
Generic Role Assignment: A Uniform Middleware 
Abstraction for Configuration of Pervasive Systems 

Muhammad Haroon, Marcus Handte, Pedro José Marrón 
Sensor Networks and Pervasive Computing Group 

Universität Bonn and Fraunhofer IAIS 
Bonn, Germany 

{haroon|handte|pjmarron}@cs.uni-bonn.de 
 
 

Abstract—Pervasive computing envisions distraction-free support 
for user tasks by means of cooperating devices that are invisibly 
integrated into the environment. Due to device mobility and 
continuous changes in context, pervasive systems need to be 
adaptive to realize this vision. To simplify their development, 
pervasive computing middleware ease the resulting configuration 
tasks. In the past, middleware developers have used independent 
abstractions to support different task. In this paper, we argue 
that support for the configuration should be built on top of one 
generic abstraction. For this, we introduce the abstraction of a 
role and we outline how role assignment can be used to support 
configuration. Finally, we also show that our approach has 
additional benefits such as improved reuse of configuration logic 
and increased flexibility to support novel configuration tasks.  

Keywords: pervasive computing, configuration, role assignment 

I.  INTRODUCTION 
Pervasive computing envisions distraction-free support for 

user tasks by means of cooperating devices that are invisibly 
integrated into everyday objects. To realize this vision, 
pervasive systems must optimally leverage the distinct 
capabilities of the devices that are present in the user’s 
surroundings. Due to changing user context and fluctuations in 
device availability, pervasive systems can be very dynamic. 
Thus, in order to achieve the overarching vision, pervasive 
systems need to be able to manage changes. More specifically, 
they need to be able to deal with changes in a way that suits the 
users’ expectations and needs. 

In practice, dealing with changes can be either the 
responsibility of the applications or the users. If changes ought 
to be handled primarily by applications, application 
development becomes significantly more complicated. On the 
other hand, if changes are managed primarily by the users, the 
necessary manual interventions can easily cause an undesirable 
and even intolerable level of distraction from the actual user 
task. For this reason, pervasive computing middleware systems 
usually provide abstractions and mechanisms that simplify or 
automate the management of changes.  

The primary management tasks encountered in pervasive 
systems are the dynamic formation of an execution 
environment, the configuration of a distributed application and 
the context-dependent assignment of access privileges. In the 
past, researchers have developed a number of abstractions that 
are tailored towards these tasks for a variety of different 

scenarios. However, since these tasks have different goals, the 
abstractions and mechanisms differ.  

The same holds true, when comparing middleware systems 
that are targeted at different scenarios. There, the abstractions 
and mechanisms may differ even when solely looking at a 
single configuration task. The resulting heterogeneity has a 
number of drawbacks. They include the repetitive 
implementation of similar mechanisms and a reduced 
flexibility in combining them. 

While it might not be desirable or even possible to provide 
comprehensive support for all tasks in all scenarios with a 
single abstraction and a single mechanism, a closer analysis of 
the tasks shows that they exhibit significant commonalities. 
Specifically, since they are all targeted at dealing with the 
dynamics of the environment, they all need to continuously 
identify sets of devices whose context matches certain 
constraints. Once identified, the sets are then used for the actual 
task, e.g. to define the execution environment, to distribute an 
application or to assign access rights.  

In this paper, we argue that the continuous context-
dependent identification of sets of devices is a key concern of 
pervasive computing middleware systems. Furthermore, we 
argue that this concern should be supported by a single uniform 
abstraction. As a suitable candidate for an abstraction, we 
propose the concept of a role and we discuss how role 
assignment can be used as the generic basis to support 
configuration of pervasive systems. The resulting benefits of 
this are improved reuse of configuration logic and increased 
flexibility to support novel configuration tasks. 

The remainder of this paper is structured as follows. In the 
next section, we identify and describe the three fundamental 
configuration tasks encountered in pervasive systems, namely 
environment, application and access configuration. On the 
basis of this description, we outline their commonalities. In 
Section III, we introduce roles as a uniform abstraction to 
support the configuration tasks. In Section IV, we discuss the 
resulting benefits and we discuss how novel combinations of 
the tasks can be supported easily by the proposed abstraction. 
Finally, Section V concludes the paper with a short summary 
and an outlook on ongoing work. 

