
Pervasive Computing Middleware

Gregor Schiele, Marcus Handte and Christian Becker

1 Introduction

Pervasive computing envisions applications that provide intuitive, seamless and

distraction-free task support for their users. To do this, the applications combine

and leverage the distinct functionality of a number of devices. Many of these de-

vices are invisibly integrated into the environment. The devices are equipped with

various sensors that enable them to perceive the state of the physical world. By

means of wireless communication, the devices can share their perceptions and they

can combine them to accurate and expressive models of their surroundings. The re-

sulting models enable applications to reason about past, present and future states

of their context and empower them to behave according to the expectations of the

user. This ensures that they provide high-quality task support while putting only lit-

tle cognitive load on users as they require only minimal manual input. To provide a

truly seamless and distraction-free user experience, the applications can be executed

Gregor Schiele
Universität Mannheim, Germany, e-mail: gregor.schiele@uni-mannheim.de

Marcus Handte
Fraunhofer IAIS and Universität Bonn, Germany, e-mail: handte@cs.uni-bonn.de

Christian Becker
Universität Mannheim, Germany, e-mail: christian.becker@uni-mannheim.de

1



2 Gregor Schiele, Marcus Handte and Christian Becker

in a broad spectrum of vastly different environments. Thereby, the require only little

manual configuration since they can autonomously adapt and optimize their execu-

tion depending on the capabilities of the environment. In many cases, changes to the

environment are compensated with little impact on the support provided by the ap-

plication. Failures are handled transparently and the capabilities of newly available

devices are integrated on-the-fly.

Given this or similarly ambitious visions, pervasive applications are very attrac-

tive from a user’s perspective. In essence, they simply promise to offer more so-

phisticated and more reliable task support for everyone, everywhere. From an ap-

plication developers perspective, on the other hand, they are close to a nightmare

come true: unprecedented device heterogeneity, unreliable wireless communication

and uncertainty in sensor readings, unforeseeable execution environments that span

the complete spectrum from static to highly dynamic, changing user requirements,

fuzzy user preferences and the list goes on and on. As a result, even simple applica-

tions that process a small number of user inputs can often exhibit enormously large

spaces of possible execution states and these spaces need to be considered by the

application developer. Thus, without further precautions, the development of perva-

sive applications is a non-trivial, time-consuming and error-prone task. It is exactly

at this point, where pervasive computing middleware can come to the rescue.

Over the last years, middleware for pervasive computing has come a long way.

Given the diversity of pervasive applications and the harsh conditions of their exe-

cution environments, the design of a comprehensive and adequate middleware for

pervasive applications is certainly a rewarding but also a challenging goal. The pur-

suit of this goal has lead to a multitude of different concepts which resulted in an

even greater number of supportive mechanisms. It is due to this variety of concepts

and mechanisms that the anatomy of existing middleware differs widely. As a conse-



Pervasive Computing Middleware 3

quence, it is necessary to take a closer look at the influencing factors in middleware

design in order to enable a meaningful in-depth discussion and comparison.

2 Design Considerations

In this section we discuss the three main influencing factors for the design of perva-

sive computing middleware: the organizational model of the middleware, the level

of abstractions provided by the middleware, and the tasks supported by the middle-

ware.

2.1 Organizational Model

The first key influential factor of middleware design is the organizational model

of the execution environment. Given a certain organization, the middleware devel-

oper may introduce assumptions to improve or simplify middleware mechanisms

and application development. In addition, the organizational model also introduces

quantitative thresholds for important variables such as the maximum and typical

number of devices or the frequency and types of fluctuations that can be expected.

At the present time, there are two predominant organizational models, as shown in

Figure 1. In the past, middleware developers primarily focused on either one:

• Smart environment: A large fraction of pervasive computing middleware sys-

tems such as (Garlan, Siewiorek, Smailagic, and Steenkiste, 2002), (Román and

Campbell, 2000), (Paluska, Pham, Saif, Chau, and Ward, 2008), (Ponnekanti, Jo-

hanson, Kiciman, and Fox, 2003) are geared towards the organizational model of

a smart environment. Thereby, a smart environment can be defined as a spatially

limited area, e.g. a meeting room or an apartment, equipped with various sensors



4 Gregor Schiele, Marcus Handte and Christian Becker

mobile user

peer group

stationary
device

mobile device

mobile user

mobile 
device

mobile device

peer
group

mobile user

sm
ar
t 

en
vi
ro
nm

en
t

mobile 
device

mobile user

mobile 
device

SE infrastructure

mobile 
device

sm
ar
t p

ee
rs

sm
ar
t e

nv
iro

nm
en
t

Fig. 1 Predominant organizational models

and actuators. As a result, many devices in smart environments are stationary.

However, as users might be using mobile devices such as laptops or personal

digital assistants (PDAs) as well, some devices must be dynamically integrated.

Typically, the integration is performed depending on the physical location of the

device which can be determined automatically by the available sensors or it can

be manually configured through some user interface.

Due to the fact smart environments usually contain a number of stationary de-

vices, middleware for smart environments relies typically on an stationary and

rather powerful coordinating computer to provide basic services. Since the ser-

vices are often an essential building block of the applications, the presence of the

coordinating computer is required at all times and thus, its availability must be

high. Clearly, demanding the availability of a powerful and highly available com-



Pervasive Computing Middleware 5

puter may be problematic due to technical and economic constraints. However, if

it can be guaranteed, a coordinating computer can significantly ease middleware

and application development, since it provides a central point of management

that can enforce policies, mediate communication, distribute information, etc.

• Smart peers: In addition to middleware for smart environments, there are also

a good amount of middleware systems such as (Becker, Schiele, Gubbels, and

Rothermel, 2003), (Becker, Handte, Schiele, and Rothermel, 2004), (Edwards,

W.Newman, Sedivy, Smith, Balfanz, and Smetters, 2002), (Grimm, Davis, Lemar,

MacBeth, Swanson, Anderson, Bershad, Borriello, Gribble, and Wetherall, 2004)

that are based on the idea of dynamically formed collections of smart peers. In

contrast to smart environments that view a pervasive system as a set of comput-

ers located in a certain area, smart peers postulate a people-centric as opposed to

location-centric perspective on pervasive applications. The key idea is to under-

stand a pervasive system as the collection of computers that surrounds a person

independent from the physical location.

As a result, the devices in such as system cannot rely on the continuous presence

of any of the other devices. This prohibits centralized coordination on a powerful

and highly available system. Instead, the smart peers must make use of suitable

mechanisms to coordinate in a decentralized manner. In order to get the necessary

locality required to keep the dynamic set of devices manageable, the middleware

systems typically limit the size on the basis of spatial proximity. While this may

seem more flexible at a first glance, the smart peer model is not without issues.

Specifically, the management mechanisms tend to be more complicated and if

not properly designed, they can also be less efficient.



6 Gregor Schiele, Marcus Handte and Christian Becker

2.2 Provided Level of Abstraction

Another influential factor of the middleware design is the provided level of abstrac-

tion. Given that pervasive computing middleware may provide a great variety of

services, the level of abstraction can also differ widely, in general. However, from

a high-level point of view, it is possible to identify three main levels and in most

pervasive computing middleware, the services can be classified as providing either

one:

• Full transparency: From an application developer’s perspective, the ultimate

middleware system should provide full transparency with respect to the ad-

dressed challenges. If full transparency can be provided, the application devel-

oper can simply ignore all related issues since they are handled by the middle-

ware. Yet, providing transparency requires a thorough understanding of the prob-

lem domain and the application domain since the middleware designer must be

able to identify a completely generic solution that provides satisfying results for

all possible application scenarios. As a consequence, middleware services that

provide full transparency are usually restricted to a particular type of application

and to a very specific type of problem.

• Configurable automation: Given that full automation often imposes severe re-

strictions on the supported scenario, a frequently used trade off is configurable

automation. Instead of defining a middleware layer that abstracts from all details,

the middleware designer creates an abstraction that automates the task with the

help of some configuration of the application developer. As a consequence, the

application developer can forget about the intrinsic problems after deciding upon

the basic configuration. In cases where the number of possible solutions is rea-

sonable small, configurable automation can greatly simplify application develop-



Pervasive Computing Middleware 7

ment. Yet, as the number of possible solutions grows, the configuration becomes

more and more complicated until it outweighs the benefits of automation.

