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Abstract—A task management system that automatically opti-
mizes the schedule of a person by context-aware interleaving of
activities can enable persons to be involved more efficiently in
daily activities of interests. As a technical basis for such a task
management system, we propose the activity broker architecture.
The core of this architecture is formed by the activity scheduler
that can effectively schedule personal activities in different
contexts in a real-time fashion. As a first step towards realizing
the overall activity broker architecture, we formally define
the Real-Time Context Activity Scheduling Problem, and present
several solution algorithms. Furthermore, we conduct extensive
experiments to evaluate and to compare the performance of the
proposed algorithms. The results show that a person can obtain
more productive schedules with the assistance of the activity
scheduler.

I. INTRODUCTION

Context-awareness is a fundamental element of main-stream
productivity-enhancing task management methodologies like
GTD [1]. The availability of inexpensive wireless sensors and
smart devices enables more and more computer systems to
perceive important parts of their environment. This can be -
and has been - used to determine different features of the
context of a user in performing daily-life activities.

Context information can have a significant impact on per-
sonal activities. Given context information about environment
dynamics, a person may initiate an activity of interest sponta-
neously or may involve in more social activities. As a simple
example, consider the scenario depicted in Figure 1. Equipped
with an adequate positioning system, a smart device can easily
determine the location of its user, e.g. whether he is at home,
at the office or on-the-move outdoors. Furthermore, by means
of networking technology, a smart device can easily discover
the resources that are currently available to the user, e.g.
whether the user has access to a phone, to a printer, and so
on. Clearly, this context can greatly influence the tasks that
can be performed.

When performing daily activities, people are often capable
of multitasking. The completion of an activity may involve in
performing a series of related steps. Switching frequently from
on activity to another one in different contexts may raise the
complexity of activity completion and result in consequence
of performance inefficiency or task incompletion. Thus, an
effective activity scheduling mechanism on the basis of the
context can help in increasing the user’s productivity by
organizing real-time activities of various contexts.

Fig. 1. The Scenario for Context Activity Scheduling.

In the past, the commercial success of mobile devices has
led to the development of several applications for mobile
task management. However, current task management systems
primarily capture and visualize the tasks that have been
defined by the user. Given the inherent context-awareness of
efficient task management methodologies, we argue that such
context information can be used to automatically optimize task
management for the user by scheduling suitable activities.

To enable this, we propose a system architecture called
context activity broker. The core of this architecture is formed
by the activity scheduler that can effectively schedule the
activities of a person in different contexts in a real-time
fashion. Our goal is to provide a personal activity broker
that can assist the user in taking part in more activities of
interests in different contexts, while completing activities with
efficient utilization of time. As a first step towards realizing the
architecture, we formally define the Real-Time Context Activity
Scheduling Problem, and present several solution algorithms.

The remainder of this paper is structured as follows. In
the next section, we discuss related work. Thereafter, in
Section III, we briefly outline the overarching context activity
broker architecture. In Section IV, we introduce the Real-Time
Context Activity Scheduling Problem and we discuss several
solution algorithms. In Section V, we evaluate and compare
these algorithms and finally, Section VI concludes the paper
with a summary and a short outlook on future work.

II. RELATED WORK

The existing work related to real-time context activity
scheduling originates from a diverse set of different research



areas. The most notable ones are human computer interaction,
artificial intelligence and pervasive computing.

In the area of human computer interaction researchers have
performed several studies that underline the impact of effective
task management on the productivity of persons, e.g. [2]. As
a consequence, there has been a long-standing interest on
supporting and optimizing task management with electronic
tools such as calendars [11], [15], [5] or other productivity
software [9], [3] that simplify task execution. However, usually
these tools store and visualize the available tasks - possibly
with additional information - but they do not try to arrange
those tasks by revising optimized schedules. This holds also
true for most widely deployed task management systems such
as Microsoft Outlook [7] or Mozilla Lightning [8].

In the research area of artificial intelligence, researches have
tried to improve task management and execution by providing
intelligent agents for personal assistance. CMRadar [12], for
example, simplifies calendar management by automating the
negotiation of time-slots for meetings. Similarly, PTIME [4]
automates the scheduling of meetings but thereby, it also tries
to learn user preferences. In contrast to this work which tries
to optimize distributed scheduling, the work presented in this
paper aims at optimizing a single schedule on the basis of the
context of the user. Beyond distributed scheduling, the PExA
agent [6] recognizes the activities performed by its user to
automate subsequent ones, if possible. Such an automation is
orthogonal to the scheduling discussed in this paper.

