
PECES Middleware Challenges –

On Building the Bridge between

Islands of Integration
A

Marcus HANDTE
1
, Muhammad HAROON

1
, Wolfgang APOLINARSKI

1
,

Pedro MARRON
1
, Vinny REYNOLDS

2
, Danh LE PHUOC

2
, Manfred HAUSWIRTH

2

1
University of Bonn and Fraunhofer IAIS, Germany

Email: {handte, haroon, apolinar, pjmarron }@cs.uni-bonn.de
2
National University of Ireland, Galway, Ireland

Email: {vinny.reynolds, danh.lephuoc, manfred.hauswirth}@deri.org

Abstract: Pervasive computing envisions seamless support for user tasks by means

of cooperating networked devices that are invisibly integrated into the environment.

Due to device integration and device mobility, the resulting networks can be highly

heterogeneous and dynamic which complicates application development. In the past,

researchers have designed several middleware systems to deal with the arising

challenges. Usually these middleware systems are based on the concept of smart

spaces. Thus, they enable the collaboration of devices in the vicinity of the user.

However, they provide only little support for the collaboration of devices that are

located in distant smart spaces. The goal of the PECES research project is to bridge

the resulting islands of integration. As we report in this paper, the goal set out by

PECES results in an extended set of middleware challenges.

1. Introduction

The ongoing miniaturization of computer technology and the proliferation of wireless

networking technology have led to an ever-increasing number of networked computer

devices that are invisibly embedded into all kinds of everyday objects. In the recent past,

researchers have developed a number of middleware systems to facilitate the development

of so-called smart spaces which integrate the devices present in a certain area. To keep

smart spaces manageable, the middleware systems introduce artificial boundaries that are

based on physical proximity [1], [2], [4] or geographical location [3], [6], [7], [8] such as

rooms or buildings. Besides providing support for a single smart space, some middleware

systems also offer mechanisms to migrate the application state created in one space to

another [10] or adapt the set of applications leveraged by a user depending on the

capabilities of the present space [11].

 Although the existing middleware systems can be used to realize important parts of

Marc Weiser’s vision of pervasive computing [11], so far they only provide support for

scenarios dealing with one smart space at a time. As a consequence, the existing solutions

lead to islands of integration that do not interact with each other. However, many future

applications will require the simultaneous interaction of devices that are integrated in

different smart spaces in order to provide a truly seamless user experience. The spectrum

ranges from applications that provide proactive support for nomadic users to applications

that provide support for remote collaboration of users. Naïve solutions like increasing the

A
 This work has been partially supported by CONET (Cooperating Objects Network of Excellence) and

PECES (PErvasive Computing in Embedded Systems), both funded by the European Commission under FP7

with contract numbers FP7-2007-2-224053 and FP7-224342-ICT-2007-2 respectively.

area that is covered by a particular smart space are usually not applicable, e.g. due to

scalability issues or due to the fact that the smart space represents given administrative

domains that are not subject to extension. Moreover, in many cases they are not desirable as

potentially sensitive context information such as the physical location of objects or the

presence of users is often shared freely between the devices within a smart space. Thus,

there is a need for supplementary concepts and supportive middleware mechanisms that

enable the networking of embedded devices across the boundaries of a single smart space.

The design and development of such concepts and mechanisms is a key goal of the PECES

research project. In this paper, we report on the challenges arising from this goal and we

discuss how they impact the architectural design of pervasive computing middleware.

 The remainder of this paper is structured as follows. In the next section, we provide

more details on the objectives of the PECES research project and we introduce some

motivating application scenarios. In Section 3, we describe the resulting challenges with

respect to pervasive computing middleware. In Section 4, we outline the components of the

middleware developed in the PECES project and we conclude the paper with a short

summary and a discussion of future work in Section 5.

2. Objectives and Scenarios

As indicated previously, the primary goal of the PECES research project is the development

of concepts to support the seamless interaction of networked embedded devices across the

boundaries of a single smart space. As depicted in Figure 1, this goal fosters an extension of

the typical system boundaries of a smart space which enables applications to dynamically

extend their boundaries to include remotely located devices and services. To achieve this

goal, the project consortium designs an integrated software infrastructure that consists of a

set of context ontologies, a middleware system and an associated set of application

development tools. To validate the concepts realized by this software infrastructure, the

project consortium develops prototype applications for a broad range of scenarios.

