TinyAdapt: An Adaptation Framework for Sensor
Networks

Daniel Minder, Marcus Handte, Pedro José Marron

Abstract—Although algorithms for wireless sensor networks increase the performance of the application under changing
are usually optimised for a specific set of user preferences conditions.
under certain network conditions, if the conditions or prefer-
ences change during run-time, the intrinsic parameters of e
algorithms have to be changed accordingly or the algorithméave Il. RELATED WORK
to be replaced. However, choosing a suitable set of algoriths and Since TinyAdapt uses a component abstraction to build

parameters can be a tedious and difficult task to do manuallyln danti licati i i h figt. th
this paper, we present TinyAdapt, a novel adaptation framewrk adaptive applications component systems are shown Test,

for sensor networks, that performs this selection autonomosly We review different adaptation approaches.
guided by previous results from simulations, testbeds or ral SNACK [3] provides a simplified programming language

deployments, measured network conditions and high-levelser and a service library for sensor network applications. A
preferences. We show that its use in sensor networks improse ,qrammer writes an application by parameterising and-com
their performance significantly with minimal overhead and that bining standard components. In the PCOM [4] middleware a
it increases their flexibility under changing conditions. . U -
component abstraction and explicit specification of depand
cies is used. When starting an application PCOM recursively
l. INTRODUCTION creates a component tree by trying to satisfy the depeneenci
of components, which can be located on multiple devices.
Nowadays, sensor networks are used in different applicatio Besides single adaptive algorithms, some generic adaptati
domains to monitor a broad range of real-world phenomergameworks exist. In order to cope with the changing conditi
e.g. in logistics, health care, biological studies or snudft of jts environment Impala [5] regularly gathers applicatio
fices [1]. Despite the broad spectrum of domains, applinatioparameters (e.g., number of neighbouring animals, amdunt o
share a common set of basic algorithms, e.g. routing, ¢lagte sensor data) and system parameters (e.g. battery level, geo
and time synchronisation, that are needed for their bast-opgraphic position) and, using a Finite State Machine, decide
ation [2]. However, each particular algorithm is bettertetli \whether or not a different protocol should be used. In the
for a specific type of environment such as mobile settings apstonfiguration architecture based on GRATISplus, DESERT
it is optimised for a particular set of user preferences, egnd GRATIS [6] a user can model several possible imple-
latency. When developing an application, it is a difficuka mentations of the same application. During run-time, caiti
to select the optimal set of algorithms and parameters sing®S parameters are gathered in the network and evaluated
the selection requires a high degree of a priori knowledgg the base station. Reconfiguration commands are sent to
about the application CharaCteriStiCS, the network caoovst the nodes Specifying which Components have to be Stopped,
and the user preferences on optimisation. Moreover, in ma@vired and started. The system presented in [7] automates
cases these factors can change dynamically over time. network protocol stack design and its run-time optimigatio
The manual adjustment of algorithms and parameters is ugire network is configured with several parameters and its
ally not feasible. The sensor networks are often intendepto performance attributes are measured. These attributes are
erate unattended after their final deployment, the inteti®d combined to a single value using a utility function. Both
between high-level user preferences and low-level algorit parameters and utility value are fed into a knowledge base

parameters might not be obvious, and, finally, understandignd new parameters are selected by simulated annealing.
the whole parameter space makes it impossible for adaptatio

to be handled manually.

