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Abstract 

 
Applications in the Pervasive Computing domain 

are challenged by the dynamism in which their execu-
tion environment changes, e.g. due to user mobility. 
As a result, applications have to adapt to changes 
regarding their required resources. In this paper we 
present PCOM, a component system for Pervasive 
Computing. PCOM offers application programmers a 
high-level programming abstraction which captures 
the dependencies between components using con-
tracts. The resulting application architecture is a tree 
formed by components and their dependencies. PCOM 
supports automatic adaptation in cases where the exe-
cution environment changes to the better or to the 
worse. User supplied as well as system provided 
strategies take users out of the control loop while of-
fering flexible adaptation control. 
 
1. Introduction 
 

Pervasive Computing is characterized by the inter-
action of a multitude of highly heterogeneous devices, 
ranging from powerful general-purpose servers located 
in the infrastructure, to tiny mobile sensors, integrated 
in everyday objects. Devices are connected to each 
other on-the-fly using wireless communication tech-
nologies like Bluetooth, IEEE 802.11 or IrDA and 
share their functionality. A sensor could for instance 
use a nearby display to present its data to the user.  

Developing and executing applications in such en-
vironments is a non-trivial task. Apart from the device 
heterogeneity, the hardware and software resources, 
i.e. devices and services, available to an application 
are highly dynamic, due to factors like user mobility, 
fluctuating network connectivity or changing physical 
context. This forces applications to adapt themselves 
constantly to their ever-changing execution environ-
ments. User-interaction, e.g. for adaptation control or 

administrative tasks, should be minimized, thus re-
moving the user from the control loop [12].  

To ease application adaptation, we have developed 
BASE, a flexible middleware for Pervasive Computing 
environments (see e.g. [1] for details). It provides ad-
aptation support on the communication level by dy-
namically (re-) selecting communication protocol 
stacks, even for currently running interactions.  

BASE offers no support for adaptation at higher 
levels, e.g. by automatically reselecting services and 
devices. Therefore, we have designed and developed 
PCOM, a light-weight component system on top of 
BASE. PCOM allows the specification of distributed 
applications that are made up of components with ex-
plicit dependencies modeled using contracts. An ap-
plication can be executed if all of its components can 
be executed – either local or remote – meaning that all 
dependencies between components can be fulfilled. In 
order to automatically choose alternatives if multiple 
suitable components are available, strategies are em-
ployed. This allows adaptation without prompting the 
user. The main contribution of this paper is the defini-
tion and evaluation of this light-weight component 
system for strategy-based adaptation in spontaneously 
networked Pervasive Computing environments.  

The remainder of the paper is structured as follows. 
Next, we will present our system model and briefly 
sketch BASE. Models for application adaptation are 
discussed in section 3. The requirements on applica-
tion adaptation, especially those that are not fulfilled 
by BASE, are derived in section 4. Section 5 presents 
the architecture of PCOM, its application model and 
the mechanisms that enable adaptation. As an indica-
tion for the validity of our approach, an evaluation of 
PCOM, including a comparison of application adapta-
tion in BASE and PCOM is given in section 6. After 
discussing related work in section 7, we conclude the 
paper and provide an outlook on future work in sec-
tion 8. 
 



2. System Model 
 

Our work focuses on spontaneously networked Per-
vasive Computing environments in which devices are 
connected on-the-fly, typically using some kind of 
wireless technology. Such environments are highly 
dynamic. Connections between devices are not perma-
nent, the topology of the network is constantly chang-
ing, and there is no central or coordinating element. 
We do not assume the presence of a smart environ-
ment like Gaia [9], Aura [3] or iRos [5]. Although 
such an infrastructure could be available at certain 
times, devices cannot rely on it. 

In our system model communication and thus in-
teraction is restricted to devices that are currently 
reachable by the network (e.g. due to communication 
technology). As a result, systems in these environ-
ments are inherently location-aware as communication 
is typically spatially limited. The devices have differ-
ent specializations and resource limitations. Besides 
resource-poor and specialized devices such as sensor 
nodes, resource-poor general purpose devices could be 
present, e.g. PDAs. Also resource rich-devices can 
either provide a general purpose platform or they can 
provide single services such as a presentation system. 

