
PCOM – A Component System for Pervasive Computing

Christian Becker, Marcus Handte, Gregor Schiele, Kurt Rothermel

Institute for Parallel and Distributed Systems (IPVS)
University of Stuttgart, Germany

{Christian.Becker|Marcus.Handte|Gregor.Schiele|Kurt.Rothermel}@informatik.uni-stuttgart.de

Abstract

Applications in the Pervasive Computing domain

are challenged by the dynamism in which their execu-
tion environment changes, e.g. due to user mobility.
As a result, applications have to adapt to changes
regarding their required resources. In this paper we
present PCOM, a component system for Pervasive
Computing. PCOM offers application programmers a
high-level programming abstraction which captures
the dependencies between components using con-
tracts. The resulting application architecture is a tree
formed by components and their dependencies. PCOM
supports automatic adaptation in cases where the exe-
cution environment changes to the better or to the
worse. User supplied as well as system provided
strategies take users out of the control loop while of-
fering flexible adaptation control.

1. Introduction

Pervasive Computing is characterized by the inter-
action of a multitude of highly heterogeneous devices,
ranging from powerful general-purpose servers located
in the infrastructure, to tiny mobile sensors, integrated
in everyday objects. Devices are connected to each
other on-the-fly using wireless communication tech-
nologies like Bluetooth, IEEE 802.11 or IrDA and
share their functionality. A sensor could for instance
use a nearby display to present its data to the user.

Developing and executing applications in such en-
vironments is a non-trivial task. Apart from the device
heterogeneity, the hardware and software resources,
i.e. devices and services, available to an application
are highly dynamic, due to factors like user mobility,
fluctuating network connectivity or changing physical
context. This forces applications to adapt themselves
constantly to their ever-changing execution environ-
ments. User-interaction, e.g. for adaptation control or

administrative tasks, should be minimized, thus re-
moving the user from the control loop [12].

To ease application adaptation, we have developed
BASE, a flexible middleware for Pervasive Computing
environments (see e.g. [1] for details). It provides ad-
aptation support on the communication level by dy-
namically (re-) selecting communication protocol
stacks, even for currently running interactions.

BASE offers no support for adaptation at higher
levels, e.g. by automatically reselecting services and
devices. Therefore, we have designed and developed
PCOM, a light-weight component system on top of
BASE. PCOM allows the specification of distributed
applications that are made up of components with ex-
plicit dependencies modeled using contracts. An ap-
plication can be executed if all of its components can
be executed – either local or remote – meaning that all
dependencies between components can be fulfilled. In
order to automatically choose alternatives if multiple
suitable components are available, strategies are em-
ployed. This allows adaptation without prompting the
user. The main contribution of this paper is the defini-
tion and evaluation of this light-weight component
system for strategy-based adaptation in spontaneously
networked Pervasive Computing environments.

The remainder of the paper is structured as follows.
Next, we will present our system model and briefly
sketch BASE. Models for application adaptation are
discussed in section 3. The requirements on applica-
tion adaptation, especially those that are not fulfilled
by BASE, are derived in section 4. Section 5 presents
the architecture of PCOM, its application model and
the mechanisms that enable adaptation. As an indica-
tion for the validity of our approach, an evaluation of
PCOM, including a comparison of application adapta-
tion in BASE and PCOM is given in section 6. After
discussing related work in section 7, we conclude the
paper and provide an outlook on future work in sec-
tion 8.

2. System Model

Our work focuses on spontaneously networked Per-
vasive Computing environments in which devices are
connected on-the-fly, typically using some kind of
wireless technology. Such environments are highly
dynamic. Connections between devices are not perma-
nent, the topology of the network is constantly chang-
ing, and there is no central or coordinating element.
We do not assume the presence of a smart environ-
ment like Gaia [9], Aura [3] or iRos [5]. Although
such an infrastructure could be available at certain
times, devices cannot rely on it.

In our system model communication and thus in-
teraction is restricted to devices that are currently
reachable by the network (e.g. due to communication
technology). As a result, systems in these environ-
ments are inherently location-aware as communication
is typically spatially limited. The devices have differ-
ent specializations and resource limitations. Besides
resource-poor and specialized devices such as sensor
nodes, resource-poor general purpose devices could be
present, e.g. PDAs. Also resource rich-devices can
either provide a general purpose platform or they can
provide single services such as a presentation system.