This work is partially funded by the European Union through the PECES 
research project and the CONET network of excellence. 



II.  PERVASIVE COMPUTING CONFIGURATION TASKS 
The main three configuration tasks in pervasive systems 

are: the configuration of the execution environment, the 
configuration of distributed applications and the configuration 
of access to resources. These three tasks can be easily 
motivated by looking at the typical hardware and software 
stack of a pervasive system depicted in Figure 1. At the lowest 
level, the systems consist of hardware which may be equipped 
with traditional operating systems. On top of this, the pervasive 
computing middleware abstracts from the heterogeneity of the 
hardware and enables the cooperation of the devices. At the top 
of the stack, applications leverage the capabilities of the overall 
system. Crosscutting through all components, there are 
mechanisms that enforce and ensure security. 

 

Hardware

Operating System

Middleware

Application

Security

Low Level

High Level

 
Figure 1: Typical Hardware and Software Stack. 
 

It seems obvious that at some point, either at compilation or 
execution time, each layer needs to be configured. For instance, 
at the lower levels, networking must be setup to support the 
spontaneous interaction of devices. In this paper, however, we 
focus on configuration tasks that are specific to enable the 
cooperation of devices. By doing this, we can separate the stack 
into a low level that is common to all systems and a high level 
that deals with the specifics of pervasive systems. At the high 
level, the tasks are the configuration of environment in which 
the devices collaborate, the configuration of an application that 
leverages the devices and the configuration of access to 
resources in the environment. In the following, we describe 
these three configuration tasks in detail. 

A. Environment Configuration 
The most basic configuration task that needs to be handled 

by every pervasive computing middleware system is the 
definition of a scope for its mechanisms. In the following, we 
refer to this scope as execution environment and we refer to the 
task of defining and identifying it as environment 
configuration. The necessity to define a scope follows from the 
fact that many mechanisms, such as device and service 
discovery or context management, are hard to scale up to a 
global scale without relying on some powerful and potentially 
expensive computing infrastructure, whose use might have 
undesirable security and privacy implications. 

As a consequence, most middleware systems limit the size 
of the execution environment to a smaller set of devices that 
can be managed without or with an inexpensive infrastructure. 
The common underlying assumption hereby is an inverse 
correlation between the relevance of devices and their physical 

distance from the users. On the basis of this assumption, 
execution environments are typically defined either location-
centric or proximity-centric. For both approaches, the 
maximum scope is ultimately defined by network connectivity. 
Since the scope of a local area network may span multiple 
buildings and multi-hop routing can easily extend the range of 
wireless networks, network connectivity alone is not a suitable 
limiting factor. 

Location-centric approaches tackle the problem by defining 
the environment on the basis of a spatially limited location. 
Classical middleware systems that support the idea of smart 
environments such as [7], [8] and [15] fall into this category. In 
these systems, the execution environment is often limited to 
certain buildings, e.g. a hospital or a factory, or to a particular 
room, e.g. a meeting or a class room. Due to the fact that the 
environments are fixed, the association of stationary devices 
with the environment is usually performed manually. Based on 
their current location, mobile devices that are carried by users 
are then dynamically integrated into their surrounding 
environment.  

In contrast to location-centric approaches which are bound 
to a fixed location, proximity-centric approaches define the 
environment as the set of nearby devices. The center of the 
environment is usually a user which is represented by one or 
more mobile devices. Thus, the environment changes whenever 
the user moves. The notion of nearby depends on the 
middleware system and it may be defined on simple and static 
network-centric metrics such as hop-count as done in [1] and 
[2], for example.  Another alternative is the use of more 
complex or even application-specific metrics as proposed in 
[9]. Of course, it is also possible to use spatial proximity 
directly in cases where a suitable location system is available. 

B. Application Configuration  
Beyond the configuration of the environment, the 

configuration of applications is another fundamental task of a 
pervasive computing middleware. The necessity of application 
configuration is easily motivated by revisiting the 
characteristics of pervasive systems and applications. Since 
devices will be integrated into everyday objects, they will 
become as specialized as the objects themselves. As a 
consequence, applications that strive for intuitive and 
distraction-free task support will need to use the distinct 
functionality of multiple devices. Combined with the dynamics 
of the available set of devices, this creates the need to configure 
and adapt the applications. 