Due to the lack of a central or coordinating ele-
ment, applications are dynamically composed of ser-
vices provided by devices that are part of the currently 
reachable environment. As an example, consider an 
instant messaging application that requires an input 
service such as a keyboard or a touch screen to write 
messages and an output service to display messages, 
e.g. a monitor, a video projector or an audio channel. 
During start up, the application scans the current envi-
ronment for available services and connects to suitable 
instances. At execution time, the application uses the 
services and adapts to changes regarding their avail-
ability or quality. Possible adaptations could include 
for instance the reselection of the output service when-
ever it becomes unavailable. 
 
2.1.1. BASE. In order to provide basic support for 
services that enable such applications, we have devel-
oped BASE. BASE is written in Java using the Java 2 
Micro Edition with the Connected Limited Device 
Configuration (CLDC). It assists application pro-
grammers by providing mechanisms for device dis-
covery and service registration that can be used to lo-
cate and access local as well as remote device capabili-
ties and services. Since the availability of services and 
capabilities can fluctuate in spontaneously networked 
environments, BASE provides a simple signaling 

mechanism to determine their availability. Communi-
cation protocols and device capabilities can be ex-
tended flexibly, since BASE is structured as an exten-
sible micro-broker. This allows the middleware to run 
on resource-poor devices and benefit from resource-
rich devices. In the context of this work, BASE is used 
as underlying communication middleware, offering 
communication and discovery on a wide range of de-
vices. More information on BASE can be found in [1] 
and [2]. 
 
3. Adaptation Models  
 

To provide application adaptation support for Per-
vasive Computing systems, three main levels of sup-
port can be distinguished. This classification is similar 
to the one given in [7]. 

Manual adaptation: here, adaptation is done by 
the end user. If an adaptation is performed, the system 
presents different choices and the user selects the most 
appropriate one. For the instant messenger described 
previously, this means that the user has to explicitly 
select the output or input service used by the applica-
tion, whenever a used service becomes unavailable or 
a new service is discovered. Clearly, this is time-
consuming and irritating, especially for environments 
with a high level of dynamism and a large number of 
different devices and services. 

Application-specific automatic adaptation: to 
lessen the involvement of users, application adaptation 
should be executed with as little user interaction as 
possible. This can be realized by shifting the adapta-
tion decision into the application. As a result, the sys-
tem must support adaptation by signaling changes in 
the environment and the application programmer has 
to explicitly handle resource availability on a per-
resource base, leading to complex and error-prone 
adaptation routines. Regarding the instant messenger 
scenario the programmer must provide routines that 
reselect the input and output service whenever the 
used services become unavailable. Such a reselection 
may be necessary at any point during the usage of a 
service. Therefore, the code of the application will be 
cross-cut by adaptation routines that are effectively 
reducing its readability and maintainability. 

Generic automatic adaptation: at the highest 
level of support, application adaptation is done with-
out stressing users or application programmers. The 
programmer only specifies the functional and non-
functional properties of services required by the appli-
cation and the user controls the adaptation process by 
stating adaptation goals. Thereafter, the system moni-



tors service availability and selects the optimal ser-
vices. The programmer of an instant messenger simply 
specifies the parameters of the input and output ser-
vice, e.g. minimum screen resolution, and the user 
defines the adaptation preferences, e.g. highest avail-
able resolution. At runtime, the system automatically 
tries to find services with an acceptable quality. In 
cases where multiple services fulfill the requirement, 
the system performs the selection based on the prefer-
ences of the user.  
 
4. Requirements 
 

BASE offers generic automatic adaptation support 
at the communication layer. With PCOM we aim at 
providing further generic adaptation support at the 
application layer. PCOM should enable application 
programmers to extend the system with application-
specific adaptation logic if needed. This enables a 
rather straight forward specification of application 
dependencies along with standard adaptation strate-
gies resulting in a simple core system which can be 
customized to the needs of an application program-
mer. From these objectives the following requirements 
can be derived: 

Application specification: applications should be 
specified in terms of their required services. Services 
should clearly denote their dependencies to other ser-
vices and the platform. Non-functional properties of 
the dependencies should be explicitly stated. The 
composition of an application from services should 
allow the specification of alternatives in order to sup-
port the system to automate adaptation decisions. 