Due to the lack of a central or coordinating ele-
ment, applications are dynamically composed of ser-
vices provided by devices that are part of the currently
reachable environment. As an example, consider an
instant messaging application that requires an input
service such as a keyboard or a touch screen to write
messages and an output service to display messages,
e.g. a monitor, a video projector or an audio channel.
During start up, the application scans the current envi-
ronment for available services and connects to suitable
instances. At execution time, the application uses the
services and adapts to changes regarding their avail-
ability or quality. Possible adaptations could include
for instance the reselection of the output service when-
ever it becomes unavailable.

2.1.1. BASE. In order to provide basic support for
services that enable such applications, we have devel-
oped BASE. BASE is written in Java using the Java 2
Micro Edition with the Connected Limited Device
Configuration (CLDC). It assists application pro-
grammers by providing mechanisms for device dis-
covery and service registration that can be used to lo-
cate and access local as well as remote device capabili-
ties and services. Since the availability of services and
capabilities can fluctuate in spontaneously networked
environments, BASE provides a simple signaling

mechanism to determine their availability. Communi-
cation protocols and device capabilities can be ex-
tended flexibly, since BASE is structured as an exten-
sible micro-broker. This allows the middleware to run
on resource-poor devices and benefit from resource-
rich devices. In the context of this work, BASE is used
as underlying communication middleware, offering
communication and discovery on a wide range of de-
vices. More information on BASE can be found in [1]
and [2].

3. Adaptation Models

To provide application adaptation support for Per-
vasive Computing systems, three main levels of sup-
port can be distinguished. This classification is similar
to the one given in [7].

Manual adaptation: here, adaptation is done by
the end user. If an adaptation is performed, the system
presents different choices and the user selects the most
appropriate one. For the instant messenger described
previously, this means that the user has to explicitly
select the output or input service used by the applica-
tion, whenever a used service becomes unavailable or
a new service is discovered. Clearly, this is time-
consuming and irritating, especially for environments
with a high level of dynamism and a large number of
different devices and services.

Application-specific automatic adaptation: to
lessen the involvement of users, application adaptation
should be executed with as little user interaction as
possible. This can be realized by shifting the adapta-
tion decision into the application. As a result, the sys-
tem must support adaptation by signaling changes in
the environment and the application programmer has
to explicitly handle resource availability on a per-
resource base, leading to complex and error-prone
adaptation routines. Regarding the instant messenger
scenario the programmer must provide routines that
reselect the input and output service whenever the
used services become unavailable. Such a reselection
may be necessary at any point during the usage of a
service. Therefore, the code of the application will be
cross-cut by adaptation routines that are effectively
reducing its readability and maintainability.

Generic automatic adaptation: at the highest
level of support, application adaptation is done with-
out stressing users or application programmers. The
programmer only specifies the functional and non-
functional properties of services required by the appli-
cation and the user controls the adaptation process by
stating adaptation goals. Thereafter, the system moni-

tors service availability and selects the optimal ser-
vices. The programmer of an instant messenger simply
specifies the parameters of the input and output ser-
vice, e.g. minimum screen resolution, and the user
defines the adaptation preferences, e.g. highest avail-
able resolution. At runtime, the system automatically
tries to find services with an acceptable quality. In
cases where multiple services fulfill the requirement,
the system performs the selection based on the prefer-
ences of the user.

4. Requirements

BASE offers generic automatic adaptation support
at the communication layer. With PCOM we aim at
providing further generic adaptation support at the
application layer. PCOM should enable application
programmers to extend the system with application-
specific adaptation logic if needed. This enables a
rather straight forward specification of application
dependencies along with standard adaptation strate-
gies resulting in a simple core system which can be
customized to the needs of an application program-
mer. From these objectives the following requirements
can be derived:

Application specification: applications should be
specified in terms of their required services. Services
should clearly denote their dependencies to other ser-
vices and the platform. Non-functional properties of
the dependencies should be explicitly stated. The
composition of an application from services should
allow the specification of alternatives in order to sup-
port the system to automate adaptation decisions.

Service monitoring: the system has to monitor the
availability of services in order to detect currently used
services that change their non-functional properties or
become unavailable as well as to detect new services.

Strategy based adaptation: the system has to pro-
vide means for automatic adaptation of an application.
If alternatives of services are present in the current
execution environment, strategies decide which ser-
vice to select. Besides standard strategies, e.g. to opti-
mize energy consumption, user-defined policies
should be integrated. At the core of adaptation, the
application lifecycle and the lifecycle of single services
have to be managed.