• Simplified exposure: In cases where configurable automation can no longer

achieve satisfying results, pervasive computing middleware can strive for simpli-

fied exposure. So instead of offering mechanisms to automate a certain task, the

middleware can restrict itself to the automated gathering of information needed

to fulfill the task. Given that many tasks are not well-understood or have a huge

solution space, this level of abstraction is sometimes the only reasonable option.

Clearly, this might seem to be a very low level of abstraction. However, it can

still be very valuable for two reasons. On the one hand, the gathering of the nec-

essary information can be a complex task in itself. On the other hand, centralized

gathering of information can often be more efficient, especially, in cases where

multiple applications require the same type of information.

2.3 Supported Tasks

Besides from the organizational model and the level of abstractions, the most in-

fluential factor in pervasive computing middleware design is certainly the task sup-

ported by the system. Due to the great variety of challenges, the set of tasks is

equally large. Yet, several tasks must also be handled by conventional systems and

in many cases, the solutions applied by pervasive computing middleware follow

traditional patterns. To avoid the repetition of main stream concepts, the in-depth

discussion of pervasive computing middleware in this chapter is restricted to the

following three main services that can be found in a majority of the existing system.

• Spontaneous Interaction: Independent from the underlying organizational model,

pervasive applications need to interact spontaneously with an ever-changing set



8 Gregor Schiele, Marcus Handte and Christian Becker

of heterogeneous devices. To do this, applications not only need to communi-

cate with each other but they also need to detect and monitor the available set

of devices. As a consequence, even the most basic middleware systems provide

functionality to enable this kind of spontaneous remote interaction. The details

of the support, however, depend on the organizational model and the level of

abstraction can vary accordingly.

• Context Management: Besides from interaction, a key difference between tradi-

tional and pervasive computing applications is that pervasive applications need

to take the state of the physical world in to account. In addition to writing appro-

priate application logic, this bears many complex challenges. First and foremost,

the relevant observations need to be made. Depending on the phenomena, this

may require coordinated measurements of multiple distributed sensors and the

fusion of several readings. During this process, the application has to deal with

varying sensor availability and uncertainties in measurements. Moreover, the ap-

plication might have to deal with various types of sensors resulting in different

data representations, etc. As a result, server middleware systems aim at hiding

these complexities by providing integrated context management services.

• Application Adaptation: The dynamics and heterogeneity of pervasive systems

as well as the fact that pervasive applications are usually distributed raises an

inherent need for adaptation. In order to function properly despite their highly

dynamic execution environment, applications need to adapt to the overall sys-

tem properties, the available capabilities that can be leveraged at a certain point

in time and the context of their users. To simplify application adaptation, many

middleware systems provide services that hide several aspects or that provide at

least configurable automation. To do this, they introduce additional abstractions,

e.g. to specify dependencies on the execution environment or to define optimiza-

tion goals, and they provide supportive mechanisms.



Pervasive Computing Middleware 9

It is noteworthy that only the most basic systems cover solely one of the services

described above. In fact, most systems have building blocks for each of them. While

some systems have provided basic support for all of these tasks right from the early

stages of their development (e.g. (Garlan, Siewiorek, Smailagic, and Steenkiste,

2002), (Román and Campbell, 2000)), other systems have been extended with ad-

ditional services over time (e.g. (Ponnekanti, Johanson, Kiciman, and Fox, 2003),

(Becker, Handte, Schiele, and Rothermel, 2004)). Yet, due to differences in the un-

derlying organizational model and the specifics of their application scenario, the

resulting middleware solutions explore vastly different abstractions. The following

sections, provide a more detailed discussion of the three middleware services de-

scribed above and they relate the internal structure as well as the provided level of

abstraction to the organizational model and the application scenario.

3 Spontaneous Interaction

Pervasive computing applications are typically distributed over a number of partic-

ipating devices, e.g. a wall-mounted display for graphical output, a mobile device

for user input, and a fixed infrastructure server for data storage. To support this,

a suitable distribution platform is needed. We distinguish between three different

requirements that such a platform or middleware must fulfill:

• Ubiquitous communication and interaction: First, the middleware should support

ubiquitous and configuration-free interaction with other devices. This includes

basic communication abilities, i.e., the ability to reach other devices and to com-

municate with them interoperably. In addition a suitable interaction abstraction

is required to access remote devices. As an example, a service-based approach

can be used.



10 Gregor Schiele, Marcus Handte and Christian Becker

• Integration of heterogeneous devices: Second, the middleware should allow to

integrate a wide range of different devices into the system. This includes not only

devices based on different hardware and software platforms – the classical goal of

interoperability – but also devices with very different resources. As an example,

one device might offer a lot of CPU power and memory but no graphical output.

Another device might have very scarce computational and memory resources but

a large graphical display attached to it.

• Dynamic mediation: Third, the middleware should provide a dynamic mediation

service that allows to select suitable interaction partners at runtime. This service

can be realized in different ways, e.g. by letting devices interact directly with

each other or by using an additional system component to mediate between de-

vices.

In the following we discuss each of these issues in more detail and analyze how

different existing middleware systems for pervasive computing address them.

3.1 Ubiquitous Communication and Interaction

Enabling devices to cooperate with each other requires interoperability between

these devices. Interoperability is a multilayer issue that needs to be guaranteed start-

ing at the lowest layers of the networking stack up to the application layer. Here, a

common understanding of the semantics of shared functionalities is required. To

achieve this, different syntactic or semantic descriptions have been proposed. Mid-

dleware has to provide the necessary mechanisms to achieve interoperability on

these different layers, or at least has to support applications in this task.



Pervasive Computing Middleware 11

3.1.1 Interoperability

In general there are three main possibilities to solve the issue of interoperability as

shown in Figure 2.

fixed standardized
protocol set

dynamically negotiated
protocol set

interoperability

interaction
bridges

smart 
peers

smart 
environments

spontaneous
interaction

context
management

application
adaptation

Fig. 2 Possibilities for interoperability

The first possibility is to standardize a fixed common set of protocols, technolo-

gies and data formats to interact with other devices. As long as a device uses this

standard set of functionality, it will be able to communicate and interact with ev-

erybody else in the system. This approach is used by most classical middleware

systems, e.g., CORBA (Object Management Group, 2008), Java RMI (Sun Mi-

crosystems, 2006) or DCOM (Eddon and Eddon, 1998). One prominent example

for a pervasive computing middleware relying on a fixed set of standard protocols is

UPnP (UPnP Forum, 2008). It defines a set of common communication protocols,

e.g., HTTP and SOAP, to allow interaction between devices. Messages are encoded

with XML. The exact format of each message must be defined between the commu-

nication partners before the interaction can take place. Clearly, the main challenge of

this approach is the standardization process itself. Once a common standard is estab-

lished, interaction becomes possible efficiently. However, it is difficult to change the

standard protocols without updating or exchanging all devices. This is specifically

problematic in pervasive computing systems, since (1) many devices are embed-



12 Gregor Schiele, Marcus Handte and Christian Becker

ded into everyday items and thus cannot be updated easily, and (2) devices have a

relatively long life time if they are embedded into long living objects, like furniture.

The second, much more flexible possibility to achieve interoperability is to allow

the middleware to negotiate the protocols used to interact with others at runtime.

This additionally allows to switch between different communication technologies at

runtime. As users and their devices move around in a pervasive computing system,

the available communication technologies may vary over time. As an example, a

wireless local area network (WLAN) might be available to users in a building but

become unavailable when the user leaves it. By switching to another technology, the

middleware is able to offer the maximum achievable communication performance.

