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Abstract
Adding distributed capabilities to existing programs has 
come to the forefront of software evolution. As a standard 
Java distributed technology, applets offer the advantages 
of being easily deployable over web browsers and requir-
ing little to no explicit distributed programming. Yet 
applets are inflexible: they download remote code and run 
it only on the client machine. We present appletizing: a 
semi-automatic approach to transforming a Java GUI 
application into a client-server application, in which the 
client runs as a Java applet that communicates with the 
server through RMI. To enable appletizing, we have 
expanded the capabilities of J-Orchestra, our automatic 
partitioning system that takes as input a Java application 
in bytecode format and transforms it into a distributed 
application, running across multiple standard JVMs. We 
discuss the motivation, benefits, and J-Orchestra support 
for appletizing, and validate our approach via a set of case 
studies and associated benchmarks.

1. Introduction

As the emergence of the Internet has changed the com-
puting landscape, distribution is no longer optional but 
necessary in a large and growing number of software sys-
tems. The focus of distributed computing has been shifting 
from “distribution for parallelism” to “resource-driven dis-
tribution,” with the resources of an application naturally 
remote from each other or from the computation. Because 
of this shift, more and more legacy code needs to be 
adapted for distributed execution. In out context, the term 
‘legacy’ refers to all centralized Java applications, written 
without distribution in mind, that need to be changed to 
move parts of their execution to a remote machine. The 
amount of such legacy code in Java is by no means insig-
nificant with the Java technology being a decade old and 
four million Java developers worldwide [4].

A large part of what makes Java a language that 
“allows application developers to write a program once 
and then be able to run it everywhere on the Internet” [9]

are standard distribution technologies over the web. Such 
Java technologies as applets and servlets have two major 
advantages: they require little to no explicit distributed 
programming and they are easily deployable over standard 
web browsers. Nevertheless, these technologies are inflex-
ible. In the case of applets, a web browser first transfers an 
applet’s code from the server site to the user system and 
then executes it safely on its Java Virtual Machine (JVM), 
usually in order to draw graphics on the client’s screen. In 
the symmetric case of servlets, code executes entirely on 
the server, usually in order to access a shared resource 
such as a database, transmitting only simple inputs and 
outputs over the network. Therefore, these standard tech-
nologies offer a hard-coded answer to the important ques-
tion of how the distribution should take place, and it is the 
same for each applet and servlet. Besides these two 
extremes, one can imagine many other solutions that are 
customizable for individual programs. A hybrid of the two 
approaches promises significant flexibility benefits: the 
programmer can leverage both the resources of the client 
machine (e.g., graphics, sound, mouse input) and the 
resources of a server (e.g., shared database, file system, 
computing power). At the same time, the application will 
be both safe and efficient: one can benefit from the secu-
rity guarantees provided by Java applets, while communi-
cating only a small amount of data between the applet and 
a remote server.

The challenge is to get an approach that runs code both 
on clients and on a server while avoiding explicit distrib-
uted systems development, just like applet and servlet 
technologies do. This paper presents appletizing: a semi-
automatic approach to transforming a centralized, mono-
lithic Java GUI application into a client-server application, 
in which the client runs as a Java applet that communi-
cates with the server through Java RMI. Appletizing 
builds upon automatic partitioning, a technology in which 
a tool takes as input a regular program and user-supplied 
location information for its code and data, and automati-
cally rewrites the program so that both the code and the 
data divide into parts that can run in the desired location. 
Any data exchange between parts of the program at differ-
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ent locations automatically becomes remote communica-
tion.

Because appletizing is essentially a specialization of 
automatic partitioning with a predefined deployment envi-
ronment for the resulting client-server applications, we 
implemented it on top of J-Orchestra [21][22], our auto-
matic partitioning system, that takes as input a Java appli-
cation in bytecode format and transforms it into a 
distributed application, running across multiple JVMs. 
Similarly to regular partitioning, appletizing requires no 
explicit programming or modification to the JVM or its 
standard runtime classes. 

At the same time, the specialized domain makes applet-
izing more automatic, which required adding several new 
features to J-Orchestra such as a new static analysis heu-
ristics that automatically assigns classes to the client and 
the server sites, a more precise profiling implementation, 
special bytecode rewrites that adapt certain operations for 
execution within an applet, and runtime support for the 
applet/server coordination. 