Minimalism and extensibility: to meet the re-
source heterogeneity of Pervasive Computing the re-
sulting system has to be minimal with respect to re-
quired resources, e.g. processing power and memory,
and it has to be extensible to exploit the advantages of
resource-rich devices.

Figure 1: PCOM Architecture

5. PCOM

In the following we will present our component
system PCOM (see Figure 1). PCOM provides a dis-
tributed application model and supports automatic
application adaptation based on signaling mechanisms
and adaptation strategies. Applications are composed
of interacting entities, so-called components, which
dependencies are explicitly specified as contracts. The
PCOM container hosts components, manages their
dependencies, and thus acts as a distributed execution
environment for applications. Each container defines a
remote container interface that exports locally avail-
able components by their contracts and allows remote
containers to negotiate new contracts and access the
components. To reuse the communication and discov-
ery capabilities of our middleware BASE, the con-
tainer is implemented as a single service on top of
BASE. As a result, a container is automatically capa-
ble of detecting and using other containers.

In the following we will further describe our appli-
cation model and present components along with their
contracts. After that, we discuss application adaptation
in PCOM and its realization.

5.1. Application Architecture

Applications in PCOM are composed of
components that interact with each other in order to
fulfill their dependencies. Components are atomic
with respect to their distribution but can rely on local
or remote components, resulting in a distributed appli-
cation architecture.

An application is modeled as a tree of components
and their dependencies where the root component (the
so-called application anchor) identifies the applica-
tion. The application tree reflects the dependencies
between components where the successors of a com-
ponent identify its dependencies in order to fulfill the

service. PCOM uses a tree as application model, be-
cause arbitrary graphs cause several complications.
For instance, the multiple use of the same component
requires merging probably conflicting requirements.
As another example, cycles of the graph could cause
infinite loops during the composition of applications.

The life cycle of an application is reflected by the
life cycle of its application anchor. Next, we will ex-
plain components in more detail, including the model-
ing of dependencies via contracts and their life cycle.

5.2. Components

Components in PCOM are units of composition
with contractually specified interfaces and explicit
context dependencies. PCOM’s components enclose
contracts that describe their offered functionality and
requirements regarding the platform and other com-
ponents. Components are atomic with respect to dis-
tribution and may use other components in order to
provide their service. Note that PCOM does not regu-
late the granularity of components. Therefore, the
granularity could range from single functionalities to
complete applications.

5.2.1. Contracts. Contracts consist of two distinct
parts: The first part specifies the corresponding com-
ponent’s requirements on the executing platform, e.g.
required libraries or memory. The second part speci-
fies the functionality provided by the component and
its dependencies on other components. A dependency
between two components has a direction and reflects
the fact that one component either requires certain
service interfaces (pull) or listens to some events pro-
vided by another component (push). Thus, PCOM
supports push and pull communication models be-
tween components.

In order to describe dependencies, contracts in
PCOM specify the service interfaces and the events
that are offered and required by a component. Along
the syntactical interface specification of events and
services that define a functional dependency, non-
functional parameters can be added to express further
properties, such as a screen-size, energy consumption
or performance related parameters. In contrast to the
functional specification that is known at compile time,
non-functional parameters can vary at runtime and
might depend on the offer of components that are used
to satisfy the dependencies. Thus, non-functional pa-
rameters can be either static or dynamic.

At runtime, contracts in PCOM are represented as
object graphs. To ease the specification of these

graphs, we use a compiler to transform an XML docu-
ment into code that creates the desired structure. This
representation is used for the comparison of offers and
requirements. By applying them, it is possible to de-
termine whether the offer of one component can be
used to satisfy the requirements of another component.
Due to the possibly large number of comparison opera-
tors that is needed to support arbitrary non-functional
parameters, the underlying object model provides only
a small set of operators that can be extended by appli-
cation programmers.

Figure 2: Exemplary Contracts

5.2.2. Example. Figure 2 shows XML-based contract
specifications for an exemplary instant messenger
component and a keyboard component. First we will
have a look at the messenger’s contract. It specifies
that the messenger component does not offer any ser-
vice to other components (a) and that it depends on an
input component offering a given service interface and

event type (b). Additionally, the messenger’s contract
states the non-functional requirement that the input
component’s language must be English (b). Next, the
platform dependency declares, that the messenger
must be executed by a container that has at least 10
Kbytes of free memory and provides a CLDC (c). The
last section of the contract contains information about
the component’s internals used by the container (d).