One middleware allowing such so-called vertical handoffs is the BASE middleware

(Becker, Schiele, Gubbels, and Rothermel, 2003). Based on specific communica-

tion requirements that can be selected by an application, BASE negotiates the used

protocols and technology with the communication partner dynamically. If during

an interaction a technology becomes unavailable, it reselects another one automati-

cally and continues the interaction. Another example for a middleware in this class

is Jini (Waldo, 1999). Jini is a Java-based middleware that enables the utilization

of distributed services in dynamic computer networks. It relies on mobile code to

distribute service-specific proxies to clients. These proxies can include proprietary

protocol stacks to access the remote service. This allows to use different proto-

cols for accessing different services, and thus enables already deployed devices to

interact with new devices that use newer protocols. However, Jini does not allow

to switch between different protocols for the same service dynamically. A more

sophisticated variant of this approach are dynamically reconfigurable middleware

systems (e.g. (Ledoux, 1999), (Román, Kon, and Campbell, 1999a), (Becker and

Geihs, 2000), (Blair, Coulson, Robin, and Papathomas, 2000), (Blair, Coulson, An-

dersen, Blair, Clarke, Costa, Duran-Limon, Fitzpatrick, Johnston, Moreira, Parla-



Pervasive Computing Middleware 13

vantzas, and Saikoski, 2001), (Román, Kon, and Campbell, 2001)). These middle-

ware systems are able to adapt their behavior at runtime to different requirements

and protocols, e.g., by selecting which wireless communication technique should be

used or how marshalling is done. To do so, these systems offer a reflection interface

to allow the application to determine and change the current middleware behavior

dynamically.

A third possible approach is to introduce interaction bridges into the system that

map between different approaches. This approach is very well known on lower lay-

ers of the networking stack, e.g., to interconnect different networking technologies.

In addition, it can be used on higher layers, too. As an example, the Unified Object

Bus (Román and Campbell, 2001) used in Gaia provides interoperability between

different component systems by defining a common interface to control component

life-cycles.

3.1.2 Communication Abstractions

Another important issue when discussing ubiquitous interoperable interaction is the

used communication abstraction. Conventional middleware offers various commu-

nication abstractions to develop distributed applications. These abstractions range

from network-oriented message passing primitives and publish-subscribe abstrac-

tions (Eugster, Felber, Guerraoui, and Kermarrec, 2003) over associative memory

paradigms such as tuple spaces (Carriero and Gelernter, 1986) to remote procedure

calls (Birrell and Nelson, 1984) or their object-oriented counterpart of a remote

method invocation (RMI). Since the latter extends the concept of a local procedure

call - or a method invocation respectively - to distributed application development,

it is commonly supported by mainstream middleware like CORBA (Object Man-



14 Gregor Schiele, Marcus Handte and Christian Becker

agement Group, 2008), Java RMI (Sun Microsystems, 2006), and Microsoft’s .NET

Remoting (Chappell, 2006).

Many pervasive computing middleware systems (e.g. (Román and Campbell,

2000), (Becker, Schiele, Gubbels, and Rothermel, 2003), (Waldo, 1999), (UPnP Fo-

rum, 2008)) have adopted RMI as their primary communication abstraction. The

main advantage of RMI is that it is well known and generally well understood by

developers. However, since a remote call requires to previously bind to a specific

communication partner, RMI leads to rather tightly coupled communication part-

ners. This may be problematic in highly dynamic environments with frequent dis-

connections between communication partners. Without further precautions, such a

disconnection results in a communication failure that must be handled programmat-

ically by the application developer. A possible solution is to store requests and re-

sponses in persistent queues as done, e.g., by the Rover Toolkit (Anthony D. Joseph,

1997). This way the communicating devices can be disconnected temporarily at any

point in time and can continue their interaction once they are connected again. Yet,

the application of such queued remote procedure calls is only suitable in cases where

very high latencies can be tolerated and requires that the communication partners

meet eventually to finish their interaction. If this is not the case, the binding be-

tween the communication partners must be dissolved and a new binding must be

determined. Note that in case of a stateful interaction that has a shared interaction

state at both partners, it is necessary to restore this state at the new communication

partner before the interaction can continue. This can, e.g. be done using message

logs (Handte, Schiele, Urbanski, and Becker, 2005b) and checkpointing (Handte,

Schiele, Urbanski, and Becker, 2005b) (Grimm, Davis, Lemar, MacBeth, Swanson,

Anderson, Bershad, Borriello, Gribble, and Wetherall, 2004).

To avoid such problems, communication abstractions with loosely coupled com-

munication partners can be used. Here communication partners do not communicate



Pervasive Computing Middleware 15

directly but are decoupled by a intermediate communication proxy, e.g., a message

queue or tuple space. To initiate an interaction, a device sends a message to the

proxy, which stores the message. If another device is interested in the message it

can access the proxy and retrieve the message. This approach is e.g. used in iRos

(Ponnekanti, Johanson, Kiciman, and Fox, 2003). Applications send event messages

to a so-called event heap. The event heap stores events and allows other applications

to retrieve them at a later time. Events are automatically removed from the event

heap after a predefined time. Since there is no explicit binding between communi-

cation partners, the event sender does not need to know if its events are consumed by

anyone or simply dropped. In addition, the recipient of the events can change dur-

ing runtime without the sender knowing about it. Similarly to iRos, the one.world

system (Grimm, Davis, Lemar, MacBeth, Swanson, Anderson, Bershad, Borriello,

Gribble, and Wetherall, 2004) is based on loose coupling. It uses tuple spaces in-

stead of an event heap. Each interaction results in an event data item being stored in

the tuple space. An interested recipient can retrieve the data item, consuming it in

the process, and can place an appropriate answer in the tuple space.

3.2 Integration of Heterogeneous Devices

To integrate heterogeneous devices into the system, the middleware must be able to

be executed on each of them. This requires the middleware to be adapted to differ-

ent hardware and software platforms, e.g. by introducing a small system abstraction

layer that encapsulates the specific platform properties. On top of this abstraction

layer, the system is realized in a platform independent way. Another possibility is to

develop the system using a platform independent execution environment like e.g. the

Java virtual machine. This way the middleware itself is platform independent and all

platform dependent system parts are pushed down in the underlying execution envi-



16 Gregor Schiele, Marcus Handte and Christian Becker

ronment. Clearly this works only for target environments for which the used execu-

tion environment is available. The challenge of developing cross-platform systems

that can be executed on different heterogeneous devices is not specific to pervasive

computing. It exists for all cross-platform applications. Therefore we will not go

into further detail on this issue here. The reader is referred to (Bishop and Horspool,

2006) for a more elaborate discussion.

In pervasive computing the middleware faces an additional challenge when try-

ing to integrate different devices. The used devices may differ widely between the

capabilities and resources they offer. A stationary server may have a lot of resources

with respect to CPU power, memory, network bandwidth and energy. However, it

may not offer any user input or output capabilities. On the other side, a mobile de-

vice might have very scarce resources but offer such user interface capabilities. The

middleware must take this into account to be usable for all these devices. It should

operate with few resources if necessary but utilize abundant resources if possible.

On a mobile and thus energy-poor device it should offer energy saving mechanisms

to achieve suitable device life times.

There are different approaches to create system software with minimal resource

requirements that still maintains enough flexibility to make use of additional re-

sources. The two extremes are (1) building multiple, yet compatible systems for

different classes of devices, and (2) building modular systems with a minimal yet

extensible core.

As an example for the first approach, the Object Management Group defined min-

imumCORBA (Object Management Group, 2002), a subset of CORBA intended for

resource-poor devices. Another example is PalmORB (Román, Singhai, Carvalho,

Hess, and Campbell, 1999b), a minimal middleware for personal digital assistants

that only offers client-side functionality. Thus, the mobile device cannot offer ser-

vices itself but only acts as a client for remote services.



Pervasive Computing Middleware 17

The second approach is to provide a modular and extensible system architecture.

One example for this is the Universally Interoperable Core (UIC) (Román, Kon, and

Campbell, 2001). It provides a minimal reflective middleware that is configurable

to integrate various resources. UIC can be used in static and dynamic variants. The

static version allow to tailor the middleware to a given device but does not allow

to change the middleware configuration at runtime. This is only possible in the dy-

namic variant. BASE (Becker, Schiele, Gubbels, and Rothermel, 2003) is another

micro-broker-based middleware system for pervasive computing. It allows its mini-

mal core to be extended by adding so-called plugins, each one abstracting a certain

communication protocol or technology.