In this paper, we propose TinyAdapt, an adaptation frame-_l_h d ion f K TinvAd . fthe Ti
work for wireless sensor networks. TinyAdapt performs au- € adaptation framework TinyAdapt Is part of the Tiny-

tonomous adaptation of algorithms by means of selection aﬁb‘bus framewo_rk [8]. for _TmyOSI. Its three main components
parameterisation. The adaptation decisions are basedoltsre can be recognised in Figure 1. The cross-layer fra_lmework
obtained from previous simulations, testbed or real depkayt TinyXXL [9] that. allows to share _da}ta .between d|fferent
runs which enables TinyAdapt to take full advantage of tHgyers thus enabling cross-llayer ppt|m|s§t|ons, the liasitan
accuracy provided by them. At run-time, the adaptation od.ule as part of the c.onf|gurat|on engine FIQxCup [10] that
initiated by changes to user preferences and measurednket stributes components in the network and provides iretalt

conditions. We show that TinyAdapt can indeed significant pport for them, and the Adaptatio_n Engine and M(_)nitoring
omponents as part of the adaptation framework TinyAdapt

The authors are with University of Duisburg-Essen, Germéeymail: that manages all availaple algorithms ‘?‘nd/or F""“"'J‘rnetm1iﬁrla
{daniel.minder, marcus.handte, pjmarf@uni-due.de). and selects the appropriate one. The figure also shows the dat

Ill. SYSTEM DESCRIPTION

and the TinyAdapt framework modules. As [9] points out, the
necessary changes to use shared cross-layer instead atepriv
data are minimal and straight forward. If immediate reaci®
necessary when a parameter changes the user needs to provide
a ‘changed’ event for this parameter. For example, if a data
rate parameter is changed a timer usually needs to be stopped
and restarted with the new rate.

2) Algorithm Evaluation: During this step the algorithms
are evaluated using a simulator, a testbed or a real depltyme
The more the simulation or the testbed resembles the final
deployment of the application the better the adaptatiorineng
will perform during run-time.

The engineer guides TinyAdapt by providing the applica-
tion, the (parameterisable) algorithms, a list of possiieies
for the algorithm parameters, different simulator setingnd
a list of network and performance parameters.

The algorithm parameterd are those that were included
in TinyXXL in the preparation step. Since they are specific
for each (type of) algorithm TinyAdapt does not make any as-
sumptions. For each parameter, particular values aredtatic
——— / that should be tested. TinyAdapt will create a new applicati
! for each parameter combination, deploy and test it.

! When simulation is used several simulator settings have to
! be provided: for example the number of nodes, their location

! and, if needed, a mobility model or sensor sample data. These
I simulator settings affect certain network paramefgrsSince

i from a node’s perspective the change rate of the neighbours
\ can be quite different than an average node speed from the
I
I
I
I
|
I
I
I
|
I
I
I

Algorithm
Parameters

o
£
=
S
=
c
S
=

‘ TinyOS ‘

|
I

I

I

I

I

I

I

I

I

I

I

I

|

I

I

I

I

1 .7’77

|

)

1 Simulator .) Simulator/
: Settings Testbed
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
|
I
\

Network

Parameters

Performance

Parameters

NN,..NAA,..APP, P

Algorithm 1
A—_‘Algorithm 2 Characteristics Table

Run-Time

i ‘ Application

Goal Definition(P1]
(includes P,

Performance
Parameters)

Algor2 |

o
c
=
S
=
c
S
=

| Adaptation
Engine BE

[Installation

[TinyXXL

simulator settings the network parameters are measuréedur
run-time and not derived from the simulator settings. The
network parameters currently implemented are Number of
Neighbours and Mobility. If static scenarios are evaluates
user can also decide to switch off the Monitoring component.
The algorithms are evaluated with respect to several nsetric
which we call performance parametePs Some parameters
are general for all algorithms, e.g. power consumptioneisth
are specific for one class of algorithms, e.g. delivery rédio

flow between components (solid lines) and the interactio{%Utlng algorithms. Currently, the parameters Power Corsu

between different users, framework, program, and simolat®®™ Delivery Ration and Latency are implemented.
or testbed controlled by TinyAdapt (dashed lines).

