
1

TinyAdapt: An Adaptation Framework for Sensor
Networks

Daniel Minder, Marcus Handte, Pedro José Marrón

Abstract—Although algorithms for wireless sensor networks
are usually optimised for a specific set of user preferences
under certain network conditions, if the conditions or prefer-
ences change during run-time, the intrinsic parameters of the
algorithms have to be changed accordingly or the algorithmshave
to be replaced. However, choosing a suitable set of algorithms and
parameters can be a tedious and difficult task to do manually.In
this paper, we present TinyAdapt, a novel adaptation framework
for sensor networks, that performs this selection autonomously
guided by previous results from simulations, testbeds or real
deployments, measured network conditions and high-level user
preferences. We show that its use in sensor networks improves
their performance significantly with minimal overhead and that
it increases their flexibility under changing conditions.

I. I NTRODUCTION

Nowadays, sensor networks are used in different application
domains to monitor a broad range of real-world phenomena,
e.g. in logistics, health care, biological studies or smartof-
fices [1]. Despite the broad spectrum of domains, applications
share a common set of basic algorithms, e.g. routing, clustering
and time synchronisation, that are needed for their basic oper-
ation [2]. However, each particular algorithm is better suited
for a specific type of environment such as mobile settings and
it is optimised for a particular set of user preferences, e.g.
latency. When developing an application, it is a difficult task
to select the optimal set of algorithms and parameters since
the selection requires a high degree of a priori knowledge
about the application characteristics, the network conditions
and the user preferences on optimisation. Moreover, in many
cases these factors can change dynamically over time.

The manual adjustment of algorithms and parameters is usu-
ally not feasible. The sensor networks are often intended toop-
erate unattended after their final deployment, the interrelation
between high-level user preferences and low-level algorithm
parameters might not be obvious, and, finally, understanding
the whole parameter space makes it impossible for adaptation
to be handled manually.

In this paper, we propose TinyAdapt, an adaptation frame-
work for wireless sensor networks. TinyAdapt performs au-
tonomous adaptation of algorithms by means of selection and
parameterisation. The adaptation decisions are based on results
obtained from previous simulations, testbed or real deployment
runs which enables TinyAdapt to take full advantage of the
accuracy provided by them. At run-time, the adaptation is
initiated by changes to user preferences and measured network
conditions. We show that TinyAdapt can indeed significantly

The authors are with University of Duisburg-Essen, Germany(e-mail:
{daniel.minder, marcus.handte, pjmarron}@uni-due.de).

increase the performance of the application under changing
conditions.

II. RELATED WORK

Since TinyAdapt uses a component abstraction to build
adaptive applications component systems are shown first, then
we review different adaptation approaches.

SNACK [3] provides a simplified programming language
and a service library for sensor network applications. A
programmer writes an application by parameterising and com-
bining standard components. In the PCOM [4] middleware a
component abstraction and explicit specification of dependen-
cies is used. When starting an application PCOM recursively
creates a component tree by trying to satisfy the dependencies
of components, which can be located on multiple devices.

Besides single adaptive algorithms, some generic adaptation
frameworks exist. In order to cope with the changing condition
of its environment Impala [5] regularly gathers application
parameters (e.g., number of neighbouring animals, amount of
sensor data) and system parameters (e.g. battery level, geo-
graphic position) and, using a Finite State Machine, decides
whether or not a different protocol should be used. In the
reconfiguration architecture based on GRATISplus, DESERT
and GRATIS [6] a user can model several possible imple-
mentations of the same application. During run-time, critical
QoS parameters are gathered in the network and evaluated
at the base station. Reconfiguration commands are sent to
the nodes specifying which components have to be stopped,
rewired and started. The system presented in [7] automates
network protocol stack design and its run-time optimisation.
The network is configured with several parameters and its
performance attributes are measured. These attributes are
combined to a single value using a utility function. Both
parameters and utility value are fed into a knowledge base
and new parameters are selected by simulated annealing.

III. SYSTEM DESCRIPTION

The adaptation framework TinyAdapt is part of the Tiny-
Cubus framework [8] for TinyOS. Its three main components
can be recognised in Figure 1: The cross-layer framework
TinyXXL [9] that allows to share data between different
layers thus enabling cross-layer optimisations, the Installation
module as part of the configuration engine FlexCup [10] that
distributes components in the network and provides installation
support for them, and the Adaptation Engine and Monitoring
components as part of the adaptation framework TinyAdapt
that manages all available algorithms and/or parameterisations
and selects the appropriate one. The figure also shows the data



2

Fig. 1: System Overview

flow between components (solid lines) and the interactions
between different users, framework, program, and simulator
or testbed controlled by TinyAdapt (dashed lines).