Sm
ar

t S
p

ac
es

Networked Devices

System &
Application Boundaries

System Boundaries

Networked Devices

Application
Boundaries

Sm
ar

t
W

o
rl

d

Internet

Webservers & Services

Figure 1 – PECES Objectives

 The first application scenario is targeted at integrated trip assistance that provides

proactive support for nomadic users. Imagine a salesman that shall participate in a meeting

with a customer. When entering his car, his smart phone joins the smart space formed by

the devices integrated into the car. Since the salesman wants to drive to the customer, his

smart phone programs the in-car navigation system appropriately. By validating the route,

the navigation system detects that the salesman must travel via a toll road and since the

final destination lies within a city center, the salesman must use an underground parking lot.

After asking for confirmation, the navigation system uses the smart phone to contact the

traffic management system of the toll road to pay for the passage. Furthermore, it reserves a

parking at the underground parking lot. When arriving at the toll road, a camera system

reads the license plate of the car and since the salesman has already paid for the passage, he

may continue the trip to his destination without distraction. When arriving at the

underground parking garage, the system that is managing the garage directs him to the

reserved parking. At the site of the customer, the person at the front desk authorizes him to

access guest services of the smart space on the site. Thus, his devices join the smart space

and they use the services to find the meeting room where the customer is already waiting.

 The second application scenario is targeted at collaborative medical alert handling that

relies on support for remote collaboration of users. Imagine an elderly man living alone at

home. To improve his medical safety without moving to a special home for elderly persons,

he wears a number of sensors that continuously monitor his personal condition. Such

sensors may include accelerometers that can detect his movement or whether he has fallen

over. Furthermore, they may include sensors to gather blood pressure values or insulin

levels. Using wireless networking technology, the sensors are integrated into a smart space

that is managed by an inexpensive WLAN router with Internet access. When the sensors

detect a potential medical emergency, they report this to the router. Depending on the

severity of the emergency, the router determines an appropriate response. In severe cases,

the router may immediately contact a remote medical service. Thereby, it may transfer the

measurements so that the ambulance can prepare their equipment. In less severe cases, the

router may also contact a collaborating neighbour that has agreed to look after the elderly.

To ensure that the neighbour handles the alert, the router first contacts the smart space of

the neighbour. If the smart space agrees, the alert is forwarded to one of the devices in the

vicinity of the neighbour. If the neighbour is unavailable or cannot handle the alert, the

router can either contact another neighbour or, as a last resort, it may contact the medical

service. To minimize the effort for dealing with false alerts, both – the medical service and

the neighbour – may first contact the elderly through his devices before visiting him.

 The previous scenarios clearly motivate the need for interaction between devices that

are part of different smart spaces. Besides from dynamically joining the appropriate smart

space, the devices of the salesman in the trip assistance scenario must also collaborate to

contact other devices in remote smart spaces such as the traffic management system and the

parking system. Similarly, the devices in the collaborative medical alert handling scenario

require the collaboration of the devices of the elderly person with remotely located devices

of neighbours or a medical service. It is worth mentioning that the collaboration between

the devices in distant smart spaces is fairly dynamic and cannot be predefined statically, in

general. Instead, the devices in one smart space must determine the appropriate devices in

other smart spaces on the basis of the user’s context. For trip assistance, the navigation

system selects the traffic management system and the parking system on the basis of the

route. In medical alert handling, the appropriate person to contact is selected on the basis of

the severity of the emergency and the suitability and availability for handling the alert. Last

but not least, it is important to note that the communication between remotely located

devices usually relies on insecure networks like the Internet and that the data that is

transmitted via these networks may represent sensitive information such as credit card

information for trip assistance and medical information in the alert handling scenario.

3. Challenges and Implications

As a first step towards developing the concepts for the PECES middleware, we analyzed

the application prototypes to identify the resulting requirements. In the following, we report

on the results of this analysis by presenting the key challenges that must be tackled by

middleware that supports the networking of different smart spaces. Since support for smart

spaces is a necessary prerequisite for their integration, the challenges can be classified into

a set of traditional challenges and a set of extended challenges. The traditional challenges

are immediately resulting from the idea of pervasive computing and smart spaces whereas

the extended challenges are arising from the goal of networking smart spaces.

3.1. Traditional Challenges

As discussed previously, the first set of challenges represents the traditional challenges that

all middleware developers must consider when building support for pervasive computing

applications – even when they solely target support for a single smart space. The challenges

can be summarized as suitable support for heterogeneity and adequate support for

dynamics. Both challenges can be motivated easily by looking at the typical characteristics

of smart spaces envisioned by most pervasive computing scenarios – including the ones

presented in the previous section.