The Gaia project (Román and Campbell, 2000) combines both aforementioned

approaches. For extremely resource-limited devices, they provide a specialized mid-

dleware called LegORB (Román, Mickunas, Kon, and Campbell, 2000). On other

devices, they employ dynamicTAO (Román, Kon, and Campbell, 1999a), which re-

lies on a small but dynamically extensible core.

3.3 Dynamic Mediation

Applications in pervasive computing are faced with unforeseeable and often highly

dynamic execution environments. The communication partners that will be available

at runtime are therefore often unknown at development time and may even change

dynamically. To cope with that a suitable mediation service must be available that al-

lows to decide dynamically with which devices to communicate and cooperate. Due

to the dynamics of the execution environments, this mediation must be performed

continuously. Mediation can be discussed for tightly or loosely coupled communi-

cation partners.



18 Gregor Schiele, Marcus Handte and Christian Becker

As described before, loosely coupled communication partners do not communi-

cate directly but via an intermediate communication proxy. In this case, mediation

is rather simple as it is implicitly done by the proxy storing the data. A message is

simply delivered to every device that accesses the proxy and reads the stored data.

It is the recipient device’s responsibility to filter the messages that are interesting to

it. Thus, mediation is done on the receiver side in this scenario.

Tightly coupled communication partners require a much more sophisticated com-

munication mediation. In such systems, the partners are first bound to each other at

runtime. After that they exchange data directly. If one of the partners becomes un-

available, the communication binding breaks and must be renewed with different

partners. Typical examples for this approach are service-based systems. Therefore,

the process of searching for suitable communication partners is typically referred

to as service discovery. Existing service discovery approaches can be classified

into peer-based (or server-less) and mediator-based (or server-based) discovery ap-

proaches.

3.3.1 Peer-based Discovery

In peer-based approaches (e.g., (UPnP Forum, 2008), (Nidd, 2001)), all nodes par-

ticipate in the discovery process directly (see Figure 3). To find a service, a client

broadcasts a discovery request to the whole or part of the network. Nodes offering

a suitable service answer the request. Alternatively, service providers broadcast ser-

vice announcements periodically, notifying others about their services. The provider

can announce only its own services (UPnP Forum, 2008) or all services it knows of

(Helal, Desai, Verma, and Choonhwa, 2003). Recipients of these announcements

store them in a local cache. The cache can then be used to answer discovery re-

quests of local (UPnP Forum, 2008) or both local and remote clients (Helal, Desai,



Pervasive Computing Middleware 19

service

client

service

1.request

2.
re

sp
on

se

3.
ac

ce
ss

(a) peer-based discovery

mediator

1.register

3.
re

sp
on

se

2.request

4.
ac

ce
ss

client

service

(b) mediator-based discoveryFig. 3 Peers-based discovery

Verma, and Choonhwa, 2003), thereby enhancing the system’s efficiency. The main

advantage of peer-based approaches is their simplicity and flexibility. This makes

them specifically suited for highly dynamic environments. On the downside, to de-

tect new services continuously, devices have to send requests and/or announcements

regularly, largely limiting the scalability of peer-based approaches due to the result-

ing communication overhead and resulting energy consumption.

A service discovery system that specifically tries to reduce this energy consump-

tion is DEAPspace (Nidd, 2001). It uses synchronized time windows to broadcast

service announcements. Between these windows, devices can be deactivated to save

energy. Service descriptions are replicated on all devices and announced collec-

tively. To lessen communication overhead, only one device sends its announcement

in each cycle, preferably one with currently unknown services or much energy. Still,

all service descriptions must be broadcast regularly, even if no client is interested in

them. In addition, to enable new devices to join in, devices have to stay active for

more than 50% of their time to ensure overlapping time windows.



20 Gregor Schiele, Marcus Handte and Christian Becker

3.3.2 Mediator-based Discovery

In contrast to peer-based discovery systems, mediator-based service discovery ap-

proaches (e.g., (Sun Microsystems, 2001), (Hodes, Czerwinski, Zhao, Joseph, and

Katz, 2002), (uddi.org, 2004)) delegate service discovery to a number of special

devices – the mediators – that manage a possibly distributed service registry on be-

half of all devices (see Figure 4). The mediators can either be independent from

each other (Sun Microsystems, 2001), can coordinate their entries with each other

(uddi.org, 2004), or can form a hierarchy of mediators (Adjie-Winoto, Schwartz,

Balakrishnan, and Lilley, 1999). To publish services, providers register their ser-

service

client

service

1.request

2.
re

sp
on

se

3.
ac

ce
ss

(a) peer-based discovery

mediator

1.register

3.
re

sp
on

se

2.request

4.
ac

ce
ss

client

service

(b) mediator-based discoveryFig. 4 Mediator-based Discovery

vices at the registry. Clients query it to detect services. As an optimization, clients

can register their required services at the mediators to provide them with up-to-date

information about new services via updates. Therefore, no broadcast is needed to

detect or announce services, resulting in less communication overhead than with

peer-based approaches. This makes mediator-based approaches especially suited to

create highly scalable systems (e.g. (Hodes, Czerwinski, Zhao, Joseph, and Katz,

2002), (uddi.org, 2004)). Their main drawback is that without a mediator in the



Pervasive Computing Middleware 21

vicinity, no discovery is possible. This is specifically problematic in highly dynamic

environments without fixed infrastructure devices, because we cannot assume con-

tinuous connectivity to a specific device that could act as mediator.

SLP (Hodes, Czerwinski, Zhao, Joseph, and Katz, 2002) handles missing media-

tors by allowing nodes to switch to peer-based discovery if they do not find a media-

tor. Still, mediators are predefined. As they cannot sleep, battery-operated mediators

will run out of energy quickly, forcing all other nodes to switch back to peer-based

discovery. In addition, there may be more than one mediator in the vicinity, e.g. if

two people come together with their devices.

Gaia (Román and Campbell, 2000) uses a heartbeat concept for service discov-

ery. As long as a service is available in a given environment, it sends periodic heart-

beat messages to the mediator, the so-called PresenceService. As a result, the Pres-

enceService sends enter and leave messages on a service presence channel that in-

terested clients can listen into.

An example for an energy-efficient mediator-based discovery system is SAND-

MAN (Schiele, Becker, and Rothermel, 2004). Similar to DEAPspace, SANDMAN

saves energy by deactivating devices. However, it does so by grouping devices with

similar movement patterns into dynamic clusters. Each cluster selects a mediator

that takes over service discovery for its cluster. The mediator stays active and an-

swers discovery requests from clients. All other devices power themselves down un-

til they are needed. This approach is more complicated than DEAPspace but scales

to larger systems and allows longer deactivation times.

4 Context Management

As applications adapt to changes in the environment, the relevant parameters of the

environment need to be modeled and changes have to be propagated to interested



22 Gregor Schiele, Marcus Handte and Christian Becker

or affected applications in an appropriate manner. Context management denotes the

task of context modeling, acquisition and provisioning where context relates to rel-

evant environmental information of an entity. We will first take a look at context

itself and established definitions. Thereafter we will discuss the three major respon-

sibilities of context management, namely the acquisition and fusion, modeling and

distribution, provisioning and access.

After more than a decade of research in context management a number of defini-

tions exist. We do not want to present a survey but discuss two classical definitions.

Schilit, Adams and Want identify three important aspects of context (Schilit,

Adams, and Want, 1994). These are

• where you are,

• who you are with, and

• what resources are nearby.

Thus, they classify context-aware systems according to their adaptation to the

location of use, the collection of nearby people resembling the social context, and

the available network and computing infrastructure. Also, the change in these three

sets over time plays a crucial role to the adaptation of a context-aware application.

A context-aware application must be capable of examine the available context and

adapt accordingly.

Dey provided one of the first approaches that integrated a framework for adap-

tive applications, the context toolkit (Dey and Abowd, 2000), along with software

engineering aspects. A number of applications has been investigated.

Dey defines context as any information that can be used to characterize the situ-

ation of an entity (Dey, 2001). Entities can be considered to be persons, places, or

any object that is considered relevant to the interaction between a user and an appli-

cation, including the user and applications themselves. This definition specifically

addresses applications that are user centered.



