
Customizable Pervasive Applications

Torben Weis, Marcus Handte, Mirko Knoll, Christian Becker 1
Institute of Parallel and Distributes Systems, Universität Stuttgart, Germany

firstname.lastname@informatik.uni-stuttgart.de

1 This work is partially funded by German Research Foundation (DFG) Priority Programme 1140 “Middleware for
Self-organizing Infrastructures in Networked Mobile Systems”, by the DFG Excellence Center 627 “Nexus”, and by
Microsoft Research Cambridge.

Abstract

Human behavior and housing resist every standard-
ization effort. Many aspects such as different technical
equipment, furniture, and usage patterns make our
surroundings as individual as ourselves. Thus, the per-
sonalization of pervasive applications is a fundamental
requirement. To enable the development of custom
pervasive applications, we propose a software devel-
opment process. This process is based on the success-
ful process for modern desktop applications. There,
developers create extensible applications and compo-
nents. Customizers use the resulting artifacts to devel-
op custom applications. Finally, users configure appli-
cations to their individual needs by adjusting prede-
fined settings. To adopt this process for Pervasive
Computing, we present a component system for devel-
opers, a graphical toolkit for customizers, and self-
configuration algorithms to ease the deployment.

1. Introduction

Pervasive Computing (PerCom) envisions user-
centric support for tasks that go beyond the desktop.
Computerized everyday objects that are embedded into
the physical environment of users interact in a coordi-
nated fashion to ease daily tasks. It has been well rec-
ognized that this vision eventually leads to heteroge-
neous environments and depends heavily on the indi-
vidual preferences of users. As a result, it is unlikely
that a single entity will be able to develop one-size-
fits-all applications that match both, heterogeneous
environments and heterogeneous user requirements.

One of the success factors of desktop applications
such as office or creativity suites is the fact that they
are highly customizable. Apart from the settings that
can be adjusted by end-users, customizers can script

additional functionality such as data import filters,
macros, or specialized user interfaces. Since these ap-
plications are typically built upon extensibility frame-
works, customizers can also reuse the provided fea-
tures as part of their own applications. As a result,
commercial off-the-shelf (COTS) desktop applications
are often used as a foundation for the cost-effective
development of custom applications.

In this paper, we argue that the development of per-
vasive applications should follow the successful trail
of desktop applications. The contribution of this paper
is twofold. First, we present a development process for
customizable component-based pervasive applications.
Secondly, we present Nexel and PCOM, our integrated
tool chain for PerCom that supports this process.

The remainder is structured as follows. Next, we
describe our system model. In Section 3, we present
the development process and our approach for provid-
ing tools. In Section 4 and 5, we describe our tool
chain consisting of PCOM and Nexel. Section 6 dis-
cusses related work and Section 7 concludes the paper.

2. System Model

We envision future pervasive environments as
spaces, e.g., rooms and buildings, enriched with appli-
ances. Appliances, such as phones, TVs, fridges, cups,
etc., are equipped with wireless communication tech-
nology and they export their specialized functionality
through high-level interfaces. Note that today this as-
sumption has already become reality for many appli-
ances. By buying new appliances, the environments of
users are enriched gradually. Pervasive applications
combine the specific features of appliances to achieve
a coordinated behavior desired by their users. Howev-
er, individual preferences and different sets of appli-
ances might require custom application logic.

3. Development Process and Tool Support

As shown in Figure 1, we can distinguish two soft-

ware architectures that both foster customizable appli-
cations. Architecture one is the equivalent to modern
productivity tools. A software vendor or an open
source project produces a “suite”. This is a feature-rich
piece of software covering the functionality that most
users expect from a smart environment. This suite can
be customized by adding customization components.
Architecture two builds on coarse-grained components.
As Figure 1 indicates, a person can compose custom
applications from these components.

User

Suite
Customization

Customization

Component Component

Composition

User

Figure 1 – Customization Architectures

Both architectures have in common that custom ap-

plications are built in three stages as shown in Figure
2. At the development stage, professional developers
create commercial off-the-shelf suites, components or
appliances for a large user base. At the customization
stage, customizers adapt software to the special needs
of rather small user groups. At the utilization stage,
users deploy suites, components, appliances and cus-
tomizations and expect that they cooperate seamlessly.

Development

PCOM SDK

Customization

Nexel

Utilization

PCOM Runtime

Figure 2 – Development Process and Tools

It is noteworthy that the groups of persons that
adopt the roles of this process do not necessarily have
to be disjoint. Instead, we believe that in the future
especially technically interested persons will often act
as customizers for their own pervasive applications.
This clearly raises the requirement for appropriate de-
velopment tools for each stage of the process.