 Due to the invisible integration into everyday objects, the devices in a smart space may

encompass not only powerful general purpose computers such as laptops, desktops and

servers but also resource-poor specialized devices. The trip assistant scenario, for example,

relies on resource-poor mobile devices such as the smart phone of the salesman as well as

embedded devices such as the navigation system of the car. In addition to such devices, the

alert handling application introduces devices with more severe restrictions such as WLAN

routers and wearable sensors. Due to energy constraints and specialization, devices may be

equipped with different short-range communication technologies such as Bluetooth,

WLAN, IrDA or Zigbee. Thereby, it is noteworthy that although some devices may be

equipped with multiple technologies, not all devices will provide support for all

technologies. The smart phone of the salesman, for example, could be equipped with

WLAN and Bluetooth. However, the wearable sensors in the alert handling scenario will

most likely not rely on WLAN but they will use a communication technology with low

energy consumption such as Zigbee. Thus, the integration and specialization of devices lead

to highly heterogeneous networks of devices. As a consequence, a suitable middleware for

pervasive computing must be minimal to support resource-poor devices. However, in order

to be able to leverage the resources of resource-rich devices, it must also be extensible so

that it can be tailored to the features provided by the device.

 Besides from heterogeneity, middleware that targets support for smart spaces must also

handle a potentially high degree of dynamics. Due to the miniaturization of devices, a user

may carry multiple devices at a time. In the previous scenarios, the salesman is carrying a

smart phone and the elderly person is equipped with wearable sensors. When a user enters a

smart space, the mobile devices of the user must be integrated dynamically. Similarly, when

a user leaves, the unavailability of the devices must be handled. At the lowest layer, this

requires some form of device discovery that takes care of detecting the presence and the

absence of a device. On top of discovery, the dynamic integration of devices also requires

support for spontaneous interaction between them. Considering that not all devices may be

able to communicate with each other directly, e.g. because they may not be equipped with

the same communication technology, spontaneous interaction also requires some form of

technology-overarching mediation.

3.2. Extended Challenges

The second set of challenges can be classified as extended challenges that result from the

goal of supporting interaction of devices across the boundaries of a single smart space. The

challenges can be summarized as support for scalable context-based interaction and flexible

support for secure context-based access control. Again, both challenges can be easily

motivated through the trip assistant scenario and the collaborative medical alert handling

scenario introduced in the previous section.

 As indicated previously, the interaction between devices residing in different smart

spaces is often dynamic and thus, it cannot be predefined in general. In the scenarios

introduced above, the navigation system and the WLAN router rely on the current context

of the user to determine the set of smart spaces to interact with. The traffic management

system and the parking garage are selected on the basis of the destination and route of the

salesman. Similarly, the smart space of the neighbor is selected dynamically on the basis of

the medical data and his availability for handling an alert. As soon as the appropriate smart

spaces are identified, the devices interact with each other and they may use each other’s

services. Thereby, it is important to note that not all devices may be equipped with direct

Internet access. Clearly, the traffic management system and the management system for the

parking garage may directly offer services via the Internet. However, in the alert handling

application, it may be necessary to contact the neighbor through one of the devices

embedded into the home environment such as a display attached to a refrigerator, for

example. Thus, there may be a need for mediated interaction in such scenarios.

Figure 2 – Context-based Addressing and Grouping

 Enabling this kind of interaction requires a suitable addressing and grouping scheme

that allows devices to determine their interaction partners in other smart spaces on the basis

of their context as shown in Figure 2. Since the interaction partners may be located in

physically distant smart spaces the scheme must hide the dynamics of the underlying

networks to facilitate scalability. As the scheme necessarily utilizes context information to

enable the context-based selection of a device or service in a distant smart space, there is a

need for a common representation and understanding of the relevant parts of the context. To

establish such a representation and understanding, one may either rely on a comprehensive

context ontology or a set of scenario-specific context ontologies that can be switched on

demand and that facilitate meshing to support more complex applications. On the basis of

these ontologies, the devices may then export parts of their context to different sets of

devices. At the lowest level, they may export the available services together with their

context to the devices that are present in the surrounding smart space. Beyond their smart

space, they may export it to close-by and distant smart spaces. This requires an adequate

distributed registry that enables devices to find the desired interaction partners and services.

Once the devices and services are identified, they can start to interact with each other. Since

some devices may not be able to access the Internet directly, the interaction requires a

gateway concept for mediation. In cases where legacy devices are present, the gateway

concept must be flexible enough to support them as well.

 Besides from solely supporting context-based interaction, the networking of different

smart spaces also raises an extended set of challenges with respect to security and privacy.