Overall, our approach offers a unique combination of 
the following benefits:
• Programming advantages. This includes no-coding dis-

tribution and flexibility in writing applications that use 
complex graphical interfaces and remote resources.

• User deployment advantages. With the client part run-
ning as a regular Java applet rather than as a stand-alone 
distributed application, our approach is accessible to the 
user via any Java-enabled browser.

• Performance advantages. We minimize network traffic 
through profiling-based object placement and object 
mobility. This results in transferring less data than when 
using such remote control technologies as X-Windows.

2. J-Orchestra Overview

As a special-purpose application of our J-Orchestra 
automatic partitioning system, appletizing is made possi-
ble by the hallmark ability of J-Orchestra to deal correctly 
with system code: the code split during appletizing is sys-
tem code that deals with system resources such as graphics 
and file storage. Therefore, we begin by presenting J-
Orchestra and its program transformations for distribution.

2.1. Technical Overview

J-Orchestra is a GUI-enabled tool that, under human 
guidance, handles all the tedious tasks of splitting the 
functionality of a centralized application into distinct enti-
ties running across different network sites. First, the sys-
tem lists all application classes and the systems classes 
they reference. Then, the user creates different “sites” and 
(at a first approximation) assigns classes to sites. In the 

end, J-Orchestra rewrites the application to produce dis-
tinct partitions that can be run on separate machines, on 
standard, unmodified Java VMs. J-Orchestra relieves its 
users of the necessity to change the application source 
code (or even have source code available), to deal with 
middleware directly, and to understand all the potentially 
complex data sharing structure of the application. For a 
large subset of Java, the partitioned application is guaran-
teed to behave exactly like its original, centralized version.

To maintain correct execution under distributed mem-
ory spaces, the J-Orchestra rewrite follows the standard 
technique of adding proxies to convert all direct object ref-
erences to indirect ones. Proxies hide the location of 
objects creating an abstraction of shared memory, which is 
necessary for correct execution of the program across dif-
ferent machines in the presence of aliasing: the same data 
may be accessible through different names (e.g., two dif-
ferent pointers) on different network sites. Changes intro-
duced through one name/pointer should be visible to the 
other, as if on a single machine. 

Run-time view of original application

Run-time view of application with indirect references

Figure 1: Indirect referencing schematically. Proxy 
objects could point to their targets either locally or 
over the network.
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Figure 1 shows schemati-
cally the effects of the indirect referencing approach, 
which has been used in several prior systems [19][20][23]. 

Adding indirection without changing the JVM entails 
rewriting the code of the partitioned application. Thus, 
when the original application would create a new object, 
the partitioned application will also create a proxy and 
return it; whenever an object in the original application 
would access another object’s fields, the corresponding 
object in the partitioned application would have to call a 
method in the proxy to get/set the field data; whenever a 
method would be called on an object, the same method 
now needs to be called on the object’s proxy; etc.

The difficulty of this rewrite approach is that it needs to 
be applied to all code that might hold references to remote 
objects, which is not only the application code, but also 
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the code inside the runtime system. In the case of the Java 
VM, such code is encapsulated by system classes that con-
trol various system resources through native code in the 
JVM binary (executable or dynamic libraries). JVM code 
can, for instance, have a reference to a thread, window, 
file, etc., object created by the application. However, not 
being able to modify the runtime system code, one can not 
make it aware of the indirection. For instance, one cannot 
change the JVM code that performs a file operation to 
make it access the file object correctly for both local and 
remote files. If a proxy is passed instead of the expected 
object to runtime system code that is unaware of the distri-
bution, a run-time error will likely occur (e.g., because the 
native code will try to read fields directly from the object). 
(For simplicity, we assume the application itself does not 
contain native code—i.e., it is a “pure Java” application.)