The prototypical approach to support application 
configuration with middleware is to introduce some abstract 
description of the functionality available in the environment 
and the functionality that is needed by the application. The 
middleware can then validate, compute, optimize, implement 
and adapt the configuration. However, the exact mechanisms 
for application configuration depend both on the application 
model, which may be service-based [1], [2], component-based 
[3], [15] or agent-based [5] and the dynamics of the execution 
environment. 

If the environment is mostly static the configuration can be 
done manually and upfront. This approach has been utilized by 



early versions of Gaia [14], for example. There, the 
requirements and the composition of a component-based 
application are described by a developer in the form of an 
application generic description. In order to execute the 
application in a certain smart environment, the administrator 
provides a mapping from components to devices in the form of 
an application customized description. An alternative but also 
manual approach is taken by the Speakeasy system. In contrast 
to providing a description of the application, Speakeasy enables 
the user to combine components arbitrarily. This increases the 
flexibility but it may also lead to meaningless compositions.  

If the execution environment exhibits a higher degree of 
dynamics, providing a specified mapping between the parts of 
the applications and the available devices is hardly viable. To 
mitigate this, more recent versions of Gaia can automate the 
mapping process by making use of semantic descriptions [13]. 
In addition, it might not be possible to specify the exact 
composition of the functionality of the application in advance, 
as the environments may change drastically. To cope with it, 
systems like [3] or [11] refrain from specifying a single 
configuration but use an indirect specification via contractual 
dependencies or goals. 

C. Access Configuration 
Last but not least, some pervasive computing middleware 

systems also support the dynamic configuration of access to 
resources and information in the environment. Although 
applicable in general, typical access control mechanisms based 
on the identity of users are not well-suited to support the 
dynamics of pervasive systems. Instead of basing access 
control on centrally managed certificates or shared secrets, it 
may be preferable to base access control on context 
information about the users and devices.  

Since many physical environments are already equipped 
with physical access control mechanisms such as fences with 
gates and doors, the physical location of users and devices is 
generally considered to be an unobtrusive way of regulating 
access to computing resources and information in a pervasive 
setting. When relying on location information or context 
information in general, a key challenge is the authentication of 
the relevant parts of the context information. For location 
information in particular, there are multiple systems such as [4] 
or [18] that enable its authentication. For other types of context 
information, context fusion approaches like [12] may be 
adapted accordingly. On top of authenticated context 
information, it is possible to use existing access control models 
[10], [16] to define access rights. In addition, it is possible to 
extend them to specific domains such as collaboration [17]. 

D. Commonalities 
Despite their different purposes, environment, application 

and access control configuration essentially share the same 
common basis since they effectively solve a configuration 
problem. This becomes apparent when differentiating between 
the result of the configuration task, the computations that need 
to be done to produce it and the actual use of the result. 

In environment configuration, the result of the 
configuration task is a set of devices that forms the execution 

environment. To define this set, the middleware systems utilize 
different types of constraints. Location-centric approaches 
introduce constraints on the location whereas proximity-centric 
approaches introduce constraints that approximate spatial 
proximity. The resulting set of devices is then used to define 
the scope of the environment. 

In application configuration, the result of the configuration 
task is a set of devices whose responsibility is to provide 
certain functionality for an application. To define the set, the 
middleware systems rely on a combination of constraints that 
are pre-determined by the corresponding application model and 
constraints that are defined by the application developer. The 
resulting set is then used to host the distributed application. 

Finally, in access configuration, the result of the 
configuration task is a set of devices that exhibits certain 
predefined access rights. To define the set, the middleware 
systems can restrict the set on the basis of constraints such as 
the identity of their users or their context. The devices 
contained in the set are granted access to the resources whereas 
the devices that do not match the constraints are simply denied. 

We can, therefore, conclude that at least from a theoretical 
point of view, the fundamental basis of these three 
configuration tasks is the identification of a set of devices on 
the basis of constraints on their context. Clearly, from a more 
concrete point of view, there are also subtle differences. For 
instance, when performing access configuration, the 
middleware system must ensure that the context information is 
authentic which is not necessary for other types of 
configuration. Yet, as we will discuss in the following sections, 
introducing a uniform abstraction for configuration has a 
number of interesting and relevant benefits. 