Within a single smart space, it is often possible to restrict the access to the smart space by

means of low-level techniques such as link-layer encryption with a shared secret or access

control, e.g. via 802.1x. Such techniques ensure that only authorized devices may join the

smart space and thus, it is possible to freely share the services and the context information

with the other devices in the smart space. Obviously, this approach cannot be applied when

context and services shall be shared between different smart spaces. Thus, it is necessary to

control the access at the middleware level. Thereby, it is important to note that the access

control cannot be static but it must be based on context as well. This can be clarified by

taking a closer look at the alert handling scenario. While it may be perfectly viable that the

elderly person is able to determine the availability of a neighbor during alert handling, free

access to this information would clearly raise a privacy concern.

 To enable context-based access control at the middleware level, it is possible to reuse

the context ontologies that are also used for context-based addressing. However, in

addition, it is necessary to equip the middleware with a flexible but lightweight mechanism

for specifying and enforcing access rights to services and context information. In order to

keep the middleware minimal, it is desirable to reuse the addressing and grouping scheme

to specify privileged devices and groups. Yet, as the context information may be distributed

via insecure networks, it is necessary to ensure that the information used during access

control is authentic. This requires additional mechanisms and protocols to ensure that

context information cannot be forged easily. Furthermore, in cases where the context

information itself is a sensitive piece of information it is necessary to ensure secrecy during

the transmission. This requires adequate key distribution mechanisms and encryption

protocols. However, since the interacting devices may be resource-poor, these mechanisms

and protocols must be lightweight. Alternatively, it may be possible to rely on a gateway

concept to offload the resource intensive tasks to a more powerful device. To do this, it is

necessary to model and enforce (simple) trust relationships between the devices.

4. Middleware Architecture

In the following, we briefly outline the resulting middleware architecture and the software

stack that will be developed within the PECES project. The components of the architecture

are depicted in Figure 3. As indicated in this figure, the overall system can be split into

different layers. At the bottom, the hardware layer represents heterogeneous hardware

ranging from specialized embedded systems to general purpose computers. As discussed

previously, these systems will be equipped with different communication technologies.

Above the device layer, a hardware abstraction layer takes care of abstracting from the

different device capabilities and communication technologies. On top of the hardware

abstraction layer, the PECES middleware layer provides common functionality to the

application objects and services that reside at the application layer.

 As indicated by the colors of the building blocks, the PECES project will not develop

the necessary software completely from scratch in order to focus on the new and innovative

middleware features. Specifically, the project will reuse software systems that have been

developed by third parties as well as existing research prototypes that have been developed

by members of the consortium. A Java Virtual Machine (JVM) will be employed at the

hardware abstraction layer to abstract from some of the specifics of the underlying

hardware. This will enable the utilization of the same software on a broad range of different

devices, including personal and industrial PCs, smart phones, PDAs, wireless access points

and embedded systems such as the JStamp or TINI processor as well as embedded sensor

platforms such as SunSPOT, for example. To abstract from the networking technology, the

project will rely on the BASE micro-broker [2]. By defining a flexible plug-in architecture,

BASE can effectively provide a homogeneous but efficient communication API to higher

layers that can be used to support different communication abstractions. However, due to

the great variety of devices utilized by the targeted applications, it will be necessary to

extend the existing system with additional communication plug-ins.

BASE Micro-broker

IP
P

lu
gin

Zigb
ee

P
lu

gin

B
lu

eto
o

th
P

lu
gin

…

Distributed
Registry

Secure
Context Provisioning

Secure
Role Assignment

Java Virtual
Machine (JVM)

Heterogeneous
Hardware Platforms

Heterogeneous
Networking Technologies

Application Objects
and Services

Hardware
Layer

Hardware
Abstraction

Layer

PECES
Middleware

Layer

Application
Layer

3rd party hardware

3rd party software

Software provided by preceding projects

Software provided by the PECES project

D
evelo

p
m

en
t

To
o

ls

Eclipse

JVM

PC

Role
Specifications

Figure 3 – PECES Middleware Architecture

 On top of the abstractions provided by the BASE micro-broker, the PECES consortium

will develop three additional middleware services that realize the new core functionality –

that is the establishment of smart spaces as well as the dynamic networking of distant smart

spaces in an application-specific and secure manner. A service for context provisioning will

manage the available context information for the devices. In order to be able to use the

context information as basis for security or privacy sensitive applications, the service for

context provisioning will not only manage the actual context but also relevant meta

information such as the source, precision and timeliness of the information. To model the

context information, the PECES consortium will employ a set of flexible and extensible

context ontologies that will be instanciated for the scenarios described previously.