As shown in Figure 2, our approach towards
providing integrated tool support for this process is
based on the combination of two software tools.

The integration of appliances as well as the devel-
opment and utilization of applications is supported by
our component system PCOM [2]. PCOM provides a
component abstraction that can be used to develop
pervasive applications. It relies on our middleware
BASE that integrates various communication technol-
ogies. Thus, PCOM can act as bridge between appli-
ances and since it performs the assembly of applica-
tions automatically at runtime, it enables users to exe-
cute applications without configuring them.

The customization of applications is supported by
Nexel, our visual programming language. With Nexel,
customizers can visually create PCOM components
and applications. Using a plug-in framework, Nexel
can utilize various appliances. This enables customiz-
ers that have only limited programming experience to
visually orchestrate appliances. The generated artifacts
can then be shared with other users.

In the following two sections, we provide an over-
view of the main concepts of PCOM and Nexel. To
demonstrate customization of applications, our de-
scription is based on simple exemplary applications.

4. PCOM

In PCOM [2], applications are trees of components
that are potentially distributed across devices. Each
component provides certain functionality to its parent
by relying on the functionalities of its children. The
exact composition is automatically determined and
maintained at runtime by the system. To do this, each
component is equipped with a contract that declares its
dependencies towards the local execution environment
and other components. Using these contracts, a com-
ponent container on each device ensures that the re-
quirements of all used component are fulfilled at any
point in time. This kind of self-configuration [8] ena-
bles PCOM to execute applications in different envi-
ronments without any manual setup or intervention.

To show how this system fits into the development
process, consider the volume control application
shown in Figure 3. The application enables a user to
control the volume of a media player using a phone.

In this example, the application anchor, i.e., the root
of the tree, is equipped with a contract that declares
dependencies to two components (mediaPlayer and
mobilePhone). Components that can be bound to
the dependencies must provide certain events and in-
terfaces (a), (b). Whenever an instance of a Volu-
meControl is started, the component container per-
forms automatic binding using matching components.
Figure 3 shows one component for each dependency
that can fulfill the requirements (c), (d).

VolumeControl

<provision>
<interface>MediaPlayer</interface>
<event>MediaChanged</event>

</provision>

<provision>
<event>KeyUp</event>
<event>KeyDown</event>
<event>KeyLeft</event>
<event>KeyRight</event>

</provision>

<provision>
<interface>VolumeControl</interface>
<event>VolumeChanged</event>

</provision>
<demand>

<component name=mobilePhone>
<event>KeyUp</event>
<event>KeyDown</event>

</component>
<component name=mediaPlayer>

<interface>MediaPlayer</interface>
</component>

</demand>

Windows
MediaPlayer

(a)

(b)

(c)
Smartphone

Keyboard (d)

Figure 3 – Volume Control Application

For the sake of simplicity, our example is purely

based on syntactic contracts and omits details that have
been described in previous publications [2], [8]. [4],
for instance, identifies four levels of contracts: syntac-
tic, behavioral, synchronization and QoS contracts.
PCOM contracts can model QoS dimensions and as-
signments as well. Furthermore, they can be used to
define resource requirements towards their executing
container. For our later description of Nexel, it is im-
portant to mention that the matching of contracts is not
tied to the type system of the underlying programming
language. Thus, the interface and events specified in
contracts can be arbitrary identifiers.

Using PCOM, developers can integrate appliances
as components with specified interfaces. The customi-
zation of applications is mainly supported by the late
binding performed by the PCOM container and the
recursive nature applications. As applications are com-
posed at runtime, all parts of the application can be
extended (e.g., through adapter components that pro-
vide additional functionality or enable the integration
of new appliances). Furthermore, since an application
anchor itself is just a component, customizers can
combine existing applications and components by
building new components that rely on their interfaces.

To deploy an application, a user must download its
components onto the devices in the target environment.
As PCOM has been specifically designed to automati-
cally configure applications at runtime, usage does not
require any configuration. Using a graphical user inter-
face, a user simply starts an application anchor and the
system will run the component as long as all required
components are available. If an appliance becomes
unavailable, PCOM will automatically try to find an
adequate replacement. To enable this, we have devel-
oped an initial set of algorithms [8] and mechanisms.

These algorithms encompass greedy-based heuristics
as well as complete solutions based on asynchronous
backtracking. However, regarding automatic configu-
ration there are still interesting research questions that
have not been solved so far.