Finally, in the area of pervasive computing, researchers
have pursued a quite diverse set of ideas to improve task
management. The Ambush calendar system [14], for example,
infers and visualizes the likelihood with which a person
attends a particular event scheduled in a calendar. The system
presented in [13] tries to identify time slots that are suitable
for informal meetings. Although, these systems do not try to
actually manage the schedule of a person, their output could
be used as an interesting input for context activity scheduling.
Probably, the most closely related work is the smart calendar
presented in [10]. This calendar suggests possible leisure
activities that may fit to the schedule, context and interest of
a person. However, the system only considers the spare time
of the person and does not try to optimize all tasks.

III. REAL-TIME ACTIVITY BROKER ARCHITECTURE

The primary purpose of the overall architecture is to support
the real-time activity broker that assists the user in effectively
scheduling activities of various contexts. The broker architec-
ture is capable of considering several important factors that
may influence the user’s decision when performing daily ac-
tivities. These factors include context information, preferences,
activity timing and scheduling. The relation between these
factors is illustrated in Fig. 2.

Changing context information is the fundamental element
that initiates the activity scheduling. It affects the timing and
the user’s preferences on activities, and has an impact on
scheduling. Based on the analysis of above influential factors,
we have designed a broker architecture that assists the user in

Fig. 2. Influential Factors on Activity Scheduling and Performing

Fig. 3. The Architecture of Our Context Activity Scheduling Broker

performing more activities of interests in a smart space. As
depicted in Fig. 3, the architecture consists of the following
system components:

• Device Manager, which interacts with nearby smart de-
vices, and converts the digital signals into useful context
information for the context manager,

• Context Manager, which defines and classifies context
information that characterizes various aspects of the en-
vironment, such as the available objects, present location
and other physical phenomena,

• Profile Manager, which manages the user’s personal data
such as the user name, friend/family list and etc,

• Preference Manager, which manages the user’s prefer-
ences in different contexts,

• Activity Scheduler, which generates new activity sched-
ules in response to context changes caused by interacting
with environment servers, or with other activity brokers
for other users,

• Security/Privacy Manager, which specifies a set of se-
curity/privacy policies to ensure system integrity and to
prevent invalid access for disclosing the user’s private
data, and

• Execution Manager, which automatically completes elec-
tronic activities, e.g., on-line transactions.

For the remainder of this paper, we focus on the aspect of
context-based activity scheduling. Thereby, we provide an in-
depth discussion of the core problem — Real-Time Context
Activity Scheduling — that the activity broker needs to deal



Fig. 4. Generating a New Activity Schedule Based on The Current Context

with to achieve effective activity scheduling for the user.

IV. REAL-TIME CONTEXT ACTIVITY SCHEDULING

A. Problem Formalization

Following the previously mentioned methodologies, we
assume that a person can only perform one activity at a
time and that activities are classified on the basis of their
context C, as illustrated in Fig. 4. We define an activity
as the expenditure of effort over some period of time on a
particular part of task. Each activity i is associated with five
attributes: (1) the starting time si—the time at which i can be
started earliest, (2) deadline ei—the time at which i should be
finished, (3) duration di—a non-preemptable period required
to perform i, (4) context value ci, ci ∈ C,—the context-
dependent importance, and (5) the actual scheduled period
τi[τsi , τei ] to perform i, where τsi /τei refers to the starting/end
time of τi, τei

− τsi
≥ di and τei

≤ ei.
An event refers to the start or finish point of an activity,

and a schedule is a graph G = (V,E), where V is the set of
events and E is a set of activities. Based on our assumption,
we define actNumA(t) to denote the number of activities in
a scheduler A at given time t. In addition, there can exist
precedence relations among a set of activities. We denote PA

the set of partial precedence relations over a schedule A, and
the function pA(i, j) specifies the precedence relation between
activity i and j, where i, j ∈ A. That is, activity i needs to be
finished before activity j is performed.