Service monitoring: the system has to monitor the 
availability of services in order to detect currently used 
services that change their non-functional properties or 
become unavailable as well as to detect new services. 

Strategy based adaptation: the system has to pro-
vide means for automatic adaptation of an application. 
If alternatives of services are present in the current 
execution environment, strategies decide which ser-
vice to select. Besides standard strategies, e.g. to opti-
mize energy consumption, user-defined policies 
should be integrated. At the core of adaptation, the 
application lifecycle and the lifecycle of single services 
have to be managed.  

Minimalism and extensibility: to meet the re-
source heterogeneity of Pervasive Computing the re-
sulting system has to be minimal with respect to re-
quired resources, e.g. processing power and memory, 
and it has to be extensible to exploit the advantages of 
resource-rich devices. 

 

 
 

Figure 1: PCOM Architecture 
 
5. PCOM 
 

In the following we will present our component 
system PCOM (see Figure 1). PCOM provides a dis-
tributed application model and supports automatic 
application adaptation based on signaling mechanisms 
and adaptation strategies. Applications are composed 
of interacting entities, so-called components, which 
dependencies are explicitly specified as contracts. The 
PCOM container hosts components, manages their 
dependencies, and thus acts as a distributed execution 
environment for applications. Each container defines a 
remote container interface that exports locally avail-
able components by their contracts and allows remote 
containers to negotiate new contracts and access the 
components. To reuse the communication and discov-
ery capabilities of our middleware BASE, the con-
tainer is implemented as a single service on top of 
BASE. As a result, a container is automatically capa-
ble of detecting and using other containers.  

In the following we will further describe our appli-
cation model and present components along with their 
contracts. After that, we discuss application adaptation 
in PCOM and its realization. 
 
5.1. Application Architecture 
 

Applications in PCOM are composed of 
components that interact with each other in order to 
fulfill their dependencies. Components are atomic 
with respect to their distribution but can rely on local 
or remote components, resulting in a distributed appli-
cation architecture. 

An application is modeled as a tree of components 
and their dependencies where the root component (the 
so-called application anchor) identifies the applica-
tion. The application tree reflects the dependencies 
between components where the successors of a com-
ponent identify its dependencies in order to fulfill the 



service. PCOM uses a tree as application model, be-
cause arbitrary graphs cause several complications. 
For instance, the multiple use of the same component 
requires merging probably conflicting requirements. 
As another example, cycles of the graph could cause 
infinite loops during the composition of applications. 

The life cycle of an application is reflected by the 
life cycle of its application anchor. Next, we will ex-
plain components in more detail, including the model-
ing of dependencies via contracts and their life cycle. 
 
5.2. Components  
 

Components in PCOM are units of composition 
with contractually specified interfaces and explicit 
context dependencies. PCOM’s components enclose 
contracts that describe their offered functionality and 
requirements regarding the platform and other com-
ponents. Components are atomic with respect to dis-
tribution and may use other components in order to 
provide their service. Note that PCOM does not regu-
late the granularity of components. Therefore, the 
granularity could range from single functionalities to 
complete applications.  
 
5.2.1. Contracts. Contracts consist of two distinct 
parts: The first part specifies the corresponding com-
ponent’s requirements on the executing platform, e.g. 
required libraries or memory. The second part speci-
fies the functionality provided by the component and 
its dependencies on other components. A dependency 
between two components has a direction and reflects 
the fact that one component either requires certain 
service interfaces (pull) or listens to some events pro-
vided by another component (push). Thus, PCOM 
supports push and pull communication models be-
tween components.  

In order to describe dependencies, contracts in 
PCOM specify the service interfaces and the events 
that are offered and required by a component. Along 
the syntactical interface specification of events and 
services that define a functional dependency, non-
functional parameters can be added to express further 
properties, such as a screen-size, energy consumption 
or performance related parameters. In contrast to the 
functional specification that is known at compile time, 
non-functional parameters can vary at runtime and 
might depend on the offer of components that are used 
to satisfy the dependencies. Thus, non-functional pa-
rameters can be either static or dynamic. 