In general, the TinyAdapt framework consists of a pre-
installation part and a run-time system. Before installation
different algorithms and different parameters for algorithms
are evaluated. The results are stored in the Characteristics
Table, which is used during run-time in the adaptation engine
to select the best algorithm or best parameterisation. The
definition of best is given by the user in form of a so called
Goal Definition.

A. Pre-installation

During the pre-installation phase, parameterisable algo-
rithms have to be prepared to use TinyXXL and the different
algorithms and parameterisations have to be evaluated. Finally,
modifications to the Characteristics Table are possible.

1) TinyXXL: TinyAdapt uses the cross-layer framework
TinyXXL to parameterise an algorithm or the application. This
minimises code dependencies between the algorithm modules

and the TinyAdapt framework modules. As [9] points out, the
necessary changes to use shared cross-layer instead of private
data are minimal and straight forward. If immediate reaction is
necessary when a parameter changes the user needs to provide
a ‘changed’ event for this parameter. For example, if a data
rate parameter is changed a timer usually needs to be stopped
and restarted with the new rate.

2) Algorithm Evaluation: During this step the algorithms
are evaluated using a simulator, a testbed or a real deployment.
The more the simulation or the testbed resembles the final
deployment of the application the better the adaptation engine
will perform during run-time.

The engineer guides TinyAdapt by providing the applica-
tion, the (parameterisable) algorithms, a list of possiblevalues
for the algorithm parameters, different simulator settings, and
a list of network and performance parameters.

The algorithm parametersA are those that were included
in TinyXXL in the preparation step. Since they are specific
for each (type of) algorithm TinyAdapt does not make any as-
sumptions. For each parameter, particular values are indicated
that should be tested. TinyAdapt will create a new application
for each parameter combination, deploy and test it.

When simulation is used several simulator settings have to
be provided: for example the number of nodes, their locations,
and, if needed, a mobility model or sensor sample data. These
simulator settings affect certain network parametersN . Since
from a node’s perspective the change rate of the neighbours
can be quite different than an average node speed from the
simulator settings the network parameters are measured during
run-time and not derived from the simulator settings. The
network parameters currently implemented are Number of
Neighbours and Mobility. If static scenarios are evaluatedthe
user can also decide to switch off the Monitoring component.

The algorithms are evaluated with respect to several metrics,
which we call performance parametersP . Some parameters
are general for all algorithms, e.g. power consumption, others
are specific for one class of algorithms, e.g. delivery ratiofor
routing algorithms. Currently, the parameters Power Consump-
tion, Delivery Ration and Latency are implemented.

B. Characteristics Table

All three parameters setsA, N and P are collected for
each algorithm in the Characteristics Table. After the algorithm
evaluation part this table largely describes the behaviourof an
algorithm with specific parameters under various conditions
with respect to specific performance metrics.

In a post-processing step the table is examined and irrele-
vant parameter values are filtered out. A value is considered
irrelevant if it does not influence the performance parameters
significantly and instead a neighbouring value can be used. A
curtailing algorithm suggests such values and presents them to
the application engineer together with the error introduced by
removing this value. He finally decides if he wants to have a
more compact characteristics table by unifying more parameter
values while accepting a possibly higher error and, therefore,
a less accurate adaptation result or if he wants to have a larger
table supporting more accurate adaptation.



3

C. Run-time System

1) Architecture: Several components have been added in
the adaptable program compared to the test program. The
Adaptation Engine is the core since it communicates with
the other components and controls the adaptation process.
The Characteristics Table is included here as well. As in the
test program TinyXXL is connected with the parameterisable
algorithms and application, but now new algorithm parameter
valuesA can be set by the Adaptation Engine. The Monitoring
component is also still present but it reports the network
parametersN to the Adaptation Engine. The Drip component
is responsible for disseminating a Goal Definition in the
network and passing it to the Adaptation Engine. Finally, the
Adaptation Engine can instruct the Installation componentto
replace the currently running algorithm by a different one.

2) Adaptation process: When a new Goal Definition ar-
rives or network parameters change the adaptation process is
triggered. A Goal Definition consists of constraint, relaxation
and optimisation definitions. Constraints define requirements
that the user of a sensor network has and that the application
has to fulfil. They can be expressed as an inequality using
the elements ofP . For example, the user could specify a
maximum power consumption of 0.4W and a delivery ratio
of at least 80%.

