the dis-
cussed approach the set of components is discovered at
runtime. This requires that the set of variables and do-
mains can be gradually created from the discovered
components.

More recently, researchers developed the notion of
Dynamic Distributed Constraint Satisfaction Problems,
e.g. to perform distributed monitoring in sensor net-
works [13]. To deal with the dynamics of the environ-
ment, constraints need to be added or removed depend-
ing on a predicate. This is similar to the required ex-
tension for resilience as all constraints depend on a
predicate that continuously evaluates the availability of
devices and resources. However, the approach pre-
sented in [13] does not deal with discovery.

8. Conclusion

In this paper, we have discussed the requirements
on automatic configuration in peer-based pervasive
systems. Furthermore, we have presented a mapping
that enables the automatic configuration of component-
based applications in PCOM using Distributed Con-
straint Satisfaction techniques. The feasibility of this
approach has been evaluated using simulation and a
prototypical implementation of the algorithm. The re-
sults indicate that the presented complete approach is
preferable over the greedy heuristic. Although it is
possible to construct scenarios in which the complete
algorithm will have an unacceptable delay, we are con-
fident that many real-world problems will exhibit the
locality to keep the delay within acceptable bounds.

In the near future, we will extend the presented
work towards runtime adaptation where the cost for
reconfiguring an executed partial application must be
taken into account. Also, we are planning to investi-
gate hybrid systems that might contain coordinating
entities at certain times. In such systems, a fragment of
the state of the environment could be collected at each
of the available coordinators which in turn could there-
after cooperatively configure applications.

9. Acknowledgements

We would like to thank the reviewers for their valu-
able suggestions that helped us improving the paper
and removing ambiguities. Furthermore, we would like
to thank our colleagues Gregor Schiele and Pedro Mar-
ron for their comments and support during the early
stages of this paper.

This work is funded by the German Research Foun-
dation within DFG Priority Programme 1140 – Mid-
dleware for Self-organizing Infrastructures in Net-
worked Mobile Systems.

10. References

[1] Arshad, N., Heimbigner, D., Wolf, A.: Deployment and
Dynamic Reconfiguration Planning for Distributed Software
Systems, 15th IEEE Intl’ Conference on Tools with Artificial
Intelligence, pp. 39-47, 2003
[2] Baker, A.: Intelligent Backtracking on Constraint Satis-
faction Problems: Experimental and Empirical Results, PhD
Thesis, University of Oregon, 1995
[3] Becker, C., Handte, M., Schiele, G., Rothermel, K.:
PCOM – A Component System for Pervasive Computing,
2nd Intl’ Conference on Pervasive Computing and Commu-
nication, pp. 67-77, 2004
[4] Becker, C., Schiele, G., Gubbels, H., Rothermel, K.:
BASE – A Micro-broker-based Middleware for Pervasive

Computing, 1st IEEE Intl’ Conference on Pervasive Comput-
ing and Communication, pp. 443-451, 2003
 [5] Cook, S.: The complexity of theorem-proving proce-
dures, Proceedings of the 3rd Annual Symposium on Theory
of Computing, pp. 151-158, 1971
[6] Dijkstra, E., Scholten, C.: Termination Detection for
Diffusing Computations, Information Processing Letters, vol.
1, no. 11, 1980
[7] Decker, K., Li, J.: Coordinated Hospital Patient Schedul-
ing, 3rd Intl’ Conference on Multi-Agent Systems, pp. 104-
111, 1998
[8] Grimm, R.: One.World: Experiences With a Pervasive
Computing Infrastructure, IEEE Pervasive Computing, vol.
3, no. 3, pp. 22-30, Jul.-Sept. 2004
[9] Garlan, D., Siewiorek, D., Smailagic, A., Steenkiste, P.:
Project Aura: Towards Distraction-Free Pervasive Comput-
ing, IEEE Pervasive Computing, vol. 1, no. 2, pp. 22-31,
Apr.-Jun. 2002
[10] Gu, X., Nahrstedt, K., Chang, R., Ward, C.,: QoS-
Assured Service Composition in Managed Service Overlay
Networks, 23rd IEEE Intl’ Conference on Distributed Com-
puting Systems, pp. 194-204 , 2003
[11] Liu, J-S., Sycara, K.: Multiagent Coordination in
Tightly Coupled Task Scheduling, 1996 Intl’ Conference on
Multi-Agent Systems, 1996
[12] Lai, T., Wu, L.: An (N-1)-Resilient Algorithm for Dis-
tributed Termination Detection, IEEE Transactions on Paral-
lel and Distributed Systems, vol. 6, no. 1, pp. 63-78, 1995
[13] Modi, P., Jung, H., Tambe, M., Shen, W-M., Kulkarni,
S.: A Dynamic Distributed Constraint Satisfaction Approach
to Resource Allocation, 7th Intl’ Conference on Principles
and Practice of Constraint Programming, pp. 685-700, 2001
[14] Ponnekanti, S., Johanson, B., Kiciman, E., Fox, A.:
Portability, Extensibility and Robustness in iRos, 1st IEEE
Intl’ Conference on Pervasive Computing and Communica-
tions, pp. 11-20, 2003
[15] Raman, B., Katz, R.H.: An Architecture for Highly
Available Wide-Area Service Composition, Computer
Communication Journal, vol. 26, no. 15, pp. 1727-1740,
2003
[16] Román, M., Hess, C., Cerqueira, R., Ranganathan, A.,
Campbell, R., Nahrstedt, K.: A Middleware Infrastructure for
Active Spaces, IEEE Pervasive Computing, vol. 1, no. 4, pp.
74-83, Oct.-Dec. 2002
[17] Saif, U., Pham, H., Paluska, J., Waterman, J., Terman,
C., Ward, S.: A Case for Goal-oriented Programming Seman-
tics, System Support for Ubiquitous Computing Workshop at
UBICOMP, 2003
[18] Yokoo, M., Durfee, E., Ishida, T., Kuwabara, K.: The
Distributed Constraint Satisfaction Problem: Formalization
and Algorithms, IEEE Transactions on Knowledge and Data
Engineering, vol. 10, no. 5, pp. 673-685, Sept.-Oct. 1998
[19] Yokoo, M., Katsutoshi, H.: Algorithms for Distributed
Constraint Satisfaction: A Review, Autonomous Agents and
Multi-Agent Systems, vol. 3, no. 2, pp. 185-207, 2000
[20] Xu, D., Nahrstedt, K., Wichadakul, D.: QoS and Con-
tention-Aware Multi-Resource Reservation, Cluster Comput-
ing, vol. 4, no. 2, pp. 95-107, 2001

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

