
Good Manners for Pervasive Computing – an Approach
based on the Ambient Calculus

Gregor Schiele∗, Marcus Handte+, and Christian Becker∗

∗Universität Mannheim
Schloss, 68131 Mannheim, Germany

{gregor.schiele | christian.becker}@uni-mannheim.de

+Universität Stuttgart
Universitätsstrasse 38, 70569 Stuttgart, Germany

marcus.handte@ipvs.uni-stuttgart.de

Abstract

When people interact, they follow distinct rules that co-
ordinate the order of speech, who opens doors, whom and
how to greet, and many things more. Such a social codex
depends on the milieu – or ambience – people are acting
in. People breaking the codex are either considered badly
educated or foreigners to the ambience – sometimes even
both. In Pervasive Computing a multitude of applications is
expected to populate our environment and to follow objects
and users throughout their daily journey. Consequently, we
will need a new codex – or manners – for Pervasive Com-
puting applications that controls the interaction between
applications. Such a codex will have to incorporate our ex-
isting codices as well as technical aspects. In this work in
progress paper we present an approach to extend our prior
work on Pervasive Computing system support by specify-
ing interdependencies of applications based on the ambient
calculus. This allows specifying and technically enforcing
”manners” for Pervasive Computing applications.

1. Introduction

Pervasive Computing aims at providing distraction-free
support for users in their everyday environment. To do
so, Pervasive Computing applications typically are context-
aware in the sense that they detect the user’s current phys-
ical context and adapt their behavior to it. As an example,
an application may sense that a user is currently driving in
his car and switches from visual to audio output. In an-
other scenario, the application may detect that the user is

standing nearby a large display and redirect its output to
it. Developing such adaptive applications is a complex and
error-prone task. Different approaches to help developers
handling this task have been proposed (e.g. [1], [9], [6], [8],
[7]). They typically provide a model to structure an applica-
tion as a number of cooperating entities, e.g. software com-
ponents, and a runtime environment to execute such appli-
cations. However, applications are often viewed in isolation
and are expected to coexist peacefully. In reality, a lot of
users will execute a multitude of applications concurrently
in the same Pervasive Computing environment. These ap-
plications will interfere with each other, both in their re-
source requirements and their user’s goals. To handle such
interferences, applications need to coordinate themselves
and agree on ways to solve the conflicts. One way to do so
is to define a set of application spanning rules which define
how the system should react to conflicts and how a consis-
tent system state can be achieved. We call this set of rules
a codex. Applications following a certain codex are consid-
ered well behaved. In the following we give some examples
for interferences between applications and discuss simple
codices to solve them.

2. Interferences and Codices

As motivation consider a simple ”follow-me” applica-
tion that plays the user’s favorite music and utilizes appro-
priate audio gear in the user’s vicinity. While moving from
the bedroom to the bath room, Anne listens to her favorite
morning show. Meanwhile, Bob is in the living room, chat-
ting with a friend on the phone using a hands-free speaking
system. When Anne enters the room, her music application

1



detects the audio equipment in the environment and redi-
rects the music to it, interfering with Bob’s phone call. To
detect and handle such interferences the developer of the
music application needs to foresee and handle this situation
manually. Using our system, Anne could define a codex
rule for her music application, stating that the application
should tune down the music if it is executed in the same en-
vironment as another user’s application which uses audio,
too.

Other examples for interferences are applications com-
peting for the same resources. If e.g. both Anne and Bob
want to listen to music, the system must decide, which ra-
dio channel to switch to. To solve this question, a codex
rule could define an ordering between users, stating, e.g.,
that Bob allows Anne’s goals to take precedence over his
own. Alternatively, the codex could specify that the users
themselves must determine a conflict resolution and present
the users with a possibility to enter their decision into the
system.

In addition, a certain class of privacy issues can be seen
as interference between user goals. While one user reads
his private email on a large wall-mounted display, another
user walks into the room. This violates the first user’s goal
to read his email privately, i.e. without any other user in
line of sight of the used display. The system automatically
detects this interference between the users and switches the
application’s output to another display to solve it.

Lastly, conditions on the physical surroundings can be
defined using codex rules. As an example, a logistics appli-
cation can use such rules to prevent placing reacting chem-
ical components close to each other.

3. System Model

Our system consists of multiple devices that are either
located in the environment, e.g. wall-mounted displays or
sensor nodes, or carried by users, e.g. personal digital as-
sistants or smart clothing. The devices are highly heteroge-
neous concerning their resources, e.g. computational power
or memory. All devices are networked spontaneously, e.g.
using some wireless communication technology, and form
a mobile ad hoc network (MANET).

In the system, multiple users access the devices to exe-
cute adaptive applications, i.e. applications that adapt them-
selves to changes in the environment. We assume the pres-
ence of suitable system software for adaptive applications,
e.g. [1].

