
A Peer-based Approach to Privacy-Preserving
Context Management

Wolfgang Apolinarski1, Marcus Handte1, Danh Le Phuoc2, and
Pedro José Marrón1

1 Networked Embedded Systems, University of Duisburg-Essen, Germany
wolfgang.apolinarski|marcus.handte|pjmarron@uni-due.de

2 Digital Enterprise Research Institute, Galway, Ireland
danh.lephuoc@deri.org

Abstract. Providing adequate support for context acquisition and man-
agement is a non-trivial task that complicates application development.
To mitigate this, existing middleware systems rely on a centralized con-
text service that manages the context of all devices located within a
certain area. However, in many cases, centralized context management
impacts privacy as it requires users to share their context with a possibly
untrusted device. In this paper, we show how this problem can be avoided
by a peer-based approach to context management. To validate the ap-
proach, we have implemented it on top of the BASE middleware and used
it extensively in the PECES European research project. The evaluation
shows that given a customizable implementation, the approach provides
high flexibility while being suitable for a broad spectrum of devices.

Keywords: Context Management, Peer-to-Peer, Privacy, Security

1 Introduction

To provide seamless and distraction-free task support, ubiquitous computing
applications must be able to perceive their context. To avoid repetitive develop-
ment effort for context management at the application layer, existing middleware
systems for ubiquitous computing provide context management support as one
of their main building blocks. Thereby, they usually rely on a central system
service that manages the context of all devices that are located within a certain
physically limited area [2]. Sensors and other devices that are located within the
area report their information directly to this service which can then provide a
comprehensive view to interested applications. Such a centralized approach can
considerably reduce the application development effort. Yet, if the number of
devices increases, the central service may become a bottleneck.

While scalability issues can be countered by adding more resources, hierar-
chical [3] or decentralized context management [5, 9], from a user’s perspective,
a more problematic issue resulting from centralization is privacy. Given that
context information may reveal sensitive information, centralized context man-
agement is only viable in cases where users are willing to put a sufficiently high

2 Apolinarski, W., Handte, M., Le Phuoc, D., Marrón, P. J.

degree of trust in the intentions and capabilities of the operator. While this
might be appropriate for some scenarios such as smart class rooms or smart
homes, it is clearly not the case when considering scenarios such as smart shop-
ping malls in which shop owners might operate context management services
for their customers. In this paper, we show how such privacy problems can be
avoided by peer-based context management. To validate the approach, we have
implemented it on top of the BASE [7] middleware and used it for application
development in the PECES project. The evaluation shows that the approach
provides high flexibility while being applicable to a broad spectrum of devices.

The remainder of this paper is structured as follows. In Section 2, we first
outline our approach for context modelling. Then, in Section 3 we present the
system architecture which we evaluate in Section 4. Finally, we conclude the
paper in Section 5.

2 Context Model

As basis for a generic context model, we adopt OWL-based context modeling [3,
6] since it facilitates autonomicity and interoperability. This enables the usage of
an ontology to establish a common understanding among application developers
and processing engines. Furthermore, it is possible to reuse existing ontologies
such as SOUPA [4] or CONON [10] and it is easy to create extensions to sup-
port different application domains. In the following, we outline the underlying
technologies and describe how they can be used to define and execute queries.

As OWL is a vocabulary extension of RDF3, the atomic data element for
context information is an RDF triple. Every piece of context information is im-
plicitly or explicitly represented as a set of triples. To avoid inconsistency of RDF
blank nodes in distributed settings, we do not use blank nodes to model context
information. Assume there is an infinite set I (Internationalized Resource Identi-
fiers IRIs) and an infinite set L (RDF literals). A triple (s, p, o)∈(I)×(I)×(I∪L)
is called a non-blank node RDF triple, where s is the subject, p is the predicate
and o is the object. The assertion a triple states that some relationship, indicated
by the predicate, holds between the subject and object. As examples for such
triples consider statements such as ’user’ ’has’ ’name’ or ’sensor’ ’reads’ ’value’.
Conceptually, a set of triples can then be connected along the subjects to create
a graph structure. The assertion of such an RDF graph accounts to asserting
all the triples in it, so the meaning of an RDF graph is the conjunction (logical
AND) of the statements corresponding to all the triples it contains. This enables
the formulation of arbitrary expressions such as ’device’ ’has’ ’sensor’, ’sensor’
’reads’ ’value’ which can then be used by means of complex queries.