In general, the TinyAdapt framework consists of a preB. Characteristics Table
installation part and a run-time system. Before instaifati
different algorithms and different parameters for aldoris

‘ TinyOS ‘

Algorithm

Parameters

Network

Parameters

Fig. 1: System Overview

All three parameters setd, N and P are collected for
each algorithm in the Characteristics Table. After the atgm

Tabl hich i d duri ime in the ad i .E?/aluation part this table largely describes the behavwban
able, which is used during run-time in the adaptation eaginy,qqyithm with specific parameters under various cond#ion
to select the best algorithm or best parameterisation. T,

definiti f best is ai by th in f ¢ I g/ h respect to specific performance metrics.
G?)glnlljoer:‘i:itioﬁs IS given by the user in form ot a so called |, 5 post-processing step the table is examined and irrele-

vant parameter values are filtered out. A value is considered
irrelevant if it does not influence the performance paramsete
A. Pre-installation significantly and instead a neighbouring value can be used. A

During the pre-installation phase, parameterisable algodrtailing algorithm suggests such values and presents the
rithms have to be prepared to use TinyXXL and the differetie application engineer together with the error introdLiog
algorithms and parameterisations have to be evaluatedllfin removing this value. He finally decides if he wants to have a
modifications to the Characteristics Table are possible. more compact characteristics table by unifying more patame

1) TinyXXL: TinyAdapt uses the cross-layer frameworkalues while accepting a possibly higher error and, theeefo
TinyXXL to parameterise an algorithm or the applicationisTh a less accurate adaptation result or if he wants to have arlarg
minimises code dependencies between the algorithm moduksle supporting more accurate adaptation.

C. Run-time System intervention. In case suspicious conditions (e.g., vibret or

1) Architecture: Several components have been added fpise) are d_etected the harb(_)ur logistics centre can (_jec_ide
the adaptable program compared to the test program. TReselect a higher datg ratg with a more robust transmission
Adaptation Engine is the core since it communicates wififheéme. Of course, this will consume more energy than the
the other components and controls the adaptation procdS89-term observation scheme and is, therefore, not daitab
The Characteristics Table is included here as well. As in tf@" normal operation. o _ _
test program TinyXXL is connected with the parameterisable W& have built our application on TinyOS 2.1.0 using the
algorithms and application, but now new algorithm paramet&ollection Tree Protocol (CTP). We changed the original
valuesA can be set by the Adaptation Engine. The Monitoring"YOS implementation of CTP so that the maximum beacon
component is also still present but it reports the netwofRt€rval and the maximum number of retries when sending
parametersV to the Adaptation Engine. The Drip componen® data packet from node to node are stored in TinyXXL.
is responsible for disseminating a Goal Definition in th@dditionally, we enabled CC2420's Low Power Listening
network and passing it to the Adaptation Engine. Finallg tHLPL) and wired it to our LPL control module. TinyAdapt
Adaptation Engine can instruct the Installation comportent IS integrated as module and interwoven by TinyXXL with
replace the currently running algorithm by a different one. the main application, CTP and LPL modules to share the

2) Adaptation process When a new Goal Definition ar- algorithm parameters as explained in Section IlI-Al.
rives or network parameters change the adaptation prosess i
triggered. A Goal Definition consists of constraint, relioa A. Pre-installation phase

and optimisation definitions. Constraints define requineisie The basic simulations are used to create the Charactsristic
that the user of a sensor network has and that the applicatigble as described in Section 11I-A2. All simulations arendo
has to fulfil. They can be expressed as an inequality usigging Avrora 1.7.110. MicaZ nodes are emulated, radio links
the elements ofP. For example, the user could specify &re simulated using the lossy model. In general, communica-
maximum power consumption of 0.4W and a delivery ratifion is possible between the horizontal and vertical neiginb
of at least 80%. of a node. For the simulations, we abstract from the piling of