The conceptual novelty of J-Orchestra (compared to 
past partitioning systems [13][20][23] and distributed 
shared memory systems [1][2][5][24]) consists of address-
ing the problems resulting from inability to analyze and 
modify Java VM code. Prior partitioning systems have 
ignored the issues arising from native system code. J-
Orchestra features a novel rewrite mechanism that ensures 
that, at run-time, references are always in the expected 
form (“direct” = local or “indirect” = possibly remote) for 
the code that handles them. The result is that J-Orchestra 
can split code that deals with system resources, safely run-
ning, e.g., all sound synthesis code on one machine, while 
leaving all graphics code on another.

Due to lack of space and previous publication [21], our 
discussion of J-Orchestra in this paper is slightly simpli-
fied and omits some interesting elements. These include:
• a type-based “classification” heuristic that groups 

classes whose instances can be accessed by the same 
native code. Although by nature this analysis cannot be 
sound (native code can potentially access all application 
objects) in practice it is valuable in helping the user 
decide groupings for classes that should be co-located. 
The groupings typically reflect distinct resources, e.g., 
classes that deal with graphics, classes that deal with 
sound, and classes that deal with files end up in three 
distinct groups.

• optimizations for creating remote objects lazily, i.e., 
when the object first gets accessed remotely.

• the handling of Java language features, such as static 
methods, inner classes, inheritance, etc.

• limitations of the system: unsupported language features 
include reflective field access, dynamic loading, volatile 
variables, and more. Prior limitations [21] with respect 
to multithreading and monitor-style synchronization 
have been addressed and the J-Orchestra distributed 
threading mechanism is described in a recent publica-
tion [22].

2.2. The J-Orchestra Rewrite

Appletizing builds upon the J-Orchestra rewrite that 
enables remote access to JVM resources, such as graphics, 
file I/O, and sound. To accomplish such remote access, J-
Orchestra distinguishes between two different kinds of 
classes: anchored and mobile. While “anchored” objects 
remain in a single JVM for their entire lifetime, mobile 
objects can migrate from site to site at run-time. 

The two reasons behind “anchoring” classes are pre-
serving correctness and improving performance. A class 
must be anchored if its objects could be accessed through 
native code, which also determines where such objects 
should be anchored (i.e., if an object can be accessed by 
native code running on some machine, the object should 
be anchored there). In addition, anchoring a class by 
choice can eliminate the overhead of accessing its objects 
in local code on a specific site (i.e., make the access as 
quick as in the original centralized application). In a typi-
cal J-Orchestra partitioning, the vast majority of objects 
are anchored by choice. Anchored objects can still be 
accessed indirectly (through a proxy) from other machines 
and by mobile objects even when these happen to be on 
the same machine.

The J-Orchestra “rewrite engine” is responsible for 
transforming existing application code through bytecode 
manipulation (we use BCEL [6] for bytecode engineering) 
and generating new code to turn a centralized application 
into a distributed one. We outline several major steps of 
the J-Orchestra rewrite process next.

Some transformations are at the bytecode level. One 
example is ensuring that all data exchange among poten-
tially remote objects is done through method calls: every 
time an object reference accesses fields of a different 
object and that object is either mobile or anchored on a 
different site, the corresponding instructions are replaced 
with a method invocation that will get/set the required 
data. Another example is transforming original application 
classes into remote ones that extend the Java RMI class 
UnicastRemoteObject and can be registered as RMI 
remote objects (i.e., can be passed by-reference over the 
network). 

In addition to bytecode rewriting, J-Orchestra also gen-
erates some code from scratch, such as a proxy and a 
remote interface (i.e., extending java.rmi.Remote) for 
each class in the application. These generated classes 
define all the methods as in the original class. A J-Orches-
tra proxy is essentially a delegate for a remote class or its 
RMI “stub,” providing a mechanism for remote execution. 
We show below a simplified version of the code generated 
for a class A.
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//Original mobile class A 
class A { 
 void foo () { ... } 
}

//Proxy for A (generated in source code form) 
class A implements java.io.Externalizable { 
 //ref at different points can point to either 
 //remote implementation directly or RMI stub. 
 A__interface ref; 
 ... 
 void foo () { 
  try { ref.foo (); } catch (RemoteException e) {  
    //let user provide custom failure handling 
  } 
 }//foo 
}//A 

//Interface for A (generated in source code form) 
interface A__interface extends java.rmi.Remote { 
 void foo () throws RemoteException; 
}