As context information is represented as RDF triples, we naturally chose
SPARQL query fragments as basis for defining queries. In order to be suit-
able for resource-poor embedded devices, however, we only include basic graph
matching patterns as well as built-in conditions. Furthermore, we add simple geo

3 http://www.w3.org/TR/rdf-syntax/

A Peer-based Approach to Privacy-Preserving Context Management 3

spatial extensions to express nearest neighbor as well as range queries analog to
http://code.google.com/p/geospatialweb/. Informally, basic graph matching pat-
terns allow us to formulate sequences of triples that may contain variables. Upon
execution, the variables are bound based on the triples contained in the model.
As a simple example, we might query sensors by specifying a pattern consisting
of ’x’ ’reads’ ’y’ and ’x’ ’is a’ ’sensor’. Using built-in conditions, we can restrict
the binding of variables to particular values, e.g. ’y’ is greater than 5.

Given this model, the query evaluation process is a state machine which
can be presented as a query graph [8]. The query graph consists of operators
that perform operations on their input data to generate output data. After
decomposing a query process into smaller operators, it can be shown that all
queries are composed from triple pattern operations. Therefore the minimum
operators for building a state machine to execute a query is the triple pattern
matching operator. Other operators such as ./, ∪ and � can be optionally built
as relational JOIN, UNION and SELECTION operators, if needed.

3 System Architecture

To avoid the inherent privacy issues of centralized context management ap-
proaches, we take a peer-based approach to context management in which each
device is managing its own context that can then be shared with other devices
on demand by executing remote queries locally. For spontaneous interaction be-
tween devices in the vicinity, we are using BASE as underlying communication
middleware. BASE is structured as a minimal extensible micro-broker that is de-
ployed on each device and mediates all interactions. This results in the layered
system structure depicted on the left side of Figure 1. At the highest layer, appli-
cation objects and middleware services interact with each other, either locally or
remotely, through their local micro-broker. Usually, this interaction is mediated
through stub objects that can be generated automatically from interface defini-
tions. Underneath, the micro-broker takes care of providing a uniform interface
for device discovery and interaction. To realize this, BASE utilizes an extensi-
ble plug-in architecture to abstract from different communication abstractions,
protocols and technologies. So, each middleware instance can be configured with
different sets of plug-ins and, at runtime, BASE takes care of automatically
composing suitable communication stacks. We refer the reader to [7] for details.
As indicated on the left side of Figure 1, the extensions to support peer-based
privacy-preserving context management affect all layers of BASE.

The key storage takes care of establishing the identity of a device or a domain
in a secure manner. It associates each device with a unique asymmetric key pair
that represents its identity as well as a certificate that is signed by a particular
domain. Thereby, domains may either represent individual devices as well as in-
dividual users or even larger corporations, e.g. by means of hierarchically signed
certificates. Avoiding a central point of trust, individual trust levels are asso-
ciated to the certificates and stored in the key storage to model trust relation-
ships between devices/domains. The certificate’s trust level recursively covers

4 Apolinarski, W., Handte, M., Le Phuoc, D., Marrón, P. J.

A
p

p
lica

tio
n

s

Micro-broker

Plug-ins

System Services

Key Storage

Secure
Communication

Stubs

Context
Storage

Context Storage

Q
u

ery &
 U

p
d

a
te In

terfa
ce

Storage

Processing

Level Meta

Level

Level

S P O

Meta S P O
Meta S P O

…

Validate trust
for invocation

Compute
trusted subset

Execute and
return result

Fig. 1. Overall Architecture

the whole tree spanned by the certificate which reduces configuration effort. The
trust levels are only valid for a particular device which enables users to model
trust individually. At the same time, it enables the definition of uni-directional
relationships. Regarding the trust levels, the key storage does not prescribe a
particular semantic. To automate the evaluation of trust relationships, the key
storage assumes transitivity such that a higher level of trust includes lower levels.
Consequently, the two extremes are full trust and no trust.

The extensions for secure communication are verifying and enforcing the
sharing according to the trust relationships. Due to the cost of asymmetric cryp-
tography, the certificates contained in the key store are not suitable to secure
interactions. Therefore, a key-exchange plug-in negotiates a secure symmetric
key using the asymmetric keys. Thereby, the correct trust level is determined
by exchanging certificate chains. Once a symmetric key is established and the
trust level is evaluated, it is cached to secure all further interactions. This key
can then be used by a second plug-in which ensures authenticity, integrity and
optionally secrecy. For authenticity and integrity, an HMAC is attached to the
transmitted messages. Encryption can be added additionally, e.g. by using AES.