At runtime, contracts in PCOM are represented as 
object graphs. To ease the specification of these 

graphs, we use a compiler to transform an XML docu-
ment into code that creates the desired structure. This 
representation is used for the comparison of offers and 
requirements. By applying them, it is possible to de-
termine whether the offer of one component can be 
used to satisfy the requirements of another component. 
Due to the possibly large number of comparison opera-
tors that is needed to support arbitrary non-functional 
parameters, the underlying object model provides only 
a small set of operators that can be extended by appli-
cation programmers. 
 

 
 

Figure 2: Exemplary Contracts 
 
5.2.2. Example. Figure 2 shows XML-based contract 
specifications for an exemplary instant messenger 
component and a keyboard component. First we will 
have a look at the messenger’s contract. It specifies 
that the messenger component does not offer any ser-
vice to other components (a) and that it depends on an 
input component offering a given service interface and 



event type (b). Additionally, the messenger’s contract 
states the non-functional requirement that the input 
component’s language must be English (b). Next, the 
platform dependency declares, that the messenger 
must be executed by a container that has at least 10 
Kbytes of free memory and provides a CLDC (c). The 
last section of the contract contains information about 
the component’s internals used by the container (d).   

In contrast to the messenger’s contract, the key-
board component’s contract specifies an offer that con-
sists of two interfaces and two events (e). Additionally, 
the offer also contains non-functional attributes that 
describe the available keys and the supported lan-
guage. Apart from the requirements on the platform 
(f) the keyboard does not have any requirements. 
Again, the last section of the contract contains infor-
mation about the component implementation (g). 

At runtime, these XML-based contracts are trans-
formed into an object model that allows matching the 
instant messenger component’s requirements with the 
offer of the keyboard component. As the keyboard of-
fers all required functional and non-functional fea-
tures, it can be used to satisfy the messenger’s depend-
ency. After the components have been combined at 
runtime (h), the instant messenger component is capa-
ble of placing calls to the interface provided by the 
keyboard component (i) and the keyboard component 
can send the requested event to the instant messenger 
(j). The additional interface (k) and event (l) of the 
keyboard component will never be used.  
 
5.2.3. Component Lifecycle. To consistently embed 
components into applications, the container defines 
and manages the lifecycle of components. Conceptu-
ally, this lifecycle consists of the two states STARTED 
and STOPPED. The state transitions are controlled by 
the container. The container loads a component by 
first loading the object graph that represents its con-
tract. It then determines whether it can fulfill the 
component’s requirements towards the platform. If 
they can be satisfied, the container adds the contract to 
the set of exported contracts. Initially the component 
rests in the STOPPED state. Once a component is 
about to be embedded into an application, the con-
tainer tries to resolve and initialize the component’s 
dependencies by selecting suitable components to ful-
fill them. This initial resolution of dependencies can 
be seen as a special case of adaptation. A more de-
tailed description of the selection process is given in 
subsection 5.3. After all dependencies are fulfilled, the 
container triggers a transition to the STARTED state. 
In this state, the component provides its functionality 

and the container provides signaling and adaptation 
support. When the state changes to STOPPED, the 
container releases all resources held by the compo-
nent.  
 
5.2.4. Contract Exchange and Negotiation. As soon 
as a component is about to be executed, the container 
has to determine whether its dependencies – both, 
functional and non-functional – can be satisfied. In 
order to find components that can potentially be used 
to satisfy a dependency, the container sends the 
requirements to the containers available in the envi-
ronment. The containers reply with the contractual 
offers of the components that can fulfill the require-
ments.  

As mentioned earlier, there are non-functional pa-
rameters that a component cannot determine without 
knowing the components that are used to satisfy its 
dependencies. In order to determine such parameters, 
PCOM containers also support a negotiation phase 
that recursively determines the non-functional pa-
rameters of a component without starting it. To enable 
this, containers rely on so-called factories that are rep-
resentatives for locally installed components. Factories 
provide the capability to determine the actual value of 
a non-functional parameter based on the set of compo-
nents that is currently available. While PCOM pro-
vides a simple standard factory, application program-
mers can provide component-specific factories by de-
claring them in the component contract’s implementa-
tion section (see Figure 2 (d)).  

The algorithm for contract negotiation is a post-
order traversal of the tree of matching offers and re-
quirements, where factories implement the functional-
ity that determines the values of non-functional pa-
rameters from the available offers. 
 