In contrast to the messenger’s contract, the key-
board component’s contract specifies an offer that con-
sists of two interfaces and two events (e). Additionally,
the offer also contains non-functional attributes that
describe the available keys and the supported lan-
guage. Apart from the requirements on the platform
(f) the keyboard does not have any requirements.
Again, the last section of the contract contains infor-
mation about the component implementation (g).

At runtime, these XML-based contracts are trans-
formed into an object model that allows matching the
instant messenger component’s requirements with the
offer of the keyboard component. As the keyboard of-
fers all required functional and non-functional fea-
tures, it can be used to satisfy the messenger’s depend-
ency. After the components have been combined at
runtime (h), the instant messenger component is capa-
ble of placing calls to the interface provided by the
keyboard component (i) and the keyboard component
can send the requested event to the instant messenger
(j). The additional interface (k) and event (l) of the
keyboard component will never be used.

5.2.3. Component Lifecycle. To consistently embed
components into applications, the container defines
and manages the lifecycle of components. Conceptu-
ally, this lifecycle consists of the two states STARTED
and STOPPED. The state transitions are controlled by
the container. The container loads a component by
first loading the object graph that represents its con-
tract. It then determines whether it can fulfill the
component’s requirements towards the platform. If
they can be satisfied, the container adds the contract to
the set of exported contracts. Initially the component
rests in the STOPPED state. Once a component is
about to be embedded into an application, the con-
tainer tries to resolve and initialize the component’s
dependencies by selecting suitable components to ful-
fill them. This initial resolution of dependencies can
be seen as a special case of adaptation. A more de-
tailed description of the selection process is given in
subsection 5.3. After all dependencies are fulfilled, the
container triggers a transition to the STARTED state.
In this state, the component provides its functionality

and the container provides signaling and adaptation
support. When the state changes to STOPPED, the
container releases all resources held by the compo-
nent.

5.2.4. Contract Exchange and Negotiation. As soon
as a component is about to be executed, the container
has to determine whether its dependencies – both,
functional and non-functional – can be satisfied. In
order to find components that can potentially be used
to satisfy a dependency, the container sends the
requirements to the containers available in the envi-
ronment. The containers reply with the contractual
offers of the components that can fulfill the require-
ments.

As mentioned earlier, there are non-functional pa-
rameters that a component cannot determine without
knowing the components that are used to satisfy its
dependencies. In order to determine such parameters,
PCOM containers also support a negotiation phase
that recursively determines the non-functional pa-
rameters of a component without starting it. To enable
this, containers rely on so-called factories that are rep-
resentatives for locally installed components. Factories
provide the capability to determine the actual value of
a non-functional parameter based on the set of compo-
nents that is currently available. While PCOM pro-
vides a simple standard factory, application program-
mers can provide component-specific factories by de-
claring them in the component contract’s implementa-
tion section (see Figure 2 (d)).

The algorithm for contract negotiation is a post-
order traversal of the tree of matching offers and re-
quirements, where factories implement the functional-
ity that determines the values of non-functional pa-
rameters from the available offers.

5.3. Adaptation

In ever-changing environments, component-based
applications have to deal with fluctuating availability
and quality of components. Changes regarding the
availability and quality of components can either have
a positive or a negative impact on the application.
This means that the quality of a used component’s
functionality can either increase or decrease during the
execution. Also, used components might become un-
available and new components that could deliver a
required functionality might be discovered at any time.

In order to adapt to fluctuations, a component has
to have means of detecting changes with respect to
quality and availability of other components that either

depend on or are required by the component. PCOM
defines three signaling mechanisms that detect
changes regarding availability and quality.

5.3.1. Signaling Mechanisms. The first signaling
mechanism is targeted at the availability of used com-
ponents. Whenever a used component becomes un-
available, a so-called communication listener is noti-
fied. Application programmers can register communi-
cation listeners for every dependency of a component.
As PCOM uses a soft-state lease mechanism to main-
tain the dependencies between components, the detec-
tion of an unavailable component is either a result of
an unsuccessful call placed by the using component or
by a heart-beat message sent by the runtime system.

The second mechanism detects the availability of
new components. In order to receive notifications
about components that could potentially be used to
replace a currently used component, programmers can
define discovery listeners for each dependency. When-
ever BASE detects a new device, PCOM checks
whether the device hosts an instance of PCOM. If a
new instance is discovered, PCOM determines
whether the new components could be used to replace
a dependency of a locally executed component. The
comparison of the requirements of a running compo-
nent and the offer of a newly discovered component is
solely based on the static parameters of the offer, sig-
nificantly reducing the discovery overhead. Once a
discovery listener is called, an adaptation strategy can
decide, if a full negotiation of the dynamic parameters
should be done. Hence, negotiation is performed only
if an application may profit from a component change.