5. Nexel

Using PCOM developers can create commercial
off-the-shelf (COTS) components which automatically
orchestrate themselves. Thus, as a user you download
new components and the environment will integrate
them. However, quite often some glue logic is missing
to combine a set of components to a useful application.
Imagine that your phone and your media player are
already PCOM-enabled and you want to control the
volume of the player via the phone. All you need is a
component that ties together the functionalities.

To simplify the development of such small but use-
ful pervasive applications, we have developed a graph-
ical programming language called Nexel. We believe
that such a language can do to pervasive applications
what VisualBasic & friends did for simple GUI and
database applications: Nexel allows casual hobby pro-
grammers to produce PCOM components and to share
them with others. In the following, we illustrate its
basic features by implementing previous example.

First, we must select the components that we want
to work with. Nexel itself has no built-in support for
any special component. Instead, Nexel can be extended
via plug-ins. By dragging a component on the window,
Nexel adds component-specific commands and events
to its sidebar. In our case, the smartphone emits Up
key and Down key events, while the media player
features a MP change volume command.

Figure 4 – Volume Control with Plug-Ins

Secondly, we create a component called “Phone –
Simple Version” (see Figure 4) by dragging the com-
ponent symbol from the sidebar. Furthermore, we add
two processes: one for increasing and one for decreas-
ing the volume. In an endless loop, the process waits
for the Up/Down key event and executes the MP
change volume command. One key advantage of
Nexel is that these tasks can be achieved with simple
Drag & Drop. There is no need to understand PCOM.

In step three, Nexel generates a PCOM component
with two required contracts: one for the phone and one
for the media player. By pressing the “Run” button at
the bottom of the screen we can deploy the component
and use the resulting application from within PCOM.

5.1. Implicit Component Contracts

The example in Figure 4 is mapped to a PCOM

component with two demanded contracts, one for each
used component. The phone plug-in tells Nexel that it
provides the following contract:

<provision>
 <event>Phone.Up Key_int</event>
 <event>Phone.Down Key_int</event>
 <event>Phone.Left Key_int</event>
 <event>Phone.Right Key_int</event>
</provision>

Nexel analyzes the application and realizes that on-
ly the Up Key and Down Key events are used. Thus,
it demands the following contract:

<demand>
 <component name=”Phone”>
 <event>Phone.Up Key_int</event>
 <event>Phone.Down Key_int</event>
 </component>
</demand>

The same happens with the media player. It provi-
sions the following PCOM contract:

 <provision>
 <interface>Volume.Up_int</interface>
 <interface>Volume.Down_int</interface>
 <interface>IMediaPlayer</interface>
 </provision>

The provisioned contract states that the media play-
er can receive events (in contrast to the phone which
emits events) for volume up/down and the expected
type is int. Thus, Nexel uses a concept known from
C++ linkers: name mangling. It mangles the
namespace (Volume) with the name of the identifier
(Up) and the type (int) into one unique identifier. To
PCOM this does not matter, since a PCOM interface is
just an identifier. To avoid that two independent de-
velopers create two identifiers with the same name but
different semantics, Nexel could as well use strong
names as in .NET. To continue with our example,
Nexel will generate a second demanded contract:

<demand>
 <component name=”player”>
 <interface>Volume.Up_int</interface>
 <interface>Volume.Down_int</interface>
 </component>
</demand>

The contracts we have investigated so far use a
concept known as Signals & Slots [13]. Signals &
Slots are extensively used in KDE/Qt desktop applica-
tions to connect components. A signal allows a com-
ponent to emit a named value. A slot receives and pro-
cesses a named value. In our example, the phone emits
an event of name Phone.Left and type int. This
can be treated as a signal. The media player offers an
interface that can receive an int under the name
Volume.Up, i.e. it is a slot. As outlined in the next
section, Nexel has built-in support for Signals & Slots.

However, the media player offers an additional in-
terface: IMediaPlayer. This is not a mangled name
and therefore neither a signal nor a slot. Instead, it is a
more low-level but powerful Java interface. Using a
plug-in, Nexel can utilize such interfaces. It is the task
of the plug-in to extend Nexel with new commands
(i.e., new GUI elements), that – when executed – call
the low-level interface. However, without plug-in sup-
port, Nexel cannot make such calls. This dualism be-
tween Signals & Slots and low-level Java interfaces is
comparable with the IDispatch interface in Mi-
crosoft COM. High-level languages talk to COM com-
ponents only via IDispatch, although they can addi-
tionally offer more powerful interfaces for C.