The problem of Real-Time Context Activity Scheduling
(RT-CAS) is that, given the context period Γc[Γcs

,Γce
], where

Γcs
/Γce

is the start/end time of the context period, a set of
context schedule Sc = (Vc, Ec), and an existing schedule
S = (V,E), generate a new schedule S′ with a set of activities
A ∈ Ec ∪ E with

Max(
|Ec|+|E|∑

i

cixi), 0 ≤ i ≤ |Ec|+ |E|

xi =
{

1, if i is scheduled
0, otherwise

subject to,

1) Γcs
≤ τje

≤ Γce
, 0 ≤ j ≤ |A|,

2) ∀i, j ∈ A, pA(i, j) ∈ Pc ∪ Ps, and
3) ∀t ∈ Γc, actNumS′(t) ≤ 1.
Condition (1) requires that the scheduler ensures the finish

time of each selected activity is earlier than the end of
the context period; condition (2) preserves the precedence
relations among the selected activities; finally condition (3)
specifies that there is only one scheduled activity at any time
in the context period. We note that the unselected activities
are stored by the scheduler and are potential candidates for
the next context scheduling.

B. RT-CAS Algorithms

To solve the RT-CAS problem, we provide a simple but
effective solution approach. We describe the procedures of
our algorithm by separating them into two parts. The first
part focuses on how the broker systematically maintains
configurable status of the user’s activities of various contexts,
while the second part discusses how the broker generates a
new schedule in response to context changes by adjusting
these status parameters of each activity.

Configurable Parameters For Context Activity Scheduling

To perform activity scheduling, the activity scheduling
broker considers three parameters: relative weights among
contexts that represent the suitability of performing activities
that require a certain context in the current context, the user’s
preference and timing constraints of every schedulable activity.

The broker first classifies the user’s activities based on a
set of contexts of the user, C = {c1, ..., cn}, n ≥ 0. For each
context ci, a set of activities are scheduled with respect to
ci. Let Si = {ai

1, ..., a
i
|Si|} denote the schedule that includes

a set of activities, ai
k, 1 ≤ k ≤ |Si|, with respect to the

context ci. Each activity ai
k is associated with a context value

vi
k indicating its importance in Si.

For every context ci, the broker specifies an array, Ωci ,
of relative weights to other contexts cj , cj ∈ C, and
Ωci

= {ωci
c1
, ..., ωci

cn
}. The value of ωci

cj
is obtained using the

following relative weight function:

ωci
cj

= ω(ci, cj) =
{

1, if i = j
ω, if i 6= j, 0 ≤ ω < 1

In addition, the broker also needs to decide the values of
preference and timing parameters for activities in response
to context changes. We define two functions, p(ai

k, cj) and
t(ai

k, cj), which return respective values that indicate the
user’s preference and timing constraints of activity ai

k with
respect to another context cj , 1 ≤ j ≤ n.

Real-Time Context Activity Scheduling

When the broker detects a context change from the context
ci to the context cj , it follows four steps to generate an activity
schedule with respect to cj . The first step is to determine the
context value of every schedulable activity with respect to cj .



Fig. 5. Basic Idea of Real-time Context Activity Scheduling

This value represents a systematic factor that influences the
probability an activity will be selected. The broker computes
the context value by manipulating parameter values discussed
previously. The set operation ω(ci, cj) is applied to every
activity in each context ci ∈ C with respect to the context
cj . In other words, the context value of every activity, vi

k,
is multiplied by ωci

cj
= ω(ci, cj). The resulted context value

is then added to values returned by preference and timing
functions, p(ai

k, cj) and t(ai
k, cj), on the activity with respect

to cj . In summary, the context value of an activity, v(ai
k, cj),

with respect to the context cj is expressed as follows:

v(ai
k, cj) = ω(ci, cj) · vi

k + p(ai
k, cj) + t(ai

k, cj).

The second step is to identify the schedulable time slots
in the given context period — the time duration that a set
of activities need to be performed based on current context
of the user. Fig. 5 shows an example of context period
and schedulable time slots: S′1, S′2 and S′3. The gray areas
represent non-schedulable time durations that are reserved for
performing activities associated with the context cj (e.g., A1

and A2). The black horizontal bars denote the time durations
for activities — called schedulable activities — that are not
associated with cj , and their context values with respect to cj
are computed by the broker for scheduling.