With the extensions described previously, the task of the context storage ser-
vice is reduced to ensure the generation of query results that adhere to the given
trust level. As shown in Figure 1, a query and update interface is responsible
for accepting incoming queries and update requests. Besides, it is responsible
for determining the trust level of the incoming request. For this, it interacts
with the key storage to determine the context of the call. The storage part is
responsible for storing the context in a generic way that can be supported by
resource-constrained devices. As discussed in Section 2, we rely on the triple
representation defined by RDF, stored internally in the quoted string represen-
tation. To restrict the sharing of context on the basis of trust, each triple is

A Peer-based Approach to Privacy-Preserving Context Management 5

Q1: select ?device where{ ?device rdf:type device:Coordinator }

Q3: select ?device where{ ?device rdf:type device:Member.
?device device:hasAccessory ?accessory. ?accessory rdf:type device:Screen.
?accessory device:hasResolution ?resolution. ?resolution device:width.
?width ?resolution device:height ?height. FILTER (width>=240 && height>=320)}

Q5: select ?device where{ ?device smartspace:hasContext ?locCxt.
?locCxt smartspace:relatedLocation ?location.
?location spatial:within(53.27 -9.05 53.275 -9.055).
{{?device service:provides data:printingService}
UNION {?device service:provides data:otherService} }}

Fig. 2. Excerpt for Classes of Queries

extended with a trust level. In addition, each triple may contain further meta
information to allow the decentralized validation as described in [1].

Given this context representation, a caller may add/remove triples with the
associated level and meta information to manipulate the device’s context. In our
implementation, the addition of level information as well as the triple generation
for a particular context type is done statically as part of a sensor implementation.
When executing a query, the update and query interface uses the attached level
information to determine the relevant triples. It selects all triples whose level is
lower or equal to the caller’s level and forwards them together with the request
to the processing engine. The processing engine then executes the query over the
set of triples. Since the context that is used during query evaluation is restricted
already, the result can be passed directly to the caller.

4 Evaluation

We implemented the described architecture and used it as basis for two applica-
tion prototypes in the PECES European research project. Next, we first discuss
our experiences before we present excerpts of an experimental evaluation.

To validate the applicability of the OWL-based model, we used it to model an
ehealth and a traffic management application. Both scenarios shared a number
of concepts such as different types of users, sensors, devices and smart spaces.
To reduce the modeling effort, we developed a core ontology by combining and
extending various established ontologies (FOAF, OWL-S, WGS-84, etc). On
top of the core ontology we developed scenario specific extensions. While us-
ing the models, we found that even unexperienced application developers where
quickly able to define static context characteristics and queries using Protege or
SPARQL. Both scenarios also required the addition of intermediate trust levels
which can be seen as an indicator for the need of a privacy-preserving approach.
In the traffic management application, sharing the destination was necessary to
automatically pay toll roads and parking lots. In the e-health application, the
health-related sensor readings had to be shared with nurses and doctors. In both
cases the definition of trust levels, certificates and relations was straight forward.

In contrast to centralized context management, peer-based management must
be suitable for a broad range of heterogeneous devices. Thus, it is necessary that

6 Apolinarski, W., Handte, M., Le Phuoc, D., Marrón, P. J.

Dataset Implementation Q1 Q2 Q3 Q4 Q5

S1 Embedded 49.06 42.01 3246.30 - -
S1 Mobile 95.75 60.79 506.67 544.93 35.96
S1 Desktop 1.71 1.41 4.11 9.16 2.84
S2 Mobile 860.92 194.35 3589.34 2156.09 63.60
S2 Desktop 4.24 1.17 12.56 97.09 1.58

Table 1. Query Latency in Milliseconds

the concepts can be realized with little resources or that they can be tailored to
the devices. To support a broad set of devices, we developed three interoperable
context processors.

– Desktop: To support desktops that are for instance controlling patients
homes, we developed a context storage using JENA and ARQ which supports
processing and storage of thousands of triples and enables complex reasoning.

– Mobile: To provide a storage for less powerful devices such as the smart
phones used by a driver or a patient, we created a stripped-down processor
by removing unnecessary code from JENA and ARQ. Thereby, we chose a
particular database backend which uses a B-Tree for indexing.

– Embedded: For embedded devices, such as the actuators in the traffic man-
agement scenario or on-body sensors of a patient, we created a minimal con-
text storage without relying on existing libraries. The variant stores triples
in-memory and performs an un-indexed query evaluation. It is suitable for
300-500 triples which turned out to be sufficient for our applications.