Pervasive Computing Middleware 23

Dey further defines a system to be context-aware if it uses context to provide

relevant information and/or services to the user. Relevancy depends on the user’s

task. A further classification of applications leads to three classes of applications:

• Context-aware presentation: the application changes its appearance depending

on context information. Examples are navigation systems that change the level of

detail depending on the speed or multi-modal application that can select different

output media, e.g., audio or video, based on context information, e.g., environ-

mental noise.

• Automatic execution of a service: in this class, applications are triggered depend-

ing on context information. Examples are reminder services that can notify users

based on configured patterns, e.g., during a shopping tour, or automatic execution

of services in an automated home.

• Tagging of context to information for later retrieval: this class of applications

allows to augment the daily environment of user with virtual artifacts. Messages

that are linked to places or objects can become visible to users due to a distinct

context, e.g., their identity, their activity, their role.

So far we have seen on a rather abstract view how applications can utilize con-

text in order to change their behavior based on context. A yet open question is the

management of context. Figure 5 shows a simple and generic model of context man-

agement.

The physical world is situated at the bottom of the model. Sensors – which may

also be users entering data about our environment into an information system – feed

the context model. The context model thus contains a more or less comprehensive

abstraction of a part of our physical environment. This allows applications to rea-

son about context and take actions. The interfaces between sensors and the context

model as well as between context model and applications can be synchronous (pull)



24 Gregor Schiele, Marcus Handte and Christian Becker

physical world

context model

applications

sensors
(fusion)

ap
pl
ic
at
io
n

St
at
e

queryupdate(id, value)

update(id, value)

notification

Fig. 5 Generic Model of Context Management

or asynchronous (push). Finally, the applications also can provide context informa-

tion to the model, e.g., user preferences or tagging of context information.

We will briefly look at some relevant aspects of context management in the next

subsections.

4.1 Acquisition and Fusion

Since context to a large degree is related to the physical world, we need sensors

to capture the state. This immediately leads to two major problems that have to be

handled:

• Accuracy: sensors measure and by doing so, they exhibit a deviation with respect

to the actual value of the measured entity. Sensors typically specify the mean and

maximum error when reading data. A GPS sensor refers to a sphere in space

which depends on the number of satellites that can be seen and may be improved

by some additional signal. Temperature readers only work with a distinct degree.



Pervasive Computing Middleware 25

As a consequence, one can hardly handle context data as facts with discrete val-

ues. Intervals, possibly enriched with a distribution function of the values, can

reflect this fact.

• Freshness: once a value is read, it ages. Depending on the characteristics of the

entity which is measured, sensor readings show a rather long period where their

value can be considered ”up to date”. Once we know how values in the phys-

ical world can change, e.g., the maximum speed of an object, we can estimate

the maximum deviation over time. This can help us to reduce the rate in which

sensors are read. Basically, this is a transformation from freshness into accuracy

once we know the rate of change of the monitored entity.

Although we can only gather information about our environment with a distinct

accuracy, there are methods to gain a more accurate view. First, combinations of

sensors can be used. Using different technology can help to reduce errors. Even the

same sensor technology can help to gain more accurate sensor readings, e.g., when

visuals are taken from different perspectives.

In contrast to redundant or multiple readings from the same or similar sensor

technology one can use additional information in order to increase the accuracy or

reduce the error probability. If, for example, an indoor positioning system returns

two rooms as possible position additional information can help to narrow down the

position. Additional information could be login information at a computer or key

stroke activity of an instant messenger. Combining different sensor information in

order to reduce errors or deduce other context information is called sensor fusion.

Higher context information based on low level sensors is a typical task of sensor

fusion. As an example consider a meeting room that allows readings of light con-

dition, temperature, ambient noise, etc, e.g., via the ContextCube (Bauer, Becker,

Hähner, and Schiele, 2003). A situation with closed blinds, artificial light (can be

determined by the wave length), and one person talking can be reasoned to be a



26 Gregor Schiele, Marcus Handte and Christian Becker

presentation. Rules for sensor fusion and reasoning require adequate modeling of

sensor information and the relation between different sensors. We will talk briefly

about context modeling in the next section.

4.2 Modeling and Distribution

Context acquisition can be a costly task. Besides simple and cheap sensors, context

can also be gathered by expensive methods, e.g., surveying. In order to mitigate the

resulting costs, sharing the costs among a number of applications can be helpful.

However, if a single institution cannot handle the costs sharing context informa-

tion across institutions can pave the way. A popular example is map data. Although

it is quite expensive to gather, the scale of its applications from classical maps to

modern navigation systems allows achievable costs for the individual user. A pre-

requisite for sharing is standardization. This can be done by standardized interfaces:

the internal representation of the data is decoupled by a a set of functions from the

using applications. This eases using data being distributed across a number of ser-

vices. However, this still requires that the retrieved information can be interpreted

across a number of applications. This leads to the second prerequisite: standardized

data. Applications need to interpret the data – obviously they need type information.

There is a plethora of different context modeling schemes which can only covered

by a brief discussion here.

Simple approaches use name value pairs. Clearly, this requires that every appli-

cation knows the names of the context concepts and interprets the associated data

the same. Name value pairs do not allow to relate concepts to each other. Thus, spe-

cialization of existing concepts is not possible as well as modeling hierarchies, e.g.,

inclusion of locations. Object-oriented modeling techniques allow to model special-

ization of concepts and thus extension of existing hierarchies. Additional relations



Pervasive Computing Middleware 27

between the concepts cannot be handled and the modeling is restricted to classes.

Ontologies offer additional means for modeling and allow reasoning over context.

This is, however, a complex field on its own. The interested reader is referred to

(Strang and Linnhoff-Popien, 2004).

Other aspects of distribution is the placement of data in a set of distributed ser-

vices. This can help to balance requests from services and allow scalability. This

requires directory services that forward the requests to the servers hosting the in-

formation. Clearly, such directories should not result in performance bottlenecks or

single points of failure themselves.

4.3 Provisioning and Access

As discussed above, the interface to a context model – realized as a context service

– is crucial in order to provide suitable abstractions for applications. Dey as well as

Bauer, Becker and Rothermel identify three classes of context that are relevant for

context access:

• identity: as in regular databases, context information can be identified by a unique

key. This allows to query for context information in a direct way.

• location: since context information is related to our physical environment, many

queries will relate to objects and their spatial relation, i.e., the nearest ob-

jects (nearest neighbor queries), objects residing in a distinct spatial area (range

queries), and queries for an objects position (position queries).

• time: past context can be stored and retrieved later allowing for, e.g., life-logging

applications. Also, some context, e.g., weather or traffic jams, can be predicted.

Thus, a context model should support queries for the past, current context and

the future.



28 Gregor Schiele, Marcus Handte and Christian Becker

Not every context model has to support all these queries. Also, the kind of queries

can differ. Applications can poll context by issuing queries to the context model.

This is similar to classical databases. Since many applications react on context

changes, it can ease the development of applications when they register only for

a notification that is issued, when the context changes.

5 Application Adaptation

In general, the distraction-free and intuitive task support envisioned by pervasive

computing cannot be achieved by a single device alone. As Mark Weiser pointed

out already (Weiser, 1991), the real power of pervasive computing emerges from

the interaction of all of them. Given that only very simple tasks can be supported by

one device, thorough task support requires some form of distributed coordination to

integrate the unique capabilities of multiple devices.

In pervasive computing environments, the integrating coordination of devices is

specifically challenging for several reasons. First and foremost, due to the embed-

ding of devices into everyday objects, it is pretty unlikely that different environ-

ments will exhibit similar sets of devices. Secondly, due to mobility, failures and

continuous evolution, the set of devices that is available in a certain environment is

changing over time and many of the changes cannot be predicted reliably. Finally,

even if the set of devices is known in advance and does not change, different users

may require or prefer the utilization of different devices for the same task in the

same environment.