5.3. Adaptation 
 

In ever-changing environments, component-based 
applications have to deal with fluctuating availability 
and quality of components. Changes regarding the 
availability and quality of components can either have 
a positive or a negative impact on the application. 
This means that the quality of a used component’s 
functionality can either increase or decrease during the 
execution. Also, used components might become un-
available and new components that could deliver a 
required functionality might be discovered at any time. 

In order to adapt to fluctuations, a component has 
to have means of detecting changes with respect to 
quality and availability of other components that either 



depend on or are required by the component. PCOM 
defines three signaling mechanisms that detect 
changes regarding availability and quality. 
 
5.3.1. Signaling Mechanisms. The first signaling 
mechanism is targeted at the availability of used com-
ponents. Whenever a used component becomes un-
available, a so-called communication listener is noti-
fied. Application programmers can register communi-
cation listeners for every dependency of a component. 
As PCOM uses a soft-state lease mechanism to main-
tain the dependencies between components, the detec-
tion of an unavailable component is either a result of 
an unsuccessful call placed by the using component or 
by a heart-beat message sent by the runtime system.  

The second mechanism detects the availability of 
new components. In order to receive notifications 
about components that could potentially be used to 
replace a currently used component, programmers can 
define discovery listeners for each dependency. When-
ever BASE detects a new device, PCOM checks 
whether the device hosts an instance of PCOM. If a 
new instance is discovered, PCOM determines 
whether the new components could be used to replace 
a dependency of a locally executed component. The 
comparison of the requirements of a running compo-
nent and the offer of a newly discovered component is 
solely based on the static parameters of the offer, sig-
nificantly reducing the discovery overhead. Once a 
discovery listener is called, an adaptation strategy can 
decide, if a full negotiation of the dynamic parameters 
should be done. Hence, negotiation is performed only 
if an application may profit from a component change. 

The last signaling mechanism provided by PCOM 
aims at fluctuations in the quality provided by a com-
ponent. As mentioned above, non-functional parame-
ters can change over time. Therefore, PCOM allows 
application programmers to specify contract listeners 
that are notified whenever a parameter changes. 
 
5.3.2. Options for Adaptation. Application pro-
grammers can use the described signaling mechanisms 
as hooks to specify their own actions for adaptation or 
use system provided mechanisms. PCOM offers two 
generic mechanisms: execution discontinuation and 
component reselection. Application programmers are 
provided with means to implement further options, 
e.g. modifying contracts or retransmitting messages in 
case of a transient network partitioning.  

The first generic adaptation mechanism is simply 
the discontinuation of an executed component. When-
ever an executed component is no longer able to pro-

vide its functionality, it can stop its execution. This 
will result in an event that is received by the commu-
nication listener of the using component. With respect 
to the application model defined by PCOM, this means 
that a problem in a component is escalated to the next, 
i.e. higher, level of the tree. The escalation continues 
until a component resolves the conflict by either rese-
lecting a component (see below) or applying a user-
defined strategy. If the escalation leads to the discon-
tinuation of the application anchor, the execution of 
the application stops. 

The second generic mechanism supports the rese-
lection of components at runtime. This is enabled by 
two features. First, components specify their depend-
encies explicitly which allows matching a contractu-
ally specified requirement and its corresponding offer. 
Second, PCOM allows the definition of strategies that 
prioritize possible components based on user prefer-
ences. Therefore, if a component initiates the reselec-
tion of a certain dependency, PCOM can automatically 
determine the possible replacements that match the 
programmer’s requirements. If there are several possi-
ble replacements, a user defined strategy is applied to 
select the best replacement according to the user’s 
current selection goals. Clearly, a simple reselection 
will only be possible if the corresponding component 
is stateless. For stateful components, the application 
programmer still has to provide additional routines 
that establish the desired state. Nevertheless, the pro-
grammer does not have to implement the reselection 
algorithm and can use the signaling mechanisms to 
add an application-specific adaptation routine. 

So far we have seen, how PCOM allows for generic 
application adaptation support via predefined as well 
as user-supplied strategies. The container realizing 
PCOM’s runtime system resides on top of BASE, our 
middleware for Pervasive Computing. In the next sec-
tion we will compare the abstractions provided by 
PCOM with the support BASE offers. The additional 
overhead for communication and application adapta-
tion is presented based on measurements. 
 