For the performance evaluation, several experiments were performed that
measured the storage’s response time with regard to different query types and
data sets. As basis for this evaluation, we used a PC (AMD Opteron 250, 4GB
RAM, Sun JVM 1.6) to test the desktop variant, a HTC Desire (CPU 1GHz,
576 RAM, Android 2.1) smart phone to test the mobile variant and a SunSPOT
(CPU 180 MHz ARM920T, 512KB RAM, 4MB Flash, CLDC 1.1) to test the
embedded variant. Based on the PECES applications, we generated 2 data sets
and we identified 5 classes of queries with increasing complexity shown in Figure
2. The small set (S1) encompasses 350 triples with 50 devices and 2 smart spaces.
The large set (S2) consists of 12000 triples with 2000 devices and 50 smart spaces.
The first three queries, Q1, Q2 and Q3 are representative queries for all types
of devices. The other two queries only appear on desktop type devices.

Table 1 shows the resulting latency. The implementation for embedded de-
vices can easily handle Q1 and Q2. As a result of the non-indexed query process-
ing, Q3’s complexity increased the latency drastically. Given sufficient memory,
it would be possible to decrease the latency significantly. The implementation
for mobile devices can easily handle all queries in the small dataset (S1). In the
medium dataset (S2), the latency rises which can be justified by the compara-
tively large size. The desktop machine can easily handle all queries on both set.
Given these results as well as our experiences with application development in
PECES, we are convinced that our peer-based approach to context management
can provide a suitable privacy-preserving alternative to centralized approaches.

A Peer-based Approach to Privacy-Preserving Context Management 7

5 Conclusion

Providing adequate support for context acquisition and management is a non-
trivial task that complicates the development of ubiquitous applications. In this
paper, we have presented a peer-based alternative to centralized context man-
agement which overcomes privacy issues by supporting a fine-granular device-
and thus, user-dependent definition of sharing policies. Although, our current
implementation enables a fine-granular protection of the user’s context, the ac-
tual policy specification must be done statically upfront. However, in some cases
the user’s privacy goals may not only depend on the type of context but also on
the actual context itself. To handle that, we are currently working on languages
and tools to automatically adapt the sharing policy at runtime.

Acknowledgments. This work has been partially supported by CONET (Co-
operating Objects Network of Excellence) and PECES (PErvasive Computing
in Embedded Systems), both funded by the European Commission under FP7
with contract numbers FP7-2007-2-224053 and FP7-224342-ICT-2007-2.

References

1. Apolinarski, W., Handte, M., Marron, P.: A secure context distribution frame-
work for peer-based pervasive systems. In: 8th IEEE International Conference on
Pervasive Computing and Communications Workshops. pp. 505–510 (April 2010)

2. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int.
J. Ad Hoc Ubiquitous Comput. 2, 263–277 (June 2007)

3. Chen, H., Finin, T., Joshi, A.: Semantic web in the context broker architecture.
In: 2nd IEEE Intl. Conference on Pervasive Comp. and Comm. p. 277 (2004)

4. Chen, H., Perich, F., Finin, T., Joshi, A.: Soupa: Standard ontology for ubiquitous
and pervasive applications. Mobile and Ubiquitous Systems, Annual International
Conference on pp. 258–267 (2004)

5. Dey, A.K., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Hum.-Comput.
Interact. 16, 97–166 (December 2001)

6. Gu, T., Wang, X.H., Pung, H.K., Zhang, D.Q.: An ontology-based context model
in intelligent environments. In: Communication networks and distributed systems
modeling and simulation conference. pp. 270–275 (2004)

7. Handte, M., Wagner, S., Schiele, G., Becker, C., Marron, P.J.: The base plug-in
architecture - composable communication support for pervasive systems. In: 7th
ACM International Conference on Pervasive Services (July 2010)

8. Hartig, O., Heese, R.: The sparql query graph model for query optimization. In:
Proceedings of the 4th European conference on The Semantic Web: Research and
Applications. pp. 564–578. ESWC ’07, Springer-Verlag, Berlin, Heidelberg (2007)

9. Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G., Altmann, J., Rets-
chitzegger, W.: Context-awareness on mobile devices - the hydrogen approach. In:
36th Hawaii International Conference on System Sciences. HICSS ’03 (2003)

10. Zhang, D., Gu, T. and Wang, X.: Enabling context-aware smart home with seman-
tic technology. International Journal of Human-friendly Welfare Robotic Systems
6(4), 12–20 (2005)