As a consequence, the coordination of the devices cannot be done statically in

advance. In order to support diverse settings and to provide distraction-free task

support for different users, the coordination must be done on the basis of the tar-

get environment and user. Furthermore, since the environment may change at any



Pervasive Computing Middleware 29

App

App

App

App

App

App

App

Application

Fig. 6 Application Adaptation

given point in time, the coordination must be able to adapt to many changes. Without

appropriate coordination support at the middleware layer, coordination must be han-

dled by the application layer. Besides from complicating the task of the application

developer, this approach has the a number of significant drawbacks. For instance,

if some parts of the coordination logic cannot or shall not be handled by the ap-

plication, e.g. to support customization for different users, it is hard to provide an

application-overarching customization interface. Similarly, if multiple applications

are executed at the same time, their coordination logic might interact in unforesee-

able and undesirable ways.

In the past, researchers have proposed two alternative coordination approaches

which are depicted in Figure 6. Both have been supported by corresponding mid-

dleware systems and in principle, they are complementary. However, they have



30 Gregor Schiele, Marcus Handte and Christian Becker

not been integrated in a single unifying system so far. The first approach, inter-

application adaptation, coordinates the execution of several non-distributed applica-

tions (Garlan, Siewiorek, Smailagic, and Steenkiste, 2002), (Ponnekanti, Johanson,

Kiciman, and Fox, 2003). The second approach, intra-application adaptation, strives

for coordination of a single application that is distributed across several devices

(Coen, Phillips, Warshawsky, Weisman, Peters, and Finin, 1999), (Becker, Handte,

Schiele, and Rothermel, 2004), (Roman, Hess, Cerqueira, Ranganathan, Campbell,

and Nahrstedt, 2002), (Paluska, Pham, Saif, Chau, and Ward, 2008). The follow-

ing sections provide a detailed look at each of the two approaches and discusses

exemplary middleware services to support the arising tasks.

5.1 Inter-Application Adaptation

The goal of inter-application adaptation is to provide thorough task support by co-

ordinating the execution of multiple applications across a set of devices. Usually,

the applications themselves are not distributed and they are not aware of each other.

This enables the utilization of arbitrary compositions, however, this does not neces-

sarily induce that the applications do not interact with each other at all. They may

interact either through some form of mediated communication or they may rely on

classical mechanisms such as files.

A charming benefit of inter-application adaptation is that it enables the reuse of

traditional applications in pervasive computing environments with minor or even no

modifications. Considering the amount and the value of available applications this

argument is quite convincing. In addition, inter-application adaptation can shield the

application developer completely from all aspects of distribution since the coordi-

nation does not require application support. Last but not least, as applications do not



Pervasive Computing Middleware 31

interact with each other directly, intra-application adaptation facilitates robustness

and extensibility.

To provide support for inter-application adaptation, middleware can take care

of multiple tasks. First, the middleware can determine the set of applications that

shall be executed. Upon execution, it can supply the applications with user-specific

session state. Secondly, the middleware can detect changes and adapt the set of

applications accordingly. If one application shall be replaced with another one, it

can provide transparent transcoding services for user data. Finally, the middleware

can also provide services to facilitate the interaction of applications.

Clearly, not all existing middleware systems that target inter-application adapta-

tion provide all services. The following briefly describes how two prominent mid-

dleware systems, namely Aura (Garlan, Siewiorek, Smailagic, and Steenkiste, 2002)

and iRos (Ponnekanti, Johanson, Kiciman, and Fox, 2003), support inter-application

adaptation. To understand their mechanisms it is noteworthy to point out that both

middleware systems are targeted at smart environments and thus, they assume that

some configuration can be done manually and that it is possible to implement cen-

tralized services on a device with guaranteed high availability.

To manage application compositions automatically, Aura introduces a task ab-

straction. As indicated by the name, a task actually represents a user task including

the relevant data. Examples for tasks are the preparation of a certain document or

presentation. Tasks can be specified by the user through some graphical user inter-

face. When a user wants to start or continue a specified task, Aura automatically

maps the task to a certain set of applications on a set of the currently available de-

vices. This mapping is done automatically by the PRISM component of Aura. To

do this, the PRISM component relies on a so-called environment manager which is

a centralized component that maintains a repository of the available applications. In

order to supply the applications with the user data and in order to deal with discon-



32 Gregor Schiele, Marcus Handte and Christian Becker

nections, Aura relies on the advanced capabilities of the Coda distributed file system

(Satyanarayanan, 2002). Thereby, Aura can also adapt the fidelity of the data using

Odyssey (Noble and Satyanarayanan, 1999) in order to optimize the execution de-

spite fluctuating network quality. However, interaction between applications that are

supporting the same task is not supported by any of the services of Aura.

While iRos does not support an automated mapping between user tasks and ap-

plications, it provides services that are specifically targeted at interaction support.

To prevent a tight coupling of applications, iRos introduces a so-called event heap

(Johanson and Fox, 2002). The event-heap allows applications to post and receive

notifications. The notifications can be generated and processed by applications that

have been specifically developed with the event heap in mind or by scripts that ex-

tend existing applications that are not aware of iRos. A presentation application, for

example, may generate an event whenever the slide changes. Some other application

may then use the corresponding notifications to dim the light in the room as long as

the presentation is running. In addition to pure event distribution, the event heap also

stores events for a limited amount of time. This reduces timing constraints between

applications and it can be used to recover from application failures. For example, by

processing the recent events stored in the event heap, a script may be able to restore

the internal state of an application after a failure. Just like Aura, iRos also takes care

of data management but it uses a slightly different approach. Instead of reusing an

existing distributed filesystem, iRos introduces a so-called data heap. Besides from

persistent data storage, the data heap can also provide automated type conversions

on the basis of the Paths system (Kiciman and Fox, 2000). Thus, instead of select-

ing an application on the basis of the data type of the input files, the user can simply

select an application that provides the desired feature set.

Despite its undeniable benefits, inter-application adaptation is not without is-

sues. On the one hand, mediated communication or indirect interaction by sharing



Pervasive Computing Middleware 33

session data can ensure that individual applications are not tightly coupled. On the

other hand, however, it only supports weak forms of coordination between appli-

cations well. In cases where stronger forms are required, e.g. if a certain action

should take place shortly after a certain event occurred, additional middleware sup-

port can greatly simplify application development. Similarly, if a single application

must be distributed to fulfill its task, e.g. because it requires resources that cannot be

provided by a single device, the application does not benefit from inter-application

adaptation. Mitigating this is the primary goal of intra-application adaptation.

5.2 Intra-Application Adaptation

The goal of inter-application adaptation is to provide thorough task support by coor-

dinating the execution of a distributed application across a set of devices. The level

of integration that can be achieved by this approach exceeds the achievable level of

multiple independent applications. Providing thorough task support without coordi-

nating the actions of multiple devices is often simply not possible. For example, a

collaboration application that runs on several mobile devices might need to share

data in a tightly controlled way.

Unlike inter-application adaptation which can benefit on an unlimited degree of

compositional flexibility, a distributed application usually requires the availability

of certain functionality. For example, in order to print a document, a word process-

ing application requires a printer. In addition to minimum requirements an appli-

cation may also want to achieve certain optimization goals that may also depend

on user preferences, e.g. use the nearest or the cheapest printer. As a consequence,

the flexibility of the composition of functionalities is usually limited by application

requirements and optimization criteria.



34 Gregor Schiele, Marcus Handte and Christian Becker

Depending on the complexity of the application, the configuration and runtime

adaptation of the composition can be quite complicated. As a result, a primary goal

of many pervasive computing middleware systems that support intra-application

adaptation is the automation or at least the simplification of these aspects. A note-

worthy exception is the approach taken by Speakeasy (Edwards, W.Newman, Se-

divy, Smith, Balfanz, and Smetters, 2002). Instead of automating the composition,

Speakeasy proposes the manual composition of a distributed application from com-

ponents that can be recombined without restrictions. Thus, a user can create compo-

sitions that have not been foreseen at development time. However, manual composi-

tion is hardly viable for applications that consist of a larger number of components

or for environments that exhibit a higher degree of dynamics.