When applying these constraints and the current values
of the network parameters to the Characteristics Table three
cases can happen: Exactly one matching algorithm or pa-
rameterisation is found, more than one or none at all. The
first case is the simplest since we can directly select this
solution. TinyAdapt also provides a way for resolving both
other cases: If no algorithm is found, the user can provide a
list of constraints which can be relaxed, e.g. the delivery ratio
in steps of 5% until 50% are reached. After each relaxation
step the (new) constraints are re-evaluated until at least one
matching algorithm or parameterisation is found.

If eventually more than one algorithm or parameterisation
fits (with or without relaxation), the user can specify an
optimisation parameter and a direction. For example, the
power consumption could be minimised.

The decision of the adaptation engine is communicated to
other nodes to get a common agreement on how to adapt.
Since it is not needed for the considered scenario we do not
present it in this paper due to space restrictions.

The selected algorithm is installed or switched to if neces-
sary. If the Characteristics Table for this algorithm contains
parametersA, the algorithm has to be parameterised with
them. For this purpose TinyAdapt sets the new value using
TinyXXL. TinyXXL, in turn, notifies the parameterisable al-
gorithms that one of its parameters has changed. The algorithm
is then responsible for reading the new value from TinyXXL
and acting accordingly.

IV. EVALUATION

To test the TinyAdapt approach we consider security moni-
toring in a harbour by means of sensor nodes that are attached
to the containers. The general objective of the applicationis
to monitor the containers for a longer time without further

intervention. In case suspicious conditions (e.g., vibrations or
noise) are detected the harbour logistics centre can decide
to select a higher data rate with a more robust transmission
scheme. Of course, this will consume more energy than the
long-term observation scheme and is, therefore, not suitable
for normal operation.

We have built our application on TinyOS 2.1.0 using the
Collection Tree Protocol (CTP). We changed the original
TinyOS implementation of CTP so that the maximum beacon
interval and the maximum number of retries when sending
a data packet from node to node are stored in TinyXXL.
Additionally, we enabled CC2420’s Low Power Listening
(LPL) and wired it to our LPL control module. TinyAdapt
is integrated as module and interwoven by TinyXXL with
the main application, CTP and LPL modules to share the
algorithm parameters as explained in Section III-A1.

A. Pre-installation phase

The basic simulations are used to create the Characteristics
Table as described in Section III-A2. All simulations are done
using Avrora 1.7.110. MicaZ nodes are emulated, radio links
are simulated using the lossy model. In general, communica-
tion is possible between the horizontal and vertical neighbours
of a node. For the simulations, we abstract from the piling of
the containers and place 25 MicaZ nodes in a 5x5 grid. The
base station is located in one corner of this grid. Each node
regularly sends measurements to the base station.

Four different algorithm parameters (data interval of appli-
cation, maximum number of CTP retransmissions, maximum
CTP beacon interval, low power listening interval) are tested
with several different values. As performance parameters,
the standard parameters as described in Section III-A2 are
evaluated. Details on the parameters and on the curtailing step
are omitted due to space restrictions.

B. Run-time results

When building the application the start Goal Definition is
evaluated and the parameters are set as default. In our example
of a long-term observation application the Goal Definition
requires a minimal delivery ratio of 90% and advises to
optimise energy, which leads to a data packet interval of 30s
and a LPL interval of 250ms. In the simulation, nodes are
booted randomly at the beginning and after 5s setup time each
node starts sending data packets regularly.

After 120 seconds, the user decides to switch from the
long-term observation mode to a fine-granular observation.
Therefore, a new packet interval of 2s, a maximum latency of
1s and delivery ratio as new optimisation goal is distributed
to the network via the base station. TinyAdapt reacts to the
changed Goal Definition, selects a different parameterisation
(data interval 2s, LPL off) and configures the algorithms
accordingly. The simulation stops after another 130s.

In the presented application, the Characteristics Table needs
448 bytes of RAM, which can be further reduced since we
did not remove constant parameters. The new Goal Definition
that is distributed in the network is only 13 bytes long. The
adaptation process takes 1.32ms only.