Using contracts implicitly, Nexel developers do not
get in touch with them. It happens all behind the
scenes of our tool chain. However, this approach
works only if somebody (i.e., the appliance vendor or a
third party) provides a Nexel plug-in. In the next sec-
tion we show how you can deal with contracts explicit-
ly.

5.2. Explicit Component Contracts

Imagine that our media player offers Signals &

Slots in its interface, but the media player vendor did
not provide plug-in. In this case, we cannot utilize
IMediaPlayer. However, we can still utilize Sig-
nals & Slots. To illustrate this concept, we implement
the application of Figure 4 again using explicit con-
tracts. The result is depicted in Figure 5. The major
difference here is that Figure 5 does not require a plug-
in. Instead, the Nexel component explicitly declares a
demanded contract of name Volume with two signals
named Up and Down. A signal is notated as:

The corresponding slot is notated as:

To increase/decrease the volume, the Nexel compo-
nent posts a value (“1” in the example) to such a sig-
nal. Therefore, it uses the built-in post command. In
Figure 4, we used the media player specific MP
change volume command, but it is not available
here, since we do not use a plug-in.

Figure 5 – Volume Control via Contracts

When Nexel maps the component in Figure 5 to
PCOM, the result is exactly the same as in Figure 4.
This dualism between implicit and explicit contracts
exists for two reasons. First, implicit contracts via
plug-ins ease the work of Nexel users. Second, using
such plug-ins Nexel can use low-level Java interfaces
like IMediaPlayer. The plug-ins just have to pro-
vide adequate commands. In contrast, Signals & Slots
can always be used even if no plug-in is available.

5.3. Extensible Applications

Customization always requires two parties to coop-

erate. First, applications must be extensible. If every-
thing is hardwired, we cannot customize anything rea-
sonable. Second, customizers must extend applications
by providing additional customization components.

The previous examples have shown how to build an
extensible application in Nexel. Our application is not
hardwired to any special component or device. It can
cooperate with any component offering matching con-
tracts. This way, our application is extensible. For ex-
ample, someone could provide a component that im-
plements the Volume contract and shows the current
volume on the TV screen whenever the volume is
changed. In the next section, we show how to extend
our application to make it MediaCenter PC compatible.

5.4. Extending Applications

Getting COTS (commercial off-the-shelf) applica-

tions helps users to orchestrate most of their appliances
but they will not satisfy all desires. Two concerns are

most likely to arise. First, the contracts of COTS appli-
cations will not always match the contracts available in
the environment. Secondly, users want to extend their
applications to provide additional functionality.

The first issue can be solved by implementing com-
ponent adapters that translate the provided functionali-
ty into the desired interface. This is analogous to the
example shown in figure 5, except that the customizer
has to model provided Signals & Slots by attaching
them to the left side of their component.

Figure 6 – Component for Light Dimming

The second problem can for instance be tackled by

implementing intermediary components. Consider the
following example: first, the user buys a basic starter
set for controlling his home. Then as he gets more ex-
perienced, he is up to new challenges and needs add-
ons. For instance, the user might want to change the
behavior of the light switches. Instead of simply
switching them on and off, he wants the lights to fade.
To do this, we add a component in between the COTS
application and the light component as shown in Fig-
ure 6. The new component provides the feature
Light.OnOff and demands a component with
brightness control, i.e. the Light.Brightness
interface. If an application uses Light.OnOff then
PCOM connects it to our Smooth Light component
which is in turn connected to the real light component.

Thus, we extended an application with a feature.
Whenever the lights switch, Smooth Light trans-
lates the command into a sequence of dimming steps.

6. Related Work

We presented a development process for customi-
zable pervasive applications. Our way of developing
applications has a number of similarities with the ideas
presented in [1]. In contrast to this work, we have pre-
sented a tool chain that can be used to realize the ideas.

To the best of our knowledge, there is no other solu-
tion that covers all aspects discussed in this paper. Yet,
there has been extensive research in specific sub-areas.

In the past, researchers have often focused on novel
abstractions that ease the development of adaptive ap-
plications [6], [7]. The resulting infrastructures, how-
ever, do only provide limited support for customiza-
tion. GAIA [11] has contributed profound knowledge
regarding the development of system software for
smart meeting rooms. To customize applications,
GAIA applies a two-step mapping process in which an
application description is mapped onto the devices of
an environment. While this approach can be used to
adapt an application to a certain environment, it cannot
support the customizations supported by Nexel.