The third step is to sort all schedulable activities based on
their context values with respect to cj . We call this approach
the Most Context Value First (MCVF) approach. To explore
other possibilities in comparison with the MCVF approach
to achieve higher productive scheduling, we also sort the
schedulable activities based on different activity properties:
• Most Value per Duration First (MVDF): the activities are

sorted by the outcome of their context values divided by
durations that are required to perform the activities.

• Short Duration First (SDF): the activities are sorted by
their durations, and the one with the shortest duration is
scheduled first.

• Earliest Deadline First (EDF): the activities are sorted by
their deadlines, and the earliest deadline is listed first for
scheduling.

Once all schedulable activities are sorted, the last step for
the broker is to select activities to generate the new schedule
with respect to cj . Fig. 6 illustrates a set of activities a1, a2, a3

and a4 which are candidate activities for the scheduable period

Fig. 6. Ordered Set of Activities in S Sorted by Highest Context Value First.

S1. These activities are sorted using the MCVF approach. The
table in Fig. 6 shows the sorted order of activities. The broker
starts the scheduling by first selecting a1, specifying its start
time, end time, and then continues with the next scheduable
activity. The next activity can be scheduled only if its starting
time plus its duration is less then the start time of the next
schedulable period (e.g., a2 and a3). Otherwise, the activity
is rejected (e.g., a4) and cannot be scheduled until the next
context change.

V. EXPERIMENT EVALUATION

The purpose of our experiments is to demonstrate that,
with the assistance of an activity broker, more activities can
be scheduled in response to context changes, and thus can
increase the productivity of the user. Thus, we use the number
of scheduled activities and the aggregated context value as
metrics to evaluate the algorithms.

We conduct three sets of experiments to demonstrate the
performance of different scheduling approaches in handling a
context change from c′ to c. Here we refer context/non-context
activities to activities associated with c/c′. For each category,
the experiment is setup by first specifying time intervals for
both context period Pc and non-context period Pc′ , then two
sets of schedules, Sc and Sc′ , are generated for both periods.
Finally, we compare performance results that are obtained by
averaging outcomes of running experiments on twenty pairs
of context/non-context schedules using different approaches.
Note that Pc′ overlaps with Pc, i.e., Pc ∩ Pc′ = Pc and Pc ∪
Pc′ = Pc′ , and we try to schedule the non-context activities
in the period Pc′ into Pc without interfering with the context
activities.

In our experiments, the time periods for Pc and Pc′ are set
to be 50 and 150 hours, respectively. To decide the number of
activities in a schedule S for a certain period P , we define the

formula: P ≥ ρ · (
|S|∑
i=1

di +
|S|−1∑
i=1

bi), where |S| is the number

of activities and di > 0, bi ≥ 0. P denotes the scheduled
period; di and bi denote the duration of activity i, i ∈ S, and
the break between activities i and i + 1, respectively; ρ is a
relaxed coefficient which indicates the how busy the user is.
The larger the ρ is, the more relax the user is, and the less



Fig. 7. Total Number Of Scheduled Activities Using Different Algorithms
When ρ = 3

Fig. 8. Total Context Value of Scheduled Non-context Activities Using
Different Algorithms When ρ = 3

activities the user has on the schedule.
The first set of experiments is to provide a basic perfor-

mance analysis using different scheduling approaches. In these
experiments, for each activity i in both Sc and Sc′ , di and bi
are generated based on a Poisson distribution. We set λd = .75
hour and λb = .50 hour. In addition, each activity is assigned
a context value: the value for a context activity is a fixed
number which is set to be 100, while the value for a non-
context activity is a uniform random number between 1 and
10. Figure 7 shows the number of scheduled activities using
different approaches when ρ = 3.

The first bar shows the total number of context/non-context
activities generated—some non-context activities are in con-
flict with context activities in the context period. The second
bar indicate the scheduled context/non-context activities with-
out the assistance from the activity broker. In this case, the
user only performs context activities in the context period and
none of non-context activity is performed. The following bars
present the number of context/non-context activities scheduled
using MCVF, MVDF, SDF and EDF, respectively. We can
see in Figure 7 that all context activities are scheduled in
all cases, and more non-context activities are scheduled with
the assistance of the scheduler. In general, the number of
scheduled non-context activities increases about by 35.75%.