6. Evaluation 
 

As stated in Section 4 the main requirements on 
PCOM are application specification and support for 
strategy-based adaptation. In PCOM these require-
ments are realized through components with contrac-
tually specified dependencies. As shown in Section 
5.3, a crucial task for adaptation is the (re-)selection of 
services. Therefore, we will evaluate the service selec-
tion in PCOM and BASE. We compare the necessary 



tasks of a programmer and the assistance for service 
selection provided by PCOM and BASE. Next, the 
time needed for service selection is presented which 
includes contract evaluation, communication, and 
component instantiation. Finally, the additional re-
quirements of PCOM regarding remote communica-
tion, memory, and computing power are discussed. 

 
6.1. Service Selection 

 
Selecting a service that will be used by an applica-

tion comprises two fundamental tasks. First of all, an 
application has to determine the set of services that is 
available in a given environment. Thereafter, it has to 
determine the suitability of each service and select the 
best service possible.  
 

 
 

Figure 3: Component Selection in PCOM 
 
To allow determining the suitability, BASE and 

PCOM support non-functional parameters that allow a 
more detailed description of services. The suitability of 
a service could recursively depend on the suitability of 
the services used by it. As mentioned earlier, PCOM 
supports negotiation of dynamic parameters to model 
such dependencies. But since BASE does not deal with 
dynamic parameters, we restricted all parameters used 

during the evaluation to parameters that are static and 
thus, do not require negotiation.  

Figure 3 shows the units of PCOM that are in-
volved in the component selection process. An appli-
cation programmer specifies the requirements of a 
component using a contract (a). At runtime, PCOM 
provides the application programmer with a handle for 
each component requested by the contract. Using this 
handle, a programmer can simply initiate the (re-) 
selection by calling the rebind-method (b). Typically, 
this method will be called within one of the listeners 
discussed above. When a reselection is initiated, 
PCOM uses contract matching to find suitable compo-
nents and it uses a strategy to prioritize possible re-
placements (c). The distinction between contract and 
strategy separates the requirements that must be met to 
ensure the desired component behavior from user 
preferences. Notice, that (a) and (b) are supplied by a 
programmer, while (c) is a configurable and thus re-
usable strategy that is integrated in the system.  

 

 
 

Figure 4: Service Selection in BASE  
 

Figure 4 shows how a similar behavior can be im-
plemented using BASE. An application programmer 
provides a selection routine for the required service 
that specifies its properties and priorities (d). When-
ever a reselection must take place, the application calls 
this routine (e). In contrast to PCOM, the selection 
routine provided by the application programmer en-
capsulates both, service requirements and preferences.  



The comparison of these two implementations shows 
that - from an application programmer’s point of view 
- using a service in BASE is more complex than using 
a component in PCOM. While application program-
mers in BASE have to provide the functionality for 
searching and selecting required services, program-
mers in PCOM are provided with handles that hide 
the details of this selection. Instead of providing the 
specific algorithm that searches and prioritizes com-
ponents, they simply specify the parameters that de-
note application-specific requirements and thus, they 
do not have to reason about user preferences. This 
means an additional flexibility which would be hard to 
achieve in a BASE implementation. Note that other, 
more complex features like contract negotiation or 
PCOM’s signaling mechanisms are even harder to 
implement on top of BASE because of the lack of dy-
namic attributes.  
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Figure 5: Component vs. Service Selection 
 

Clearly, the extraction of functionality for selection 
causes an additional performance overhead. To quan-
tify the impact on performance, we measured the time 
for a reselection in PCOM and in BASE. Figure 5 
shows the average time for reselecting a service re-
spectively a component (using the strategies and algo-
rithms described in Figure 3/4) in cases where suitable 
components (or services in BASE) were available on 1 
to 5 remote systems. The measurements have been 
conducted on PCs (Pentium III/600MHZ) connected 
with a 100 MBit network in order to show the funda-
mental effort without experiencing additional delays, 
such as Bluetooth discovery. The numbers shown in 
Figure 5 are the result of measuring 10 independent 
runs with 100 reselections each and varying the num-
ber of devices offering services (BASE) and containers 
(PCOM). To reduce fluctuations as far as possible, we 
disabled Java’s just-in-time compiler. The remaining 
fluctuations were below 10 percent of the average time 

of a run and are most likely side-effects of the operat-
ing system’s scheduler and Java’s built-in garbage 
collector.  