4

 0.8

 0.85

 0.9

 0.95

 1

 0  50  100  150  200  250

d
e
liv

e
ry

 r
a
ti
o
 (

%
)

simulation time (s)

(a) Delivery ratio

 0

 1

 2

 3

 4

 5

 0  50  100  150  200  250

m
a
x
im

u
m

 l
a
te

n
c
y
 (

s
)

simulation time (s)

(b) Latency

Fig. 2: Performance parameters over time

The results of 25 simulation runs are shown in Figure 2. The
two vertical lines always indicate the time span between the
adaptation of the first node and the last node of all simulations
and the horizontal lines specify the performance value for
the currently active parameter combination obtained from the
basic simulations. Figure 2a shows the delivery ratio of all
packets sent in a 1s interval. The actual 1-second ratios are
distributed around the prediction line, but the mean value of
95.9% is only slightly worse than the prediction of 96.3%
from the basic simulations. After the nodes have adapted, all
packets are received by the base station.

In Figure 2b the maximum latency of all packets sent in
a 1s interval is shown. As can be seen from the graph the
prediction values well establish an upper bound for latencyfor
all transmissions; only twice the bound is exceeded minimally.

The basic simulations predict a needed energy of 52.22J
for the first 130s. Since the adaptation starts approximately
4s earlier and since the adaptive application also includes

Drip the needed energy is a little higher (57.88J). For the
next 130s, 215.07J are required which is only slightly more
than estimated 213.71J according to the basic simulations.
When LPL is off, there is almost no difference if the radio is
receiving or sending. Therefore, the additional Drip component
has only a minor influence on the overall energy.

V. CONCLUSION AND FUTURE WORK

We presented TinyAdapt that is able to adapt various
parameters of lower-layer algorithms so that the application
works optimally under changed conditions and/or changed
user preferences. Therefore, different algorithms and their
parameterisations are evaluated in a pre-installation phase.
During run-time, this information is used to perform au-
tonomous adaptation in an efficient and goal-oriented way.

In future work we will optimise the monitoring framework
to better assess the characteristics of non-static environments.
We will also examine situations where different parts of a
network exhibit very different characteristics and, therefore,
should be parameterised in a different way.

ACKNOWLEDGEMENTS

This work has been partially supported by CONET, the
Cooperating Objects Network of Excellence, funded by the
European Commission under FP7 with contract number FP7-
2007-2-224053.

REFERENCES

[1] K. Römer and F. Mattern, “The design space of wireless sensor net-
works,” IEEE Wireless Communications, vol. 11, 2004.

[2] P. Marron, D. Minder, and The Embedded WiSeNts Consortium, “Em-
bedded wisents research roadmap,” IST/FP6 (IST-004400), 2006.

[3] B. Greenstein, E. Kohler, and D. Estrin, “A sensor network application
construction kit (SNACK),” inProceedings of ACM SenSys ’04, 2004.

[4] C. Becker, M. Handte, G. Schiele, and K. Rothermel, “PCOM- A
Component System for Pervasive Computing,” inProc. of the 2nd
IEEE Conference on Pervasive Computing and Communications (PER-
COM’04), 2004.

[5] T. Liu and M. Martonosi, “Impala: A middleware system formanaging
autonomic, parallel sensor systems,” inProc. of the 9th ACM SIGPLAN
Symp. on Principles and Practice of Parallel Programming, 2003.

[6] S. Kogekar, S. Neema, B. Eames, X. Koutsoukos, A. Ledeczi, and
M. Maroti, “Constraint-guided dynamic reconfiguration in sensor net-
works,” in Proceedings of the third international symposium on Infor-
mation processing in sensor networks (IPSN’04). New York, NY, USA:
ACM Press, 2004.

[7] E. Meshkova, A. Achtzehn, J. Riihijärvi, and P. Mähönen, “Towards a
user-centric network optimization engine,” inPoster Proc. of 6th IEEE
Conference on Sensor, Mesh and Ad Hoc Communications and Networks
(SECON 2009), 2009.

[8] P. J. Marrón, D. Minder, A. Lachenmann, and K. Rothermel, “Tiny-
Cubus: An adaptive cross-layer framework for sensor networks,” it -
Information Technology, vol. 47, no. 2, 2005.

[9] A. Lachenmann, P. J. Marrón, D. Minder, M. Gauger, O. Saukh, and
K. Rothermel, “TinyXXL: Language and runtime support for cross-layer
interactions,” inProc. of the 3rd IEEE Conference on Sensor, Mesh and
Ad Hoc Communications and Networks (SECON 2006), 2006.

[10] P. J. Marrón, M. Gauger, A. Lachenmann, D. Minder, O. Saukh, and
K. Rothermel, “Flexcup: A flexible and efficient code update mechanism
for sensor networks,” inProc. of the 3rd European Workshop on Wireless
Sensor Networks (EWSN 2006), 2006.