Figure 8 shows corresponding context values for scheduled
non-context activities. Recall that a context value represents
the importance of an activity. The higher the context value
is, the more significant the activity is and thus should be first
considered for scheduling. The result shows an average 35%
increase for the aggregated context value with our approaches.

Fig. 9. Number of Scheduled Non-Context Activities With Various ρ — Both
Context And Non-context Activities Are Generated Based On The Same ρ

Fig. 10. Total Context Value Of Scheduled Non-Context Activities With
Various ρ — Both Context And Non-context Activities Are Generated Based
On The Same ρ

Among all approaches, MCVF approach results in the highest
aggregated context value. Here we only show the value of
non-context activities since all context activities are assigned
with a fixed context value.

The purpose of conducting the second set of experiments is
to show how the performance changes with different schedul-
ing approaches as the value ρ changes—as the value of ρ
increases, the user is more relaxed and thus has less activities
for scheduling. In this experiment, activities are created with
the same parameter values except for ρ. However, the same
value of ρ is used for creating either context or non-context
activities. Again, we only show the number of scheduled non-
context activities (Figure 9) and their accumulated context
values (Figure 10) since all context activities are scheduled
and each context activity has a fixed value.

In Figure 9 and 10, the top and the bottom lines represent
the total number/value of non-context activities in Pc′ and
the number/value of non-context activities in the non-context
period: Pc ∪ Pc′ − Pc ∩ Pc′ = Pc′ − Pc, respectively. The
gap of both lines indicates the number/value of non-context
activities in the context period Pc. The larger the gap is, the
more non-context activities are NOT scheduled in the context
period. We can see that all scheduling approaches, represented
by lines locating between the top and the bottom lines, result in
more scheduled non-context activities with various ρ— about
11.57% more non-context activities can be scheduled using
scheduling approaches. When ρ = 1, which indicates that the
user has more activities in both Pc and Pc′ , there are more
context activities in Pc and less schedulable time slots for



Fig. 11. Number of Scheduled Non-Context Activities With Various ρ —
Non-context Activities Are Created With A Fixed ρ = 2 While Context
Activities Are Generated With Various ρ

Fig. 12. Total Context Value Of Scheduled Non-Context Activities With
Various ρ — Non-context Activities Are Generated With A Fixed ρ = 2
While Context Activities Are Created With Various ρ

scheduling non-context activities. Thus, the gap between other
lines to the top line is larger. However, with the usage of the
scheduler, the gap becomes smaller as ρ becomes larger. This
is because more free time improves the effectiveness.

The last set of experiment is to show that when a user
has less activities in the context period, the activity scheduler
can be better utilized to schedule more non-context activities
into the context period. Figure 11 and Figure 12 illustrate
how the performance results change when context activities
are generated based on various relax coefficient ρ while
non-context activities are generated with a fixed value of ρ.
Thereby, we create context activities using the same parameter
values for the previous experiments; we create non-context
activities by setting ρ = 2, λd = .05 and λb = .25 hour.

From the figures, we can clearly see that, without using any
scheduling algorithm (represented by the bottom line), the dif-
ference of number/value of scheduled non-context activities to
the total number/value of non-context activities remains almost
constant. More non-context activities can be scheduled into
the context period using all scheduling approaches. Specially,
when the value of ρ increases, all scheduling approaches can
achieve higher effectiveness.

VI. CONCLUSION AND FUTURE WORK

The context of a person has significant impact on the
activities that can be performed. The objective of this paper
is to provide a sound real-time context activity scheduling
mechanism to assist persons to improve the management of

their daily activities. The contribution of this paper is three-
fold. We first propose the real-time context activity broker
architecture as a basis for context-aware activity scheduling.
Then we formally define the Real-Time Context Activity
Scheduling (RT-CAS) Problem. Finally, we provide a variety
of solution algorithms and we compare their suitability and
performance. The experimental results show that a user can
obtain more productive schedules with the assistance of our
activity scheduler. At the present time, we are developing
the supportive components of the activity broker architecture.
The final result will be an integrated application that can be
executed on mobile devices such as smart phones and PDAs.
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