When applying these constraints and the current valug® containers and place 25 MicaZ nodes in a 5x5 grid. The
of the network parameters to the Characteristics Tableethiigase station is located in one corner of this grid. Each node
cases can happen: Exactly one matching algorithm or pagularly sends measurements to the base station.
rameterisation is found, more than one or none at all. Thefour different algorithm parameters (data interval of appl
first case is the simplest since we can directly select thigtion, maximum number of CTP retransmissions, maximum
solution. TinyAdapt also provides a way for resolving botitTP beacon interval, low power listening interval) are edst
other cases: If no algorithm is found, the user can providewith several different values. As performance parameters,
list of constraints which can be relaxed, e.g. the delivatior the standard parameters as described in Section IlI-A2 are
in steps of 5% until 50% are reached. After each relaxati@yaluated. Details on the parameters and on the curtailémy s
step the (new) constraints are re-evaluated until at least aare omitted due to space restrictions.
matching algorithm or parameterisation is found.

If eventually more than one algorithm or parameterisatioél_ Run-time results

fits (with or without relaxation), the user can specify an - L .
optimisation parameter and a direction. For example, theWhen building the application the start Goal Definition is
power consumption could be minimised. evaluated and the parameters are set as default. In our é&xamp

The decision of the adaptation engine is communicated % a long-term observation application the Goal Definition
other nodes to get a common agreement on how to add uires a minimal delivery ratio of 90% and advises to

Since it is not needed for the considered scenario we do PRIMIse energy, which leads to a data packet interval of 30s
present it in this paper due to space restrictions and a LPL interval of 250ms. In the simulation, nodes are

The selected algorithm is installed or switched to if neceQ-ooted randomly at the beginning and after 5s setup time each

sary. If the Characteristics Table for this algorithm camga node starts sending data packets regularly.

parametersA, the algorithm has to be parameterised wit After 120 seconqls, the user dec_ldes to switch from _the
g-term observation mode to a fine-granular observation.

them. For this purpose TinyAdapt sets the new value usi ¢ ket i l of 2 . | f
TinyXXL. TinyXXL, in turn, notifies the parameterisable al-, '€r€'0r€, a néw pac etinterval of 2s, a maximum fatency o

gorithms that one of its parameters has changed. The eﬂgl)ritlS and delivery r_atio as new optlimisat_ion goal is distrilute
is then responsible for reading the new value from TinyXXIt_0 the network wa_th(_e base station. _TlnyAdapt reacts_s _to the
and acting accordingly. changed Goal Definition, selects a different parametéoisat

(data interval 2s, LPL off) and configures the algorithms
accordingly. The simulation stops after another 130s.
In the presented application, the Characteristics Tabdelse
To test the TinyAdapt approach we consider security mor48 bytes of RAM, which can be further reduced since we
toring in a harbour by means of sensor nodes that are attacd&tinot remove constant parameters. The new Goal Definition
to the containers. The general objective of the applicaitonthat is distributed in the network is only 13 bytes long. The
to monitor the containers for a longer time without furtheadaptation process takes 1.32ms only.

IV. EVALUATION

< 0.95 . 1
el .
‘@ , -
> 097 L 1
) o
=
©
©
0.85 r . J
08 1 1 PR 1 1 1
0 50 100 150 200 250
simulation time (s)
(a) Delivery ratio
5 T T T T T
. k * |
© 4 .
g .
& 4l ‘
c 37 Yo T
kS R Lo
IS + -
g 2+ + n 1
=
©
€ C
1+ C 1
0 ‘ L e : :
0 50 100 150 200 250

simulation time (s)
(b) Latency

Fig. 2: Performance parameters over time

The results of 25 simulation runs are shown in Figure 2. The

Drip the needed energy is a little higher (57.88J). For the
next 130s, 215.07J are required which is only slightly more
than estimated 213.71J according to the basic simulations.
When LPL is off, there is almost no difference if the radio is
receiving or sending. Therefore, the additional Drip conmgtt

has only a minor influence on the overall energy.