The last signaling mechanism provided by PCOM
aims at fluctuations in the quality provided by a com-
ponent. As mentioned above, non-functional parame-
ters can change over time. Therefore, PCOM allows
application programmers to specify contract listeners
that are notified whenever a parameter changes.

5.3.2. Options for Adaptation. Application pro-
grammers can use the described signaling mechanisms
as hooks to specify their own actions for adaptation or
use system provided mechanisms. PCOM offers two
generic mechanisms: execution discontinuation and
component reselection. Application programmers are
provided with means to implement further options,
e.g. modifying contracts or retransmitting messages in
case of a transient network partitioning.

The first generic adaptation mechanism is simply
the discontinuation of an executed component. When-
ever an executed component is no longer able to pro-

vide its functionality, it can stop its execution. This
will result in an event that is received by the commu-
nication listener of the using component. With respect
to the application model defined by PCOM, this means
that a problem in a component is escalated to the next,
i.e. higher, level of the tree. The escalation continues
until a component resolves the conflict by either rese-
lecting a component (see below) or applying a user-
defined strategy. If the escalation leads to the discon-
tinuation of the application anchor, the execution of
the application stops.

The second generic mechanism supports the rese-
lection of components at runtime. This is enabled by
two features. First, components specify their depend-
encies explicitly which allows matching a contractu-
ally specified requirement and its corresponding offer.
Second, PCOM allows the definition of strategies that
prioritize possible components based on user prefer-
ences. Therefore, if a component initiates the reselec-
tion of a certain dependency, PCOM can automatically
determine the possible replacements that match the
programmer’s requirements. If there are several possi-
ble replacements, a user defined strategy is applied to
select the best replacement according to the user’s
current selection goals. Clearly, a simple reselection
will only be possible if the corresponding component
is stateless. For stateful components, the application
programmer still has to provide additional routines
that establish the desired state. Nevertheless, the pro-
grammer does not have to implement the reselection
algorithm and can use the signaling mechanisms to
add an application-specific adaptation routine.

So far we have seen, how PCOM allows for generic
application adaptation support via predefined as well
as user-supplied strategies. The container realizing
PCOM’s runtime system resides on top of BASE, our
middleware for Pervasive Computing. In the next sec-
tion we will compare the abstractions provided by
PCOM with the support BASE offers. The additional
overhead for communication and application adapta-
tion is presented based on measurements.

6. Evaluation

As stated in Section 4 the main requirements on
PCOM are application specification and support for
strategy-based adaptation. In PCOM these require-
ments are realized through components with contrac-
tually specified dependencies. As shown in Section
5.3, a crucial task for adaptation is the (re-)selection of
services. Therefore, we will evaluate the service selec-
tion in PCOM and BASE. We compare the necessary

tasks of a programmer and the assistance for service
selection provided by PCOM and BASE. Next, the
time needed for service selection is presented which
includes contract evaluation, communication, and
component instantiation. Finally, the additional re-
quirements of PCOM regarding remote communica-
tion, memory, and computing power are discussed.

6.1. Service Selection

Selecting a service that will be used by an applica-

tion comprises two fundamental tasks. First of all, an
application has to determine the set of services that is
available in a given environment. Thereafter, it has to
determine the suitability of each service and select the
best service possible.

Figure 3: Component Selection in PCOM

To allow determining the suitability, BASE and

PCOM support non-functional parameters that allow a
more detailed description of services. The suitability of
a service could recursively depend on the suitability of
the services used by it. As mentioned earlier, PCOM
supports negotiation of dynamic parameters to model
such dependencies. But since BASE does not deal with
dynamic parameters, we restricted all parameters used

during the evaluation to parameters that are static and
thus, do not require negotiation.

Figure 3 shows the units of PCOM that are in-
volved in the component selection process. An appli-
cation programmer specifies the requirements of a
component using a contract (a). At runtime, PCOM
provides the application programmer with a handle for
each component requested by the contract. Using this
handle, a programmer can simply initiate the (re-)
selection by calling the rebind-method (b). Typically,
this method will be called within one of the listeners
discussed above. When a reselection is initiated,
PCOM uses contract matching to find suitable compo-
nents and it uses a strategy to prioritize possible re-
placements (c). The distinction between contract and
strategy separates the requirements that must be met to
ensure the desired component behavior from user
preferences. Notice, that (a) and (b) are supplied by a
programmer, while (c) is a configurable and thus re-
usable strategy that is integrated in the system.