 To ease the utilization of the context information at the application-level, the PECES

middleware will encompass a role assignment service. As described in greater detail in [5],

this service will enable application developers to automate various configuration tasks in a

context-dependent manner. This includes the formation of smart spaces as well as context-

dependent interaction and access control. To support this in a generic manner, the

application developer provides a role specification that is automatically (re-)evaluated by

the service at runtime. Technically, a role specification consists of a set of roles that are

associated with a set of constraints over the context. Using constraints, a developer may, for

example, specify that a certain role should be assigned to all devices in the vicinity that

belong to a certain user or that are within a certain room. When passing a specification to

the service, the service automatically computes the set of devices that match the specified

constraints and it assigns the corresponding roles to them. The dynamically computed role

assignments can then be used as basis for context-dependent communication. For example,

a device may simply send a message to all devices that have been assigned a certain role or

set of roles. Depending on the security requirements, the role assignment itself can be

secured appropriately, e.g. by cryptographically signing the association between the role

and the target device. Such a secure role assignment enables the usage of an assigned,

signed role as cryptographic token during access control.

 In addition, the role assignment can also be exported to a distributed registry. This

enables the remote discovery and reuse of the assignment. To support this, a role

specification may reference role assignments stored in the registry as part of a constraint.

By assigning a new role to roles that represent multiple smart spaces, a developer can easily

“join” two or more remote smart spaces by assigning a new role to them. The assigned roles

can then be used for context-based communication, for example. In order to manage the

role assignments in a scalable manner, the distributed registry will be organized

hierarchically with registries at various levels, i.e. device registry, smart space registry and

global meta-registry.

5. Conclusions

Existing middleware systems for pervasive computing only provide limited support for the

simultaneous interaction of devices across the boundaries of a smart space. However, a

broad range of pervasive computing scenarios cannot be supported without such an

interaction. Enabling this raises a new class of middleware challenges. The goal of the

PECES project is to address these challenges with appropriate concepts. Towards this end,

the PECES consortium is developing a middleware that enables the interaction across the

boundaries of a single smart space in a context-dependent and secure manner. This

middleware will provide three novel services to ease application development, namely a

service for secure context provisioning, a service for automatic and secure role assignment

as well as a distributed registry to manage dynamic role assignments. Together with the

remaining middleware components, these services will ensure that future pervasive

applications can leverage a dynamic set of smart spaces to bridge the islands of integration.

References

[1] Aitenbichler, E., Kangasharju, J., & Mühlhäuser, M. (2005). Experiences with MundoCore. 3rd IEEE

International Conference on Pervasive Computing and Communications Workshops, (pp. 168-172). USA.

[2] Becker, C., Schiele, G., Gubbels, H., & Rothermel, K. (2003). BASE - A Micro-broker-based Middleware

for Pervasive Computing. 1st IEEE International Conference on Pervasive Computing and Communications,

(pp. 443-451). Fort Worth, USA.

[3] Garlan, D., Siewiorek, D., Smailagic, A., & Steenkiste, P. (April-June 2002). Toward Distraction-Free

Pervasive Computing. IEEE Pervasive Computing , 1 (2), pp. 22-31.

[4] Grimm, R. (July-September 2004). One.world: Experiences with a Pervasive Computing Architecture.

IEEE Pervasive Computing , 3 (3), pp. 22-30.

[5] Haroon, M., Handte, M., Marron, P. (March 2009) Generic Role Assignment – A Uniform Abstraction for

Configuration of Pervasive Systems. Workshop on Middleware Support for Pervasive Computing at

Percom’09, Galveston, Texas, USA

[6] Paluska, J., Pham, H., Saif, U., Chau, G., & Ward, S. (March 2008). Structured Decomposition of

Adaptive Applications. 6th Annual IEEE International Conference on Pervasive Computing and

Communications , S. 1-10.

[7] Ponnekanti, S., Johanson, B., Kiciman, E., & Fox, A. (March 2003). Portability, Extensibility and

Robustness in iROS. 1st IEEE Int. Conference on Pervasive Computing and Communications, pp. 11-19.

[8] Roman, M., & Campbell, R. (September 2000). Gaia: Enabling Active Spaces. 9th ACM SIGOPS

European Workshop , S. 229-234.

[9] Roman, M., Ho, H. & Campbell, R. (December 2002). Application Mobility in Active Spaces. 1st

International Conference on Mobile and Ubiquitous Multimedia, Oulu, Finland

[10] Sousa, J. P. & Garlan, D. (August 2002). Aura: an Architectural Framework for User Mobility in

Ubiquitous Computing Environments. 3rd IEEE/IFIP Conference on Software Architecture, pp. 29-43.

[11] Weiser, M. (February 1991). The computer for the 21st century. Scientific American , 265 (3), S. 66-75.