//Remote implementation (produced in bytecode 
//form by modifying original class A) 
class A__remote extends UnicastRemoteObject 
              implements A__interface { 
 void foo () throws RemoteException {...} 
}

In addition, proxies provide logic for various other 
pieces of functionality. First, they contain globally unique 
identifiers, through which the J-Orchestra runtime system 
maintains an “at most one proxy per site” invariant. Also, 
proxies manage their own serialization (i.e., implement 
java.io.Externalizable), providing a mechanism for 
object mobility that can move objects during serialization 
as specified by a custom mobility scenario. Finally, prox-
ies are generated as source code to enable the sophisticated 
user to supply custom handling code for remote errors.

Because anchored classes are accessed directly by their 
co-anchored clients (i.e., classes anchored on the same 
site), they cannot change their superclass (to UnicastRem-
oteObject) and must use a different mechanism to enable 
remote execution. An extra level of indirection is added 
through special purpose classes called translators, which 
implement remote interfaces and make anchored classes 
look like mobile classes as far as the rest of the J-Orches-
tra rewrite is concerned. Regular proxies, as well as 
remote versions are created for translators, exactly like for 
mobile classes. 

In addition to giving anchored classes a “remote” iden-
tity, translators perform one of the most important func-
tions of the J-Orchestra rewrite: the dynamic translation of 
direct references into indirect and vice versa, as these ref-
erences get passed between anchored and mobile code. 
Consider what happens when references to anchored 
objects are passed from mobile code to anchored code. For 
instance, in Figure 2, 

anchored object 
java.awt.Componentproxy

proxy

anchored object 
java.awt.Point

mobile object o

p
direct reference
to the Point

Figure 2: Mobile code refers to anchored objects indi-
rectly (through proxies) but anchored code refers to 
the same objects directly. Each kind of reference 
should be derivable from the other.

translator

translator

a mobile application object o holds a 
reference p to an object of type java.awt.Point. Object o

can pass reference p as an argument to the method con-
tains of a java.awt.Component object. The problem is 
that the reference p in mobile code is really a reference to 
a proxy for the java.awt.Point, but the contains

method cannot be rewritten and, thus, expects a direct ref-
erence to a java.awt.Point (for instance, so it can assign 
it or compare it with a different reference). In general, the 
two kinds of references should be implicitly convertible to 
each other at run-time, depending on what kind is 
expected by the code currently being run. 

Translation takes place when a method is called on an 
anchored object. The translator implementation of the 
method “unwraps” all method parameters (i.e., converts 
them from indirect to direct) and “wraps” all results (i.e., 
converts them from direct to indirect). Since all data 
exchange between mobile code and anchored code hap-
pens through method calls (which go through a translator) 
we can be certain that references are always of the correct 
kind. 

Past systems that follow a similar rewrite as J-Orches-
tra [11][19][20][23] do not offer a translation mechanism. 
The partitioned application is safe only if objects passed to 
system code are guaranteed to always be on the same site 
as that code. This is a big burden to put on the user. The 
translation mechanism of J-Orchestra ensures that all the 
interactions between application and system code are in 
the right form, making appletizing possible.

3. Supporting Appletizing

The foremost reason for distributing an application 
with J-Orchestra is to take advantage of remote hardware 
or software resources (e.g., a processor, a database, a 
graphical screen, or a sound card). Several special-purpose 
technologies do this already: distributed file systems allow 
storage on remote disks; remote desktop applications (e.g., 
VNC, X) allow transferring graphical data from a remote 
machine; network printer protocols let users print 
remotely. Nonetheless, the advantage of automatic parti-
tioning is that it can put the code near the resource that it 
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controls. Specifically, partitioning makes it possible to 
draw graphics locally on the client machine from less data 
than it takes to transfer the entire graphical representation 
over the network, while collocating the server resources 
with the code that controls them. As a special kind of par-
titioning, appletizing not only offers the same benefits but 
also provides a higher degree of automation. The J-
Orchestra mechanisms that make this automation possible 
are static analysis and profiling that in addition to byte-
code rewriting and runtime services enable appletizing. 
We describe them in turn next.