Figure 4: Service Selection in BASE

Figure 4 shows how a similar behavior can be im-
plemented using BASE. An application programmer
provides a selection routine for the required service
that specifies its properties and priorities (d). When-
ever a reselection must take place, the application calls
this routine (e). In contrast to PCOM, the selection
routine provided by the application programmer en-
capsulates both, service requirements and preferences.

The comparison of these two implementations shows
that - from an application programmer’s point of view
- using a service in BASE is more complex than using
a component in PCOM. While application program-
mers in BASE have to provide the functionality for
searching and selecting required services, program-
mers in PCOM are provided with handles that hide
the details of this selection. Instead of providing the
specific algorithm that searches and prioritizes com-
ponents, they simply specify the parameters that de-
note application-specific requirements and thus, they
do not have to reason about user preferences. This
means an additional flexibility which would be hard to
achieve in a BASE implementation. Note that other,
more complex features like contract negotiation or
PCOM’s signaling mechanisms are even harder to
implement on top of BASE because of the lack of dy-
namic attributes.

0

20

40

60

80

100

120

140

160

1 2 3 4 5

number of neighbors

m
se

c
p

er
 r

eb
in

d

BASE

PCOM

Figure 5: Component vs. Service Selection

Clearly, the extraction of functionality for selection
causes an additional performance overhead. To quan-
tify the impact on performance, we measured the time
for a reselection in PCOM and in BASE. Figure 5
shows the average time for reselecting a service re-
spectively a component (using the strategies and algo-
rithms described in Figure 3/4) in cases where suitable
components (or services in BASE) were available on 1
to 5 remote systems. The measurements have been
conducted on PCs (Pentium III/600MHZ) connected
with a 100 MBit network in order to show the funda-
mental effort without experiencing additional delays,
such as Bluetooth discovery. The numbers shown in
Figure 5 are the result of measuring 10 independent
runs with 100 reselections each and varying the num-
ber of devices offering services (BASE) and containers
(PCOM). To reduce fluctuations as far as possible, we
disabled Java’s just-in-time compiler. The remaining
fluctuations were below 10 percent of the average time

of a run and are most likely side-effects of the operat-
ing system’s scheduler and Java’s built-in garbage
collector.

The total selection time is determined by the time
for obtaining offers from neighbors, choosing an offer,
and instantiating the chosen service or component.
While the time for obtaining offers and choosing an
offer increases linearly with the number of neighbors
the instantiation of the chosen offer is constant. The
measurements in Figure 5 show that, although reselec-
tion in PCOM is slower than in BASE, the relative
overhead decreases with the number of neighbors.
This is due to the higher cost for instantiating a
PCOM component compared to a BASE service. The
absolute overhead for a selection of approximately 30
ms however, is unlikely to be a bottleneck for realistic
applications.

In addition to these measurements on resource-rich
devices we have performed experiments on a JStamp
embedded system1 connected by a 19200 baud serial
line. The average selection time was 3300 ms, which
still may not impose serious problems, since a constant
change of an application configuration, such as
switching a monitor, will be annoying to the user.

In summary, comparing service and component se-
lection shows that separating requirements and prefer-
ences using contracts and strategies is not for free.
Although the overhead is noticeable, we believe that
the gained flexibility is worth the performance pen-
alty.

6.2. Communication

In order to compare the communication perform-

ance in BASE and PCOM, we measured the cost for a
single message transfer using both systems. Our meas-
urements showed that PCOM basically does not in-
duce overhead on calls between components as it does
not introduce indirections in the dispatch chain. This
in turn is a result of carefully integrating proxies and
skeletons of BASE and PCOM.

In terms of general communication overhead, three
mechanisms introduced by PCOM require additional
remote communication. In contrast to services in
BASE, components in PCOM use a soft-state protocol
to detect the (un-)availability of components. This
protocol transparently exchanges additional keep-alive
messages if no other messages have been exchanged
during a lease period. These messages represent an
additional communication overhead for components

1 http://www.jstamp.com

that communicate infrequently. The second mecha-
nism that introduces new messages is the discovery
listener as it retrieves relevant contracts from devices
that have been newly discovered. The last mechanism
that requires additional remote communication is the
contract listener. It creates a message for every modi-
fication of an offer or a requirement that is specified in
a contract.