III. ROLES AS A UNIFORM CONFIGURATION ABSTRACTION  
In order to create a uniform abstraction for configuration, 

we need to introduce a clear separation between the result of a 
configuration task, the computations that need to be done to 
produce it and the use of this result. In the following, we first 
provide a general overview how such a separation can be 
achieved by relying on roles. Thereafter, we outline a basic 
system architecture and we describe its individual building 
blocks in more detail. 

A. Overview 
A role is essentially a tag that can be assigned to one or 

more devices. As a result, we may reason about roles from the 
perspective of single device, i.e. whether the device has a 
certain role, or from the perspective of the overall system, i.e. 
which set of devices has a certain role. Thus, by using a 
particular assignment of roles to devices, we may describe the 
result of arbitrary configuration tasks. 

By definition, a role can be assigned to any device as long 
as there are no further constraints that limit the assignment. To 
enable the automated computation of an assignment that 
reflects a particular goal of a configuration task, we introduce 
rules. Rules define contextual constraints on the assignment of 
roles to devices. The simplest form of contextual constraint that 
is generally useful for all configuration tasks is a simple filter. 



An example for such a filter is to demand that all devices 
should be at a certain location. Depending on the configuration 
task, there are additional classes of rules that need to be 
supported. In the next subsection, we motivate and describe the 
different classes by revising the previously introduced tasks.  

The set of rules together with their corresponding roles 
form a role specification. Given that the necessary contextual 
information can be captured by sensors or other types of 
information sources, we can use an algorithm to automatically 
assign roles to the devices whose context satisfies the 
constraints specified by their rules. Alternatively, we may also 
empower a user to manually assign roles in order to support 
cases where the necessary context information is not available 
or where an automatic assignment is not desirable.  

Since roles are just a tag, they are independent from their 
usage. In order to make use of roles, we need to use them with 
other mechanisms. These mechanisms are specific to the 
configuration task and thus, there is little reason to integrate 
them. To give some examples, for access control, the roles may 
be directly used as part of a role-based access control model. 
Similarly, for application configuration, the roles may be used 
to deploy and wire a set of components. Naturally, this may 
require further specifications, e.g. to define access privileges or 
to define the mapping between roles and components as well as 
their wiring. 

It is worth noting that a similar concept has also been 
proposed to configure wireless sensor networks [6]. However, 
the role specification and algorithms of that work are specific 
to monitoring tasks in wireless sensor networks. As a 
consequence, the overall architecture differs significantly. In 
the following, we discuss how the underlying principles of the 
concept can be put to use in a pervasive setting.  

B.  System Architecture 
To clarify and to explain how the concept of generic role 

assignment can be used to support configuration tasks, we 
outline a basic system architecture. The individual layers and 
their high-level building blocks are depicted in Figure 2. 
Conceptually, the three main layers are context management, 
role assignment and services that use an assignment. Note that 
in order to keep the architecture simple, we refrain from 
discussing distribution issues. It should be clear that in a 
pervasive system, functionality such as context management, 
requires some form of distribution and that there are various 
middleware systems including [1] and [2] that can be used as 
basis for a distributed implementation. 

To automate a configuration task, the system needs to be 
able to automatically capture context information from sensors 
or other information sources. The context management layer is 
responsible for abstracting from the details of gathering, fusing 
or accessing context information and it delivers a uniform 
provisioning interface. If the configuration task is not security 
critical, a simple interface for accessing context information is 
sufficient. In other cases, it is necessary to provide additional 
information such as the source and the timeliness of the data as 
well as the probability of its correctness.  

Authenticated Provisioning

Assignment 
Registry

Application
Deployment

Access
Control

Automatic
Assignment

Manual
Assignment

Role Specification

Generic Filter Rules

User
Interface

G
eneric Role
A
ssignm

ent
Context
M
gm

t.
Services

Reference
Rules

Dependency
Rules

Authentication
Rules

 
Figure 2: Generic Role Assignment System Architecture. 