The total selection time is determined by the time 
for obtaining offers from neighbors, choosing an offer, 
and instantiating the chosen service or component. 
While the time for obtaining offers and choosing an 
offer increases linearly with the number of neighbors 
the instantiation of the chosen offer is constant. The 
measurements in Figure 5 show that, although reselec-
tion in PCOM is slower than in BASE, the relative 
overhead decreases with the number of neighbors. 
This is due to the higher cost for instantiating a 
PCOM component compared to a BASE service. The 
absolute overhead for a selection of approximately 30 
ms however, is unlikely to be a bottleneck for realistic 
applications.  

In addition to these measurements on resource-rich 
devices we have performed experiments on a JStamp 
embedded system1 connected by a 19200 baud serial 
line. The average selection time was 3300 ms, which 
still may not impose serious problems, since a constant 
change of an application configuration, such as 
switching a monitor, will be annoying to the user. 

In summary, comparing service and component se-
lection shows that separating requirements and prefer-
ences using contracts and strategies is not for free. 
Although the overhead is noticeable, we believe that 
the gained flexibility is worth the performance pen-
alty.  
 
6.2. Communication 

 
In order to compare the communication perform-

ance in BASE and PCOM, we measured the cost for a 
single message transfer using both systems. Our meas-
urements showed that PCOM basically does not in-
duce overhead on calls between components as it does 
not introduce indirections in the dispatch chain. This 
in turn is a result of carefully integrating proxies and 
skeletons of BASE and PCOM. 

In terms of general communication overhead, three 
mechanisms introduced by PCOM require additional 
remote communication. In contrast to services in 
BASE, components in PCOM use a soft-state protocol 
to detect the (un-)availability of components. This 
protocol transparently exchanges additional keep-alive 
messages if no other messages have been exchanged 
during a lease period. These messages represent an 
additional communication overhead for components 

                                                        
1 http://www.jstamp.com 



that communicate infrequently. The second mecha-
nism that introduces new messages is the discovery 
listener as it retrieves relevant contracts from devices 
that have been newly discovered. The last mechanism 
that requires additional remote communication is the 
contract listener. It creates a message for every modi-
fication of an offer or a requirement that is specified in 
a contract.  

Clearly, all three mechanisms do not only create 
overhead, but do also provide necessary features. It is 
conceivable that realistic applications in dynamic en-
vironments must rely on soft-state protocols to reduce 
the amount of wastefully reserved resources. Similarly, 
components that have changing requirements or offers 
need to communicate them. Finally, optimization of 
executed applications requires notification about 
changes that could have positive impact. 

Obviously, all three mechanisms could also be im-
plemented in the application space, but it is question-
able whether the possible performance benefit would 
outweigh the memory and engineering overhead of 
implementing all mechanisms within each component. 
 
6.3. Resource Overhead 
 

Apart from the cost of single mechanisms, PCOM 
has additional memory and processing requirements. 
In terms of memory usage, PCOM adds 30-40KB on 
top of 90-120KB required by BASE, resulting in a 
total memory usage of 120-160KB. With respect to 
processing, component instantiation and contract 
evaluation as well as all three mechanisms described 
in the previous section lead to increased requirements. 
The overhead for comparing contracts and instantiat-
ing components has already been discussed in the 
comparison of service and component selection. The 
processing requirements for the other mechanisms 
vary heavily depending on the applications and the 
environment and thus are hard to quantify.  
 
7. Related Work 
 

We will discuss related work in the areas of com-
ponent systems, architectures for adaptation and evo-
lution as well as recoverable computing, and pervasive 
computing. 

Component Systems: Szyperski defines compo-
nents as units of composition with contractually speci-
fied interfaces and explicit context dependencies only 
along with other properties [11]. This definition con-
forms to our definition introduced in section 5. Exist-

ing component systems, e.g. CORBA CCM [6], En-
terprise Java Beans [10], conform to this definition by 
introducing container abstractions to decouple compo-
nents from the underlying platform and by providing – 
at least functional – contracts between components via 
interfaces. Such systems typically provide persistency 
and transactional behavior and are targeted at enter-
prise software rather than on resource constrained and 
dynamic environments, such as Pervasive Computing. 