4. Requirement Analysis

Our goal is to resolve interferences between applications
of different users automatically. Three steps are necessary

to do so. The first step is to specify possible interferences.
This is necessary not only for detecting them but also for
presenting them to users. For the specification, a suitable
notation is needed, e.g. one of the notations given in [4].

In the second step, interferences must be detected at
runtime. Interferences emerge, because applications influ-
ence the physical context of their users in conflicting ways,
e.g. because both use an audio output component. There-
fore, changes in the physical context must be monitored
and checked against the interference specifications created
in step one.

The third step in handling interferences is to resolve
them. This is done by providing codices which specify valid
resolution strategies for different interferences. In addition,
a resolution manager that executes the codex rules at run-
time is needed.

To summarize, we need a system, which is able to de-
scribe, detect and resolve interferences between Pervasive
Computing applications dynamically. Based on our system
model, we derive the following two additional requirements
for this system:

First, the system must work on resource poor devices.
As described in the system model, devices are highly het-
erogeneous concerning their resources. We cannot assume
that we are able to access a resource-rich device in any given
situation. Instead, the system must be prepared to work with
a set of resource-poor devices only.

Secondly, the system must avoid distracting the user.
Frequent interactions with the user could become annoying
to the user and lead to a rejected system. Therefore, all steps
in handling interferences should be automated as much as
possible. As an example, whenever an interference occurs,
the system should try to resolve it automatically. In some
cases, automated resolution will not be possible. In such
cases, the system must present the users with a description
of the interference and allow the user to input a resolution
strategy manually.

Clearly, these requirements conflict with each other. As
an example, to automate the resolution process as much as
possible, the system could monitor the user behavior and
try to derive the right reaction to a given conflict automat-
ically. However, this could lead to efficiency problems on
resource-poor devices. In practice, we must find a suitable
trade-off between our requirements.

5. Approach

Our approach for providing a Pervasive Computing sys-
tem that allows the detection, description and resolution of
interferences between applications builds upon our previous
work in Pervasive Computing system software.[2][1][10]

We model a Pervasive Computing system as a number of
mobile ambients. The ambient calculus was originally de-

2



fig_solution

ambient

Anne

speaker

microphone

speakermusic
player

Bob

PCOM Container
Resource
Manager

Resolution 
Manager

component
…

component

<contract>
<offer>
<interface type=“MusicOutput“>
<property name=“context “ type=string 
value=”audioOut“/>

</interface>
</offer>
<requirement>
<resource type=“WellBehaved“>
<rule type=“exclusive” value=“audioOut”/>

</resource>
</requirement>

</contract>

47 380 541 699

Figure 1. Extended system architecture

veloped by Luca Cardelli and Andrew D. Gordon [3]. As
we have shown in [10], ambients can be used to model
structured ubiquitous applications elegantly. An ambient
denotes a bounded spatial area in which computation hap-
pens [10], e.g. a smart room, or a user’s personal area net-
work. Each ambient contains a number of applications, that
are executed in its context.

Applications are modeled using our component system
PCOM [1]. In PCOM, applications are composed from soft-
ware components with contractually specified dependencies
towards other components and their execution platform. As
an example, a component could specify that it offers an au-
dio output and requires a certain amount of memory and a
speaker to do so.

To handle interferences, we introduce a new system com-
ponent, the resolution manager into our system. In addition,
we extend the PCOM component contracts. The resolution
manager is responsible for detecting and resolving interfer-
ences. The contracts are extended to include all necessary
information. An exemplary overview of the extended sys-
tem architecture is given in Figure 1. New parts are written
in bold.

In our extended system, each component specifies in its
contract that it requires a new virtual resource, the so-called
WellBehaved resource. Interferences are described by in-
cluding specific requirements towards this resource. As an
example, a component may add the requirement that no

other component in the environment outputs audio. This is
a natural extension of PCOM’s contract model and allows
the seamless integration of interferences into the component
specification. To allow the system to detect interferences at
runtime, application components specify in their offer con-
tracts how they affect the physical context. As an example,
the music application would specify that it outputs audio.
To do so, we extend the PCOM contracts with new entries
for context modifications. In the future, these entries could
be derived and included into the contracts automatically. At
the moment, we expect the component developer to manu-
ally specify the component’s influence on the physical con-
text.

In PCOM, resources are managed by so-called resource
managers. Each resource manager is responsible for ad-
ministrating a specific resource. At runtime, PCOM allows
a resource manager to check if its resource is available and
to allocate it to components as needed. If the resource be-
comes unavailable, the resource manager notifies the sys-
tem, that one or more contracts are no longer fulfilled and
that the application must be adapted.