Clearly, all three mechanisms do not only create
overhead, but do also provide necessary features. It is
conceivable that realistic applications in dynamic en-
vironments must rely on soft-state protocols to reduce
the amount of wastefully reserved resources. Similarly,
components that have changing requirements or offers
need to communicate them. Finally, optimization of
executed applications requires notification about
changes that could have positive impact.

Obviously, all three mechanisms could also be im-
plemented in the application space, but it is question-
able whether the possible performance benefit would
outweigh the memory and engineering overhead of
implementing all mechanisms within each component.

6.3. Resource Overhead

Apart from the cost of single mechanisms, PCOM
has additional memory and processing requirements.
In terms of memory usage, PCOM adds 30-40KB on
top of 90-120KB required by BASE, resulting in a
total memory usage of 120-160KB. With respect to
processing, component instantiation and contract
evaluation as well as all three mechanisms described
in the previous section lead to increased requirements.
The overhead for comparing contracts and instantiat-
ing components has already been discussed in the
comparison of service and component selection. The
processing requirements for the other mechanisms
vary heavily depending on the applications and the
environment and thus are hard to quantify.

7. Related Work

We will discuss related work in the areas of com-
ponent systems, architectures for adaptation and evo-
lution as well as recoverable computing, and pervasive
computing.

Component Systems: Szyperski defines compo-
nents as units of composition with contractually speci-
fied interfaces and explicit context dependencies only
along with other properties [11]. This definition con-
forms to our definition introduced in section 5. Exist-

ing component systems, e.g. CORBA CCM [6], En-
terprise Java Beans [10], conform to this definition by
introducing container abstractions to decouple compo-
nents from the underlying platform and by providing –
at least functional – contracts between components via
interfaces. Such systems typically provide persistency
and transactional behavior and are targeted at enter-
prise software rather than on resource constrained and
dynamic environments, such as Pervasive Computing.

Adaptation Architectures and Recoverable
Computing: The self configuration of software is ad-
dressed by a number of projects in the research area of
application architectures. In contrast to our work,
these projects typically consider adaptation to be a
rather rare event, caused by errors or changes in the
software’s mission.

The Weaves approach [7] provides a general graph
structure to model component dependencies. This
leads to complex algorithms and additional specifica-
tions to support adaptation decisions. Therefore, this
approach is too heavy-weight for resource poor devices
and frequent adaptations.

The recursive restartability approach [8], proposed
in the domain of recoverable computing, uses a tree-
based application model quite similar to the PCOM
model. Still, this model is specifically designed to al-
low the restart of failing components. The partitioning
of the application follows the encapsulation of restart-
able units – not units of composition – and the only
supported adaptation is a component re-instantiation.
PCOMs application model is different in that it mod-
els the functional and non-functional properties of
inter-component dependencies.

Pervasive Computing: The necessity of applica-
tion adaptation is realized by a variety of projects that
differ widely in their support for adaptation and the
abstractions provided to application programmers. The
system model considered is often based on smart envi-
ronments, providing a set of services, such as lookup
and persistent storage to devices that connect tempo-
rarily or permanently to the smart environment. In
contrast to this, our system model does not assume
connectivity to a smart environment but spontaneous
connectivity to devices in the vicinity.

The iROS [5] application model consists of atomic
application parts which communicate via an event
heap, realized as a tuple space. The event heap de-
couples distributed parts of an application. If function-
ality is not present, the request in the event heap is
purged using an aging mechanism. Adaptation of ap-
plications is implicit, as functionality is only presented

to the user if the application receives an answer to its
request in the event heap.

One.world [4] is also based on a tuple space to al-
low communication between distributed parts of an
application via events. Applications are composed of
nested environments. Environments isolate applica-
tions from each other and serve as containers for per-
sistent data. Conquering failure and selective avail-
ability is supported by providing mechanisms for ap-
plication-specific automatic adaptation, such as migra-
tion or checkpointing along with persistent storage.
Generic automatic adaptation is not supported.

Gaia [9] provides an application model based on a
generalized model view controller pattern. An abstract
definition of required functionality is mapped to the
services available in a distinct smart environment (an
active space). A coordinator component ensures that
the application is executed as long as their integral
parts are available. Adaptation is mainly considered to
happen when a user moves to another active space and
the matching of non-functional parameters is solely
used to create a mapping between them.