Adaptation Architectures and Recoverable 
Computing: The self configuration of software is ad-
dressed by a number of projects in the research area of 
application architectures. In contrast to our work, 
these projects typically consider adaptation to be a 
rather rare event, caused by errors or changes in the 
software’s mission.  

The Weaves approach [7] provides a general graph 
structure to model component dependencies. This 
leads to complex algorithms and additional specifica-
tions to support adaptation decisions. Therefore, this 
approach is too heavy-weight for resource poor devices 
and frequent adaptations. 

The recursive restartability approach [8], proposed 
in the domain of recoverable computing, uses a tree-
based application model quite similar to the PCOM 
model. Still, this model is specifically designed to al-
low the restart of failing components. The partitioning 
of the application follows the encapsulation of restart-
able units – not units of composition – and the only 
supported adaptation is a component re-instantiation. 
PCOMs application model is different in that it mod-
els the functional and non-functional properties of 
inter-component dependencies.  

Pervasive Computing: The necessity of applica-
tion adaptation is realized by a variety of projects that 
differ widely in their support for adaptation and the 
abstractions provided to application programmers. The 
system model considered is often based on smart envi-
ronments, providing a set of services, such as lookup 
and persistent storage to devices that connect tempo-
rarily or permanently to the smart environment. In 
contrast to this, our system model does not assume 
connectivity to a smart environment but spontaneous 
connectivity to devices in the vicinity. 

The iROS [5] application model consists of atomic 
application parts which communicate via an event 
heap, realized as a tuple space. The event heap de-
couples distributed parts of an application. If function-
ality is not present, the request in the event heap is 
purged using an aging mechanism. Adaptation of ap-
plications is implicit, as functionality is only presented 



to the user if the application receives an answer to its 
request in the event heap. 

One.world [4] is also based on a tuple space to al-
low communication between distributed parts of an 
application via events. Applications are composed of 
nested environments. Environments isolate applica-
tions from each other and serve as containers for per-
sistent data. Conquering failure and selective avail-
ability is supported by providing mechanisms for ap-
plication-specific automatic adaptation, such as migra-
tion or checkpointing along with persistent storage. 
Generic automatic adaptation is not supported. 

Gaia [9] provides an application model based on a 
generalized model view controller pattern. An abstract 
definition of required functionality is mapped to the 
services available in a distinct smart environment (an 
active space). A coordinator component ensures that 
the application is executed as long as their integral 
parts are available. Adaptation is mainly considered to 
happen when a user moves to another active space and 
the matching of non-functional parameters is solely 
used to create a mapping between them. 

The application model of Aura [3] provides a high 
level, user oriented task scheduler. Like PCOM, Aura 
aims at providing generic automatic adaptation sup-
port, but assumes a variety of services, e.g. remote 
communication, distributed file system, between re-
mote Aura environments. PCOM is intended for envi-
ronments, where this cannot be assured. 
 
8. Conclusion 
 

In this paper we have presented PCOM, a light-
weight component system supporting strategy-based 
adaptation in spontaneous networked Pervasive Com-
puting environments. Using PCOM, application pro-
grammers rely on a component abstraction where in-
terdependencies are contractually specified. The re-
sulting application architecture is used for strategy-
based adaptation of applications. Our results so far are 
promising. Based on our middleware BASE, PCOM 
adds only little memory overhead and basically no 
runtime overhead on communication. Overhead is 
introduced by the instantiation of components result-
ing in higher reselection time. However, this overhead 
decreases with the number of involved nodes. We con-
clude that providing a component abstraction along 
with generic adaptation support is possible with rea-
sonable overhead even for resource-restricted devices.  

Besides evaluating PCOM on a variety of different 
devices and communications technologies in our lab, 
we are currently evaluating PCOM’s abstractions by 

developing further and more complex applications. 
From the gained experiences, we expect to identify 
additional generic adaptation mechanisms. Further-
more, we are working on generic adaptation mecha-
nisms that will allow the reselection of stateful com-
ponents. In the near future different adaptation strate-
gies will be developed and evaluated using our system.  
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