 

On top of the context management layer, the generic role 
assignment layer provides the functionality to define role 
specifications that consist of a set of roles with associated rules. 
Once a role specification is passed to the role assignment layer, 
it can automatically perform the assignment using context 
information. To do this, the assignment layer must provide an 
algorithm that computes an assignment. In addition, the layer 
may also allow a user to manually distribute roles in order to 
support configuration tasks that cannot or shall not be 
automated. Based on the configuration task described in 
Section II, the role specification should support four different 
classes of rules which we detail in the following: 

• Filter Rules: The most basic way of restricting the 
assignment of roles to devices is to apply simple filters 
which ensure that all assigned devices share certain 
context. As an example, consider a location-centric 
environment configuration that restricts the resulting 
environment to the set of devices at a certain fixed 
location. There, one may define that the role “member” 
should only be assigned to the devices at “room 5”. 

• Dependency Rules: Filter rules are appropriate when 
the context is known in advance. For some 
configuration tasks, the context may not be fixed but it 
may depend on the context of other roles. For example, 
within an application configuration, one might define 
that two roles should be assigned to devices with the 
same screen size. Similarly, for proximity-centric 
environment configuration, one might define that the 
distance between the devices should not exceed a 
certain threshold. 

• Reference Rules: To simplify the use of environment 
configurations, it is useful to support references from a 
role specification to an assignment. Thus, as opposed 
to re-specifying the environment when specifying 
application configurations, one may simply reference 
another assignment. Towards this end, reference rules 
enable a specification to export an identifier. Other 
specifications may then import this identifier to define 
a scope, for instance, by using dependency rules. 

• Authentication Rules: To ensure that an assignment 
can be used for security critical applications, it is 



necessary to introduce an additional class of rules. 
Authentication rules extend other types of rules by 
specifying additional conditions on the properties of 
the source of the context information. As an example, 
an authentication rule might define that the context 
used by a filter rule should be provided by a particular 
sensor and the probability for its correctness should 
exceed a certain percentage. 

In order to support the implementation of further services 
on top of the role assignment layer, the layer provides an 
interface to query the roles of a device and to query the devices 
that posses a certain role. Due to changes in context, the 
assignment may change at runtime. Thus, besides from query 
interfaces, the role assignment layer can also provide a 
notification interface that allows interested parties to receive 
events upon changes of the assignment of roles. Given such a 
fairly generic interface, one may use the role assignment layer 
directly within applications. Alternatively, it is possible to 
implement further middleware services on top of the role 
assignment layer. 

When looking at the configuration tasks that have been 
introduced earlier, two obvious services are application 
deployment and access control. An application deployment 
service can be used to associate the components of a distributed 
application with a particular role specification. After the role 
specification is passed to the assignment layer, it computes a 
role assignment that can be used to distribute the components. 
Using the notification interface, the deployment service can 
react to changes, e.g. by adapting the deployment according to 
the changes. Similarly, an access control service may allow the 
specification of access rights. Upon access to a resource, the 
service can then check whether the accessing device exhibits a 
certain role. Clearly, if such a privilege validation is done in a 
distributed setting, this may require further security 
mechanisms to ensure that the role assignment is not forged. 

Another interesting service is an assignment registry that 
can be accessed remotely. In order to enable a more flexible 
interaction between role specifications and role assignments 
that are not created by the same system, a remote assignment 
registry can export (parts of) an assignment. By using reference 
rules, a remotely accessible assignment registry enables one 
system to attach a role specification to running assignment in 
another system. As we will explain in the next section, this can 
be used to support interesting and novel scenarios. 

IV. BENEFITS OF A ROLE ABSTRACTION 
 As outlined in the previous section, the proposed role 

abstraction can be used to support configuration tasks in a 
broader sense than they are usually found in the literature. 
Additionally, the clear separation of the specification and 
computation of an abstract configuration from the task of using 
the configuration within a mechanism has two main benefits: 
Improved reuse of configuration logic and increased flexibility 
for the specification of configurations. 

Improved reuse is the immediate result of the uniform 
abstraction layer. Given that the targeted configuration tasks 
share a common basis, i.e. the context-dependent identification 
of sets of devices, the implementation is likely to share parts of 

the same logic. If roles are used as basis for supporting all 
tasks, this logic is implemented once in the form of a generic 
role assignment algorithm. Beyond the pure reuse of code, 
however, there are additional benefits for the user and 
application developer. They both benefit from the fact that 
there is only one abstraction and one specification language 
that need to be understood. Clearly, one may argue that this 
specification language could be more complicated since not all 
classes of rules are required for all configuration tasks.  On the 
other hand, the specification of the classes of rules that are 
useful for several tasks is identical. In contrast to that, the 
isolated support of individual configuration tasks is likely to 
result in different specification constructs. The same holds 
from the point of view of the user, since manual configuration 
is now done using a uniform abstraction.  