The system-supported configuration and runtime adaptation of a composition re-

quires a model of the application that captures the individual building blocks, their

dependencies on each other and the dependencies on the environment. The models

that are applied in practice can be classified depending on the supported degree of

flexibility:

At the lowest level, the model contains a static set of building blocks with static

dependencies. As a consequence, a valid configuration can be formed on a set of

devices that fulfills the requirements and runs the specified building blocks of the

application. This approach is taken by the MetaGlue (Coen, Phillips, Warshawsky,

Weisman, Peters, and Finin, 1999) agent platform, for example. Although, the ap-

proach results in simple applications that must only deal with a fixed and know set

of code, the lack of flexibility can be a significant short-coming in practical scenar-

ios. One reason for this is that the approach requires devices to run an application-

defined building block. In many scenarios this requires that the devices are capable

and willing to install additional code or it simply restricts the set of possible devices

to those that are equipped with the code already.



Pervasive Computing Middleware 35

In order to mitigate this, it is possible to refrain from restricting the building

block to a specific implementation. In order to ensure the correctness of the appli-

cation despite the unknown implementation, it is necessary to model the required

building blocks using a detailed functional and non-functional description. As this

description must be provided by the application developer, this approach increases

the modeling effort. However, in return, it becomes possible to use alternative im-

plementations of the same functionality without risking undesirable effects on the

application behavior. In addition to broadening the number of target devices, this in-

direct specification also facilitates the evolution of individual building blocks. Yet,

having a static set of building blocks may be limiting in cases where one building

block can be replaced by a combination of building blocks. The same holds true

in cases where the number of building blocks cannot be specified in advance, e.g.

because it depends on the environment.

To support such scenarios, it is possible to introduce flexible dependencies into

the application model and several middleware systems follow this approach. The

exact implementation, however, differs depending on the middleware. The Gaia

system (Román and Campbell, 2000), for example, relies on an application model

that allows the utilization of a varying number of components to display or per-

ceive some information. This can be used to adapt the output of an application to

the number of users or to the number of available screens. The PCOM component

system (Becker, Handte, Schiele, and Rothermel, 2004) attaches dependencies to

each component and requires that all recursively occurring dependencies are satis-

fied by another component. As a result, applications in PCOM are essentially trees

of components that are composed along their dependencies. The system proposed

in (Paluska, Pham, Saif, Chau, and Ward, 2008) also relies on recursion. However,

instead of attaching dependencies to components, the authors introduce an addi-

tional level of indirection called Goals (Saif, Pham, Paluska, Waterman, Terman,



36 Gregor Schiele, Marcus Handte and Christian Becker

and Ward, 2003). Goals represent a specific user goal that can be decomposed au-

tomatically into a set of simpler sub Goals. After the decomposition has succeeded,

they are mapped to components using Techniques. A Technique essentially resem-

bles a script that defines how the components need to be connected and thus, it is

possible to support more complex composition structures than in PCOM. Although,

a flexible dependency specification is appealing at a first glance, it is noteworthy

that the resulting configuration problems are often quite complex which may limit

the scalability of such approaches.

On the basis of the application model, pervasive computing middleware can then

provide services to automate the configuration and runtime adaptation. The canon-

ical approach is to construct a configuration that satisfies the requirements defined

by the application model. The complexity of this depends heavly on the underlying

problem and on the completeness of construction procedure. If the construction sys-

tematically enumerates all solutions, it can often exhibit an exponential runtime

(Paluska, Pham, Saif, Chau, and Ward, 2008), (Handte, Becker, and Rothermel,

2005a). To mitigate this, it is possible to tradeoff completeness for increased per-

formance (Becker, Handte, Schiele, and Rothermel, 2004). Alternatively, if the en-

vironment is mostly static, the configuration can be computed once and reused mul-

tiple times (Ranganathan, Chetan, Al-Muhtadi, Campbell, and Mickunas, 2005).

During the construction, additional optimization goals can be introduced in the

form of some utility function (Paluska, Pham, Saif, Chau, and Ward, 2008). The

concrete implementation of the utility function may be specified by the user or the

application developer. In the case of runtime adaptation, the utility function may

encompass cost components (Handte, Becker, Schiele, Herrmann, and Rothermel,

2007). Usually, the cost components model the effort for changing the running con-

figuration which is dependent on the application model and the adaptation mech-

anisms. During the construction of the configuration, the utility value is usually



Pervasive Computing Middleware 37

optimized heuristically as a complete optimization would lead to considerable per-

formance penalties.

Middleware systems that are based on the organizational model of a smart envi-

ronment can assume the permanent presence of a powerful computer that may be

used to compute configurations. As a consequence, these systems usually perform

the configuration centralized (Paluska, Pham, Saif, Chau, and Ward, 2008). In peer-

based systems, the availability of a single powerful device cannot be guaranteed. As

a result, the computer system that is used for configuration is either selected dynam-

ically (Schuhmann, Herrmann, and Rothermel, 2008) or the configuration process

is distributed among the peers (Handte, Becker, and Rothermel, 2005a).

6 Conclusion

The development of pervasive applications that provide seamless, intuitive and

distraction-free task support is a challenging task. Pervasive computing middleware

can simplify application development by providing a set of supportive services. The

internal structure of the services is heavily influenced by the overall organization

of the pervasive system and the targeted level of support. Three main services that

can be provided by pervasive computing middleware are support for spontaneous

interaction, support for context management and support for application adaptation.

As basis for the cooperation of heterogeneous devices found in pervasive sys-

tems, middleware support for spontaneous interaction alleviates the handling of

low-level communication issues. Beyond communication, support for context man-

agement ensures that application developers do not have to deal with the intrinsics

of gathering information from a multitude of unreliable sensors. Finally, support for

application adaptation simplifies the task of coordinating a changing set of devices

to provide a seamless and distraction-free user experience.



38 Gregor Schiele, Marcus Handte and Christian Becker

Although these services can greatly simplify many important tasks of the devel-

oper, the development of intuitive task support remains a significant challenge. As

new scenarios and devices continue to emerge, application developers have to in-

vent and explore novel ways of supporting user tasks with the available technology.

Undoubtedly, this will result in additional challenges that may at some point spawn

the development of further middleware systems and services.

References

Adjie-Winoto W, Schwartz E, Balakrishnan H, Lilley J (1999) The design and im-

plementation of an intentional naming system. In: Proceedings of the 17th ACM

Symposium on Operating Systems Principles (SOSP99), ACM

Anthony D Joseph MFK Joshua A Tauber (1997) Mobile computing with the rover

toolkit. IEEE Transactions on Computers 46(3):337–352

Bauer M, Becker C, Hähner J, Schiele G (2003) ContextCube - providing context

information ubiquitously. In: Proceedings of the 23rd International Conference

on Distributed Computing Systems Workshops (ICDCS 2003)

Becker C, Geihs K (2000) Generic QoS-support for CORBA. In: Proceedings of 5th

IEEE Symposium on Computers and Communications (ISCC’2000)

Becker C, Schiele G, Gubbels H, Rothermel K (2003) Base – a micro-broker-based

middleware for pervasive computing. In: Proceedings of the IEEE international

conference on Pervasive Computing and Communications (PerCom), URL cite-

seer.nj.nec.com/550575.html

Becker C, Handte M, Schiele G, Rothermel K (2004) Pcom - a component system

for adaptive pervasive computing applications. In: 2nd IEEE International Con-

ference on Pervasive Computing and Communications (PerCom 04)



Pervasive Computing Middleware 39

Birrell AD, Nelson BJ (1984) Implementing remote procedure calls. ACM Trans

Comput Syst 2(1):39–59, DOI http://doi.acm.org/10.1145/2080.357392

Bishop J, Horspool N (2006) Cross-platform development: Software that lasts. In:

SEW ’06: Proceedings of the 30th Annual IEEE/NASA Software Engineering

Workshop, IEEE Computer Society, Washington, DC, USA, pp 119–122, DOI

http://dx.doi.org/10.1109/SEW.2006.14

Blair G, Coulson G, Andersen A, Blair L, Clarke M, Costa F, Duran-Limon H,

Fitzpatrick T, Johnston L, Moreira R, Parlavantzas N, Saikoski K (2001) The

design and implementation of Open ORB version 2. IEEE Distributed Systems

Online Journal 2(6)

Blair GS, Coulson G, Robin P, Papathomas M (2000) An architecture for next gen-

eration middleware. In: Proceedings of Middleware 2000

Carriero N, Gelernter D (1986) The s/net’s linda kernel. ACM Trans Comput Syst

4(2):110–129, DOI http://doi.acm.org/10.1145/214419.214420

Chappell D (2006) Understanding .NET (2nd Edition). Addison-Wesley Profes-

sional

Coen M, Phillips B, Warshawsky N, Weisman L, Peters S, Finin P (1999) Meet-

ing the computational needs of intelligent environments: The metaglue system.