V. CONCLUSION AND FUTURE WORK

We presented TinyAdapt that is able to adapt various
parameters of lower-layer algorithms so that the appbeati
works optimally under changed conditions and/or changed
user preferences. Therefore, different algorithms andr the
parameterisations are evaluated in a pre-installatiorseha
During run-time, this information is used to perform au-
tonomous adaptation in an efficient and goal-oriented way.

In future work we will optimise the monitoring framework
to better assess the characteristics of non-static enveots.
We will also examine situations where different parts of a
network exhibit very different characteristics and, tliere,
should be parameterised in a different way.

ACKNOWLEDGEMENTS

This work has been partially supported by CONET, the
Cooperating Objects Network of Excellence, funded by the
European Commission under FP7 with contract number FP7-
2007-2-224053.

REFERENCES

[1] K. Romer and F. Mattern, “The design space of wirelesssee net-
works,” IEEE Wireless Communications, vol. 11, 2004.

[2] P. Marron, D. Minder, and The Embedded WiSeNts ConswortitEm-
bedded wisents research roadmap,” IST/FP6 (IST-00440Q06.2

[3] B. Greenstein, E. Kohler, and D. Estrin, “A sensor netwapplication
construction kit (SNACK),” inProceedings of ACM SenSys '04, 2004.

[4] C. Becker, M. Handte, G. Schiele, and K. Rothermel, “PCOM

Component System for Pervasive Computing,” Pnoc. of the 2nd

IEEE Conference on Pervasive Computing and Communications (PER-

COM’04), 2004.

T. Liu and M. Martonosi, “Impala: A middleware system foranaging

two vertical lines always indicate the time span between th
adaptation of the first node and the last node of all simutatio
and the horizontal lines specify the performance value fol6l
the currently active parameter combination obtained frben t
basic simulations. Figure 2a shows the delivery ratio of all
packets sent in a 1s interval. The actual 1-second ratios are
distributed around the prediction line, but the mean valfie
95.9% is only slightly worse than the prediction of 96.3%
from the basic simulations. After the nodes have adaptéd, al
packets are received by the base station. (8]

In Figure 2b the maximum latency of all packets sent in
a 1s interval is shown. As can be seen from the graph tHe
prediction values well establish an upper bound for latdocy
all transmissions; only twice the bound is exceeded mirimal
The basic simulations predict a needed energy of 52.
for the first 130s. Since the adaptation starts approximatel
4s earlier and since the adaptive application also includes

autonomic, parallel sensor systems,Hroc. of the 9th ACM SSIGPLAN

Symp. on Principles and Practice of Parallel Programming, 2003.

S. Kogekar, S. Neema, B. Eames, X. Koutsoukos, A. Ledeaad
M. Maroti, “Constraint-guided dynamic reconfiguration iansor net-
works,” in Proceedings of the third international symposium on Infor-

mation processing in sensor networks (IPSN'04). New York, NY, USA:
ACM Press, 2004.

1 E. Meshkova, A. Achtzehn, J. Riihijarvi, and P. Matein “Towards a

user-centric network optimization engine,” Roster Proc. of 6th |IEEE
Conference on Sensor, Mesh and Ad Hoc Communications and Networks
(SECON 2009), 2009.

P. J. Marrén, D. Minder, A. Lachenmann, and K. Rotherm@&iny-

Cubus: An adaptive cross-layer framework for sensor nétsyoiit -

Information Technology, vol. 47, no. 2, 2005.

A. Lachenmann, P. J. Marron, D. Minder, M. Gauger, O. I@awand
K. Rothermel, “TinyXXL: Language and runtime support fooss-layer
interactions,” inProc. of the 3rd IEEE Conference on Sensor, Mesh and

Ad Hoc Communications and Networks (SECON 2006), 2006.

P. J. Marrén, M. Gauger, A. Lachenmann, D. Minder, Oul®a and
K. Rothermel, “Flexcup: A flexible and efficient code updateamanism
for sensor networks,” ifProc. of the 3rd European Workshop on Wireless
Sensor Networks (EWSN 2006), 2006.