More interesting than improving the reuse of code is the 
benefit of increased flexibility for specifying configurations. 
Since the different classes of rules are integrated into a uniform 
role specification, the classes of rules that are primarily 
targeted at one particular configuration task can be immediately 
used for other tasks as well. As an example, one may use 
authentication rules, resulting from access configuration, to 
configure the execution environment. This ensures that the 
devices which are part of the environment actually exhibit the 
context in accordance with the specified authentication 
constraints. In addition, since roles are not tied to a particular 
mechanism, they can also be stacked on top of each other, 
which may be used to simplify more complex configuration 
tasks. To show that such configuration tasks are not just a 
theoretical construct, we present the following two use cases: 
configuration of a composite environment and configuration of 
a partially secured application. 

Composite 
Environment

Environments

RoleA
RoleB
RoleC

Devices

 
Figure 3: Composing Complex Environments. 

 

A. Configuration of a Composite Environment 
As discussed in Section IIA, the underlying assumption for 

environment configuration is a dependency of relevance on 
distance. While this dependency does exist in many scenarios, 
there are some applications that do not exhibit it. The remote 



control of home appliances and remote collaboration 
applications are two of the most prominent examples. Here, 
simply increasing the size of environment to include such cases 
is hardly an option since some middleware mechanisms such as 
device discovery are usually based on locality. 

In order to support such cases, the reference rules in the role 
specification can be used to define composite environments. As 
depicted in Figure 3, the basis for a composite environment can 
be two environments that are managed by spatially disjoined 
systems (using roles A and B). We can then define the 
composite environment as (a subset of) the combination of the 
roles assigned in each environment, thus creating a new 
environment (using role C) whose members are locally 
managed by each system. On top of the composite 
environment, we may then use mechanisms that do not require 
locality or we can perform further configuration tasks, for 
instance, to configure a distributed application. 

B. Configuration of a Partially Secured Application 
Another example of a more complex task is application 

configuration that needs to make use of the authentication rules 
to enforce security constraints. As a motivation for it, consider 
a typical presentation scenario, e.g., at a workshop, which is 
supported by mobile devices. The speaker may use his mobile 
devices to switch between slides whereas the audience may use 
their devices to receive a copy of the slides.  

When configuring the distributed application that controls 
and copies the slides of the presentation, the individual parts of 
the application exhibit vastly different security requirements. 
The speaker may want to ensure that only his mobile devices 
can control the slide show. However, limiting the environment 
to devices of the speaker is not an option since the audience 
must be included to receive copies of the slides. In order to 
support such a scenario, it is possible to define the environment 
and the parts of the application that receive a copy of the slides 
without using authentication rules. Yet, to ensure that the 
control of the slide show is only available to the speaker, the 
parts of the application that enables this, need to be configured 
with adequate authentication rules. The ability to arbitrarily 
mix different classes of rules in the proposed role-based system 
provides the flexibility needed to cover such scenarios. 

V.  CONCLUSION 
In this paper, we have described the three primary 

configuration tasks that are typically found in pervasive 
systems and have identified their commonalities. We have then 
discussed how they can be supported uniformly by a generic 
role abstraction. We argue that the uniform abstraction 
provided by roles is superior to isolated abstractions that are 
geared towards a single task. The key reasons for this are the 
improved reuse and the increased flexibility that can be 
achieved by relying on a uniform abstraction. We are 
convinced that the increased flexibility can be used to support 
new configuration tasks that become relevant when pervasive 
computing technology is used to implement more complex 
scenarios.  

We are currently in the process of implementing the 
proposed configuration abstraction as part of the PECES 

project. A primary goal of this project is the development of 
system software to enable the seamless integration of smart 
spaces independently of their physical location. 