In: 1st International Workshop on Managing Interactions in Smart Environments

(MANSE’99), pp 201–212

Dey AK (2001) Understanding and using context. Personal Ubiquitous Comput

5(1):4–7, DOI http://dx.doi.org/10.1007/s007790170019

Dey AK, Abowd GD (2000) The context toolkit: Aiding the development of context-

aware applications. In: Proceedings of the Workshop on Software Engineering for

Wearable and Pervasive Computing

Eddon G, Eddon H (1998) Inside Distributed Com. Microsoft Press



40 Gregor Schiele, Marcus Handte and Christian Becker

Edwards KW, WNewman M, Sedivy JZ, Smith TF, Balfanz D, Smetters DK (2002)

Using speakeasy for ad hoc peer-to-peer collaboration. In: 2002 ACM Conference

on Computer Supported Cooperative Work, pp 256–265

Eugster PT, Felber PA, Guerraoui R, Kermarrec AM (2003) The many

faces of publish/subscribe. ACM Comput Surv 35(2):114–131, DOI

http://doi.acm.org/10.1145/857076.857078

Garlan D, Siewiorek D, Smailagic A, Steenkiste P (2002) Towards distraction-free

pervasive computing. IEEE Pervasive Computing 1(2):22–31

Grimm R, Davis J, Lemar E, MacBeth A, Swanson S, Anderson T, Bershad B, Bor-

riello G, Gribble S, Wetherall D (2004) System support for pervasive applications.

ACM Transactions on Computer Systems 22(4):421–486

Handte M, Becker C, Rothermel K (2005a) Peer-based automatic configuration of

pervasive applications. Journal on Pervasive Computing and Communications pp

251–264

Handte M, Schiele G, Urbanski S, Becker C (2005b) Adaptation support for stateful

components in PCOM. In: Proceedings of Pervasive 2005, Workshop on Software

Architectures for Self-Organization: Beyond Ad-Hoc Networking

Handte M, Becker C, Schiele G, Herrmann K, Rothermel K (2007) Automatic re-

active adaptation of pervasive applications. In: IEEE International Conference on

Pervasive Services (ICPS ’07)

Helal S, Desai N, Verma V, Choonhwa L (2003) Konark - a service discovery and de-

livery protocol for ad-hoc networks. In: Proceedings of the IEEE Wireless Com-

munications and Networking Conference (WCNC 2003), vol 3, pp 2107–2113

Hodes TD, Czerwinski SE, Zhao BY, Joseph AD, Katz RH (2002) An architec-

ture for secure wide-area service discovery. Wirel Netw 8(2/3):213–230, DOI

http://dx.doi.org/10.1023/A:1013772027164



Pervasive Computing Middleware 41

Johanson B, Fox A (2002) The event heap: A coordination infrastructure for inter-

active workspaces. In: 4th IEEE Workshop on Mobile Computing Systems and

Applications, pp 83–93

Kiciman E, Fox A (2000) Using dynamic mediation to integrate cots entities in a

ubiquitous computing environment. In: 2nd International Symposium on Hand-

held and Ubiquitous Computing, pp 211–226

Ledoux T (1999) OpenCorba: A reflective open broker. In: Proceedings of the 2nd

International Conference on Reflection (Reflection’99), pp 197–214

Nidd M (2001) Service discovery in DEAPspace. IEEE Personal Communications

8(4):39–45

Noble B, Satyanarayanan M (1999) Experience with adaptive mobile applications

in odyssey. Mobile Networks and Applications 4(4):245–254

Object Management Group (2002) Minimum CORBA specification, revision 1.0

Object Management Group (2008) Common object request bro-

ker architecture (corba/iiop), revision 3.1. online publication,

http://www.omg.org/spec/CORBA/3.1/

Paluska J, Pham H, Saif U, Chau G, Ward S (2008) Structured decomposition of

adaptive applications. In: 6th Annual IEEE International Conference on Pervasive

Computing and Communications

Ponnekanti SR, Johanson B, Kiciman E, Fox A (2003) Portability, extensibility and

robustness in iros. In: Proceedings of the IEEE International Conference on Per-

vasive Computing and Communications (PERCOM 2003)

Ranganathan A, Chetan S, Al-Muhtadi J, Campbell R, Mickunas D (2005) Olym-

pus: A high-level programming model for pervasive computing environments.

In: 3rd IEEE International Conference on Pervasive Computing and Communi-

cations, pp 7–16



42 Gregor Schiele, Marcus Handte and Christian Becker

Román M, Campbell RH (2000) GAIA: Enabling active spaces. In: Proceedings of

the 9th ACM SIGOPS European Workshop

Román M, Campbell RH (2001) Unified object bus: Providing support for dynamic

management of heterogeneous components. Technical Report UIUCDCS-R-

2001-2222 UILU-ENG-2001-1729, Universiy of Illinois at Urbana-Champaign

Román M, Kon F, Campbell RH (1999a) Design and implementation of runtime

reflection in communication middleware: The dynamictao case. In: Proceedings

of the 19th IEEE International Conference on Distributed Computing Systems

Workshops, Workshop on Electronic Commerce and Web-Based Applications,

pp 122–127

Román M, Singhai A, Carvalho D, Hess C, Campbell R (1999b) Integrating PDAs

into distributed systems: 2K and PalmORB. In: Proceedings of the International

Symposium on Handheld and Ubiquitous Computing (HUC’99)

Román M, Mickunas D, Kon F, Campbell RH (2000) Legorb and ubiquitous corba.

In: Proceedings of the IFIP/ACM Middleware’2000 Workshop on Reflective Mid-

dleware

Román M, Kon F, Campbell RH (2001) Reflective middleware: From your desk to

your hand. IEEE Distributed Systems Online Journal, Special Issue on Reflective

Middleware

Roman M, Hess C, Cerqueira R, Ranganathan A, Campbell R, Nahrstedt K (2002)

Gaia: A middleware infrastructure to enable active spaces. IEEE Pervasive Com-

puting 1(4):74–83

Saif U, Pham H, Paluska J, Waterman J, Terman C, Ward S (2003) A case for goal-

oriented programming semantics. In: System Support for Ubiquitous Computing

Workshop, 5th Annual Conference on Ubiquitous Computing

Satyanarayanan M (2002) The evolution of coda. ACM Transactions on Computer

Systems 20(2):85–124



Pervasive Computing Middleware 43

Schiele G, Becker C, Rothermel K (2004) Energy-efficient cluster-based service

discovery. In: 11th ACM SIGOPS European Workshop, pp 20–22

Schilit B, Adams N, Want R (1994) Context-aware computing applications. In: Pro-

ceedings of the Workshop on Mobile Computing Systems and Applications, pp

85–90

Schuhmann S, Herrmann K, Rothermel K (2008) A framework for adapting the

distribution of automatic application configuration. In: 2008 ACM International

Conference on Pervasive Services (ICPS ’08), pp 85–124

Strang T, Linnhoff-Popien C (2004) A context modeling survey. In: First Interna-

tional Workshop on Advanced Context Modeling, Reasoning And Management

(UbiComp 2004)

Sun Microsystems (2001) Jini technology core platform specification, version 1.2.

online publication

Sun Microsystems (2006) Jdk6 remote method invocation (rmi)

- related apis and developer guides. online publication,

http://java.sun.com/javase/6/docs/technotes/guides/rmi/index.html

uddiorg (2004) UDDI spec technical committee draft, version 3.0.2. online publica-

tion, http://uddi.org/pubs/uddi v3.htm

UPnP Forum (2008) Universal plug and play device architecture, ver-

sion 1.0, document revision date 24 april 2008. online publication,

http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0-

20080424.pdf

Waldo J (1999) The jini architecture for network-centric computing. Communica-

tions of the ACM 42(7):76–82

Weiser M (1991) The computer for the 21st century. Scientific American 265(3):66–

75