To reuse this generic PCOM mechanism, we implement
the resolution manager as a resource manager, which is re-
sponsible for administrating the newly added WellBehaved
resource. This way, PCOM automatically delegates all in-
formation about the needed resource, i.e. our interference
descriptions, to the resolution manager. If the resolution

3



manager detects that an interference occurs, it can access
the current ambient, retrieve its codex rules and use them
to derive a suitable strategy for resolving the conflict. If no
other resolution can be found, the resolution manager can
declare the component’s contract as invalid and initiate the
application to adapt itself.

As an example, if Bob’s phone application defines in its
contract that no other audio output is valid, Anne’s music
application could detect the audio output in the room but
could not bind to it, as the PCOM resource manager would
regard audio output as an already bound exclusive system
resource. If Anne’s application would already be running
and Bob would enter the room, PCOM would detect, that
it can no longer fulfill its contract towards Anne’s music
player and initiate its adaptation.

6. Related Work

We expect interferences between Pervasive Computing
applications to be commonplace in future systems. Despite
this, there is still relatively little work done in resolving such
interferences automatically.

Morla and Davies presented a high level framework for
describing interferences [4]. However, they do not provide
an approach to resolve them.

Otto et al examine different strategies to resolve conflicts
resulting from multiple users interacting with the same ser-
vice at the same time [5]. Possible strategies are e.g. based
on a first come first serve priority assignment or on explicit
negotiation between users. Their findings provide valuable
input for our work as the proposed strategies can be readily
included in our system as exemplary codices.

7. Conclusion and Future Work

In this paper, we have presented a new approach towards
handling interferences between Pervasive Computing appli-
cations automatically. Our approach is based on the am-
bient calculus to structure the interference determination.
Codices are thus associated with ambients. A codex defines
a set of rules that each application executed in the given
ambient is expected to follow.

So far, we have defined our model for ambient based
codices and begun to integrate it into our existing compo-
nent system PCOM. At the moment we are analyzing dif-
ferent possibilities to describe interferences and the codices
themselves. In addition, we plan to implement variants of
the resolution manager both for resource rich and poor en-
vironments. A simple codex could resolve interferences by
invalidating a component’s contract, forcing the application
to switch to another component. However, more complex
resolution strategies are needed in practice. Such strategies
must be designed and evaluated.

In the future, we want to examine the performance and
usability of our system in a real system environment. As
an example, we want to evaluate the overhead of our con-
tinuous interference checks. We also want to realize and
evaluate a graphical design tool to allow end users to define
new interferences and codex rules conveniently.

References

[1] C. Becker, M. Handte, and G. Schiele. PCOM – a compo-
nent system for pervasive computing. In Proceedings of the
Second IEEE International Conference on Pervasive Com-
puting and Communications (PerCom 04), March 2004.

[2] C. Becker, G. Schiele, H. Gubbels, and K. Rothermel. Base
– a micro-broker-based middleware for pervasive comput-
ing. In Proceedings of the IEEE International Conference
on Pervasive Computing and Communications (PerCom03),
Mar. 2003.

[3] L. Cardelli and A. D. Gordon. Mobile ambients. In Proceed-
ings of the First International Conference on Foundations of
Software Science and Computation Structure(FOSSACS98),
pages 140–155, April/March 1998.

[4] R. Morla and N. Davies. A framework for describing inter-
ference in ubiquitous computing environments. In Proceed-
ings of the Fourth Annual IEEE International Conference
on Pervasive Computing and Communications Workshops,
page 632, 2006.

[5] F. Otto, C. Shin, W. Woo, and A. Schmidt. A user survey
on: How to deal with conflicts resulting from individual in-
put devices in context-aware environments? In Advances in
Pervasive Computing 2006, Adjunct Proceedings of Perva-
sive 2006, pages 65–68, May 2006.

[6] S. R. Ponnekanti, B. Johanson, E. Kiciman, and A. Fox.
Portability, extensibility and robustness in iROS. In Pro-
ceedings of the First IEEE International Conference on Per-
vasive Computing and Communications (PerCom03), 2003.

[7] M. Román, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H.
Campbell, and K. Nahrstedt. Gaia: A middleware infrastruc-
ture to enable active spaces. IEEE Pervasive Computing,
pages 74–83, Oct-Dec 2002.

[8] U. Saif, H. Pham, J. M. Paluska, J. Waterman, C. Terman,
and S. Ward. A case for goal-oriented programming seman-
tics. In System Support for Ubiquitous Computing Workshop
at the Fifth Annual Conference on Ubiquitous Computing
(UbiComp03), 2003.

[9] S. Urbanski, M. Handte, G. Schiele, and K. Rothermel. Ex-
perience using processes for pervasive applications. In Per-
vasive University Workshop at Informatik 2006, 2006.

[10] T. Weis, C. Becker, and A. Brändle. Towards a programming
paradigm for pervasive applications based on the ambient
calculus. In Proceedings of the International Workshop on
Combining Theory and Systems Building in Pervasive Com-
puting (CTSB), Pervasive, 2006.

4