In the area of end-user programming, a number of
tools have been developed. [10] is a tool that uses a
story-board approach. In contrast to our approach, this
tool does not support decoupled components that can
be combined to new applications. [9] is an editor that
allows users to connect different components. Yet, it
does not allow non-linear control flows making it dif-
ficult to model complex application behavior. [3] pre-
sents a toolkit for end-user programming. The focus of
their work lies on interacting with active environments.
This allows the user to create rules by simply arranging
tangibles on a floor plan. A drawback of this system is
the dependency on special hardware as well as the fact
that the user has to create unambiguous rules. Other
rule-based systems like [12] and [5] offer the same
features solely basing on different input methods. An
important and fundamental difference between all the-
se systems and our approach is the fact that we are not
aiming at end-user programming for everyone. Instead,
we envision the development of custom pervasive ap-
plications as a process where technically interested
persons can develop customizations that can be used
by others as well. This way we can satisfy a broad
spectrum of user requirements without requiring that
all persons create customizations.

7. Conclusion

The contribution of this paper is twofold. First, we
presented a process that supports the cost-effective
development of customized prervasive applications.
This process is a middle course between two extremes:
one-size-fits-all COTS applications and end-user pro-
gramming for everyone. Secondly, we have presented
a software development solution that supports devel-
opers, customizers and users. Our tool chain features a
unique combination of component-based software,
visual programming, and self-configuration.

In the future, we will put our focus on preferences
that enable users to gain more control over the config-
uration process. Using preferences users will for ex-
ample be able to state that they want a dimmer compo-
nent for the bedroom but not for the kitchen. We be-
lieve that this will reduce the loss of control that is
inherently associated with any kind of automation.
Furthermore, we are investigating how we can utilize
Nexel for rapid prototyping. This way, customizers as
well as developers can benefit from the tool.

8. References

[1] Banavar, G., Beck, J., Gluzberg, E., Munson, J., Suss-
man, J., Zukowski, D., “Challenges: An Application Model
for Pervasive Computing”, Intl’ Conf’ on Mobile Computing
and Networking, 2000, pp. 266-274
[2] Becker, C., Handte, M., Schiele, G., Rothermel, K.,
„PCOM – A Component System for Pervasive Computing“,
IEEE Intl’ Conf’ on Pervasive Computing and Communica-
tions, March 2004, pp. 67-77
[3] Beckmann, C., Dey, A., “SiteView: Tangibly Program-
ming Active Environments with Predictive Visualization”,
Intel Research, IRB-TR-03-025, 2003
[4] Beugnard, A., Jezequel, J., Plouzeau, N, Watkins, D.,
„Making Components Contract Aware“, IEEE Computer,
vol. 32, no. 7, July 1999, pp. 38-45
[5] Dey, A., Hamid, R., Beckmann, C., Li, I., Hsu, D., “a
CAPella: Programming by Demonstration of Context-Aware
Applications”, ACM Conference on Human Factors in Com-
puting Systems, 2004, pp. 33-40
[6] Garlan, D., Siewiorek, D., Smailagic, A., Steenkiste, P.,
“Towards Distraction-Free Pervasive Computting”, IEEE
Pervasive Computing, vol. 1, no. 2, 2002, pp. 22-31
[7] Grimm, R., “One.World: Experiences with a Pervasive
Computing Infrastructure”, IEEE Pervasive Computting, vol.
3, no. 3, July-September 2004, pp. 22-30
[8] Handte, M., Becker, C., Rothermel, K., „Peer-based Au-
tomatic Configuration of Pervasive Applications“, IEEE Intl’
Conference on Pervasive Services, 2005, pp. 249-260
[9] Humble, J., Crabtree, A., Hemmings, T., Akesson, K.,
Koleva, B., Rodden, T., Hansson, P., “Playing with the Bits
User-configuration of Ubiquitous Domestic Environments”,
Intl’ Conf’ on Ubiquitous Computing, 2003, pp. 256-263
[10] Li, Y., Hong, J., Landay, J., “Topiary: a tool for proto-
typing location-enhanced applications”, ACM Sym’ on User
Interface Software and Technology, 2004, pp. 217-226
[11] Roman, M., Hess, C., Cerqueira, R., Ranganathan, A.,
Campbell, R. and Nahrstedt, K., “A Middleware Infrastruc-
ture for Active Spaces”, IEEE Pervasive Computing, vol. 1,
no. 4, pp. 74-83, October-December 2002
[12] Sohn, T., Dey, A., „iCAP: An Informal Tool for Interac-
tive Prototyping of Context-Aware Applications“, ACM
Conf’ on Human Factors in Computing Systems, 2003, pp.
974-975
[13] Weis, T., Geihs, K., „Components on the Desktop“,
IEEE Tools Europe, 2000, pp. 250-261