REFERENCES 
[1] E. Aitenbichler, J. Kangasharju, M. Mühlhäuser, "MundoCore: A Light-

weight Infrastructure for Pervasive Computing", Pervasive and Mobile 
Computing, vol.3, n. 4, pp. 332-361, August 2007 

[2] C. Becker, G. Schiele, H. Gubbels, K. Rothermel, “BASE - A Micro-
broker-based Middleware For Pervasive Computing”, First IEEE 
International Conference on Pervasive Computing and Communications 
(PerCom 03), pp. 443-451, March 23-26, Fort Worth, USA, 2003 

[3] C. Becker, M. Handte, G. Schiele, K. Rothermel, "PCOM - A 
Component System for Pervasive Computing", Second IEEE 
International Conference on Pervasive Computing and 
Communications, pp. 67-76, Orlando, USA, March 2004  

[4] Y. Cho, L. Bao, M. T. Goodrich, "LAAC: A Location-Aware Access 
Control Protocol", Third Annual International Conference on Mobile 
and Ubiquitous Systems: Networking & Services, pp.1-7, July 2006  

[5] M. H. Coen, B. Phillips, N. Warshawsky, L. Weisman, S. Peters, 
P.Finin, "Meeting the computational needs of intelligent environments: 
The metaglue system", 1st International Workshop on Managing 
Interactions in Smart Environments, pp.201-212, December 1999 

[6] C. Frank, K. Römer, K., "Algorithms for generic role assignment in 
wireless sensor networks", Third international Conference on Embedded 
Networked Sensor Systems, pp.230-242, San Diego, California, USA, 
November 2005  

[7] D. Garlan, D. P. Siewiorek, A. Smailagic, P. Steenkiste, "Project Aura: 
toward distraction-free pervasive computing", IEEE Pervasive 
Computing, vol.1, n. 2. pp.22-31, April-June 2002  

[8] B. Johanson, A. Fox, T. Winograd, “The Interactive Workspaces 
Project: Experiences with Ubiquitous Computing Rooms”, IEEE 
Pervasive Computing, vol. 1, no. 2, pp. 67-74, April-June 2002 

[9] S. Kabadayi, C. Julien, "A Local Data Abstraction and Communication 
Paradigm for Pervasive Computing", Fifth IEEE International 
Conference on Pervasive Computing and Communications, pp.57-68,  
New York, USA, March 2007  

[10] J. Park, R. Sandhu, "The UCONABC usage control model", ACM 
Transactions on information and System Security, vol.7, pp.128-174, 
Feburary 2004 

[11] J. M. Paluska, H. Pham, U. Saif, G. Chau, C. Terman, S. Ward, 
"Structured Decomposition of Adaptive Applications", Sixth Annual 
IEEE International Conference on Pervasive Computing and 
Communications,  pp. 1-10, March 2008 

[12] A. Ranganathan, J. Al-Muhtadi, R. H. Campbell, "Reasoning about 
Uncertain Contexts in Pervasive Computing Environments", IEEE 
Pervasive Computing, vol. 3, n. 2, pp. 62-70, April-June 2004 

[13] A. Ranganathan, S. Chetan, J. Al-Muhtadi, R. H. Campbell, M. D. 
Mickunas, "Olympus: A High-Level Programming Model for Pervasive 
Computing Environments", Third IEEE International Conference on 
Pervasive Computing and Communications, pp.7-16, March 2005 

[14] M. Román, R. H. Campbell, "A Middleware-Based Application 
Framework for Active Space Applications", ACM/IFIP/USENIX 
international middleware conference, pp.433-454, 2003 

[15] M. Román, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, 
K. Nahrstedt,"Gaia: A Middleware Infrastructure to Enable Active 
Spaces", IEEE Pervasive Computing, pp. 74-83, October-December 
2002 

[16] R. Sandhu, E. J. Coyne, H. L. Feinstein, C. E. Youman, "Role-Based 
Access Control Models", IEEE Computer, vol.29, n. 2, pp.38–47, 
August 1996  

[17] G. Sampemane, P. Naldurg, R. H. Campbell, "Access control for Active 
Spaces", Eighteenth Annual Computer Security Applications 
Conference, pp.343-352, December 2002 

[18] T. Kindberg, K. Zhang, N. Shankar, "Context Authentication Using 
Constrained Channels", Fourth IEEE Workshop on Mobile Computing 
Systems and Applications, pp.14-21, June 2002 