The application model of Aura [3] provides a high
level, user oriented task scheduler. Like PCOM, Aura
aims at providing generic automatic adaptation sup-
port, but assumes a variety of services, e.g. remote
communication, distributed file system, between re-
mote Aura environments. PCOM is intended for envi-
ronments, where this cannot be assured.

8. Conclusion

In this paper we have presented PCOM, a light-
weight component system supporting strategy-based
adaptation in spontaneous networked Pervasive Com-
puting environments. Using PCOM, application pro-
grammers rely on a component abstraction where in-
terdependencies are contractually specified. The re-
sulting application architecture is used for strategy-
based adaptation of applications. Our results so far are
promising. Based on our middleware BASE, PCOM
adds only little memory overhead and basically no
runtime overhead on communication. Overhead is
introduced by the instantiation of components result-
ing in higher reselection time. However, this overhead
decreases with the number of involved nodes. We con-
clude that providing a component abstraction along
with generic adaptation support is possible with rea-
sonable overhead even for resource-restricted devices.

Besides evaluating PCOM on a variety of different
devices and communications technologies in our lab,
we are currently evaluating PCOM’s abstractions by

developing further and more complex applications.
From the gained experiences, we expect to identify
additional generic adaptation mechanisms. Further-
more, we are working on generic adaptation mecha-
nisms that will allow the reselection of stateful com-
ponents. In the near future different adaptation strate-
gies will be developed and evaluated using our system.

References

[1] C. Becker, G. Schiele, H. Gubbels, K. Rothermel,
“BASE - A Micro-broker-based Middleware For Pervasive
Computing”, Proceedings of the 1st IEEE International
Conference on Pervasive Computing and Communication,
pp. 443-451, Fort Worth, USA, March 2003
[2] C. Becker, G. Schiele, “Middleware and Application
Adaptation Requirements and their Support in Pervasive
Computing”, Proceedings of the 3rd International Work-
shop on Distributed Auto-adaptive and Reconfigurable Sys-
tems at ICDCS, pp. 98-103, Providence, USA, May 2003
[3] D. Garlan, D. Siewiorek, A. Smailagic, P. Steenkiste,
“Project Aura: Towards Distraction-Free Pervasive Comput-
ing”, IEEE Pervasive Computing, vol. 1, no. 2, pp. 22-31,
April-June 2002
[4] R. Grimm, T. Anderson, B. Bershad, D. Wetherall, “A
system architecture for Pervasive Computing”, Proceedings
of the 9th ACM SIGOPS European Workshop, pp. 177-182,
Denmark, September 2000
[5] B. Johanson, A. Fox, T. Winograd, “The Interactive
Workspaces Project: Experiences with Ubiquitous Comput-
ing Rooms”, IEEE Pervasive Computing, vol. 1, no. 2, pp.
67-74, April-June 2002
[6] Object Management Group (OMG), “CORBA Compo-
nent Model V3.0”, formal/2002-06-65, 2002
[7] P. Oreizy, M.M. Gorlick, R.N. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, D.S. Rosenblum,
A.L. Wolf, “An Architecture-Based Approach to Self-
Adaptive Software”, IEEE Intelligent Systems, vol. 14, no.
3, pp. 54-62, May-June 1999
[8] D. A. Patterson, A. Brown, P. Broadwell, G. Candea, M.
Chen, J. Cutler, P. Enriquez, A. Fox, E. Kiciman, M. Merz-
bacher, D. Oppenheimer, N. Sastry, W. Tetzlaff, J. Traup-
man, N. Treuhaft, “Recovery-Oriented Computing (ROC):
Motivation, Definition, Techniques, and Case Studies”, UC
Berkeley Computer Science Technical Report UCB//CSD-
02-1175, March 2002
[9] M. Román, R. Campbell, “Gaia: Enabling Active
Spaces”, Proceedings of the 9th ACM SIGOPS European
Workshop, Denmark, pp. 229-234, September 2000
[10] SUN Microsystems, “Enterprise Java Beans Specifica-
tion”, http://java.sun.com/products/ejb/docs.html, 2003
[11] C. Szyperski, “Component Software - Beyond Object-
Oriented Programming”, Addison-Wesley, 1998
[12] R. Want, T. Pering, D. Tennenhouse, “Comparing
Autonomic and Proactive Computing”, IBM Systems Jour-
nal, vol. 42, no. 1, pp. 129-135, January 2003