3.1. Static Analysis for Appletizing

Consider an arbitrary centralized Java AWT/Swing 
application that we want to transform into a client-server 
application through appletizing. First, we classify the 
application’s code (both application classes and the refer-
enced JRE system classes) into four distinct groups, as 
Figure 3 demonstrates schematically.

GUI code accepted by
the applet security
manager

GUI code rejected by
the applet security
manager

 

Code
not controlling
any resources
directly

Code
controlling
non-GUI
system
resources
(e.g., File
system, shared
DB, native
code, etc.)

I

II
III

IV

Runs on
the client

Runs on
the server

Figure 3: The appletizing perspective code view of a 
centralized Java GUI application.

Runs on the

server or both
client or on the

Group I contains the GUI classes that can safely exe-
cute within an applet. Group II contains the GUI classes 
whose code include instructions that the applet security 
manager prevents from executing within an applet. For 
example, an applet cannot perform disk I/O. Group III 
contains the classes that must execute on the server. The 
classes in this group control various non-GUI system 
resources that applets are not allowed to access, such as 
file I/O operations, shared resources (e.g., a database), and 
native (JNI) code. Group IV contains the classes that do 
not control any system resources directly and as such can 
be placed on either the client or the server sites, purely for 
performance reasons. Moreover, objects of classes in this 
group do not have to remain on the same site during the 
execution of the program: they can migrate on demand, or 
according to an application-specific pattern. 

We implemented the analysis of classes for appletizing 
on top of the standard J-Orchestra type-based “classifica-
tion” heuristic that groups classes whose instances can be 
accessed by the same native code. At a first approxima-
tion, the heuristic examines the application bytecode files 
to see which class types get passed as arguments to system 
code, and groups these classes together with their sub-
classes and the native code front-end classes in an 
anchored group. Access through interfaces is safe even 
when the class is replaced by a proxy, so it does not entail 
any constraints in the analysis. Since the heuristic is type-
based it would not be safe if type information were 
obscured (e.g., if a method accepted an Object type and 
used reflection to determine if the object is suitable). How-
ever, we did not find this to be an issue in practice.

3.2. Profiling for Appletizing

Having completed the aforementioned classification 
heuristics, J-Orchestra assigns the classes in groups I, II, 
and III to the client, client, and server sites, respectively. 
The classification does not offer any help in assigning the 
classes in group IV, so the user has to do this manually 
before the rewriting for appletizing can commence. Decid-
ing on the location of a class just by looking at its name 
can be a prohibitively difficult task, particularly if no 
source code is available and the user has only a black-box 
view of the application. To help the user in determining a 
good placement, J-Orchestra offers an off-line profiler that 
reports data exchange statistics among different entities 
(i.e., anchored groups and mobile classes). Integrated with 
the profiler is a clustering heuristic that, given some initial 
locations and the profiling results, determines a good 
placement for all classes. The heuristic is strictly advi-
sory—the user can override it at will. Our heuristic imple-
ments a greedy strategy: start with the given initial 
placement of a few entities and compute the affinity of 
each unassigned entity to each of the locations. (Affinity 
to a location is the amount of data exchanged between the 
entity and all the entities already assigned to the location 
combined.) Pick the overall maximum of such affinity, 
assign the entity that has it to the corresponding location 
and repeat until all entities are assigned. In principle, 
appletizing offers more opportunities than general applica-
tion partitioning for automation in clustering: optimal 
clustering for a client-server partitioning can be done in 
polynomial time, while for 3 or more partitions the prob-
lem is NP-hard. In practice we have not yet had the need to 
replace our heuristic for better placement. 

In terms of implementation, the J-Orchestra profiler has 
evolved through several incarnations. The first profiler 
worked by instrumenting the Java VM through the JVMPI 
and JVMDI (Java Virtual Machine Profiling/Debugging 
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Interface) binary interfaces. We found the overheads of 
this approach to be very high, even for recent VMs that 
enable compiled execution under debug mode. The reason 
is the “impedance mismatch” between the profiling code 
(which is written in C++ and compiled into a dynamic 
library that instruments the VM) and the Java object lay-
out. Either the C++ code needs to use JNI to access object 
fields, or the C++ code needs to call a Java library that will 
use reflection to access fields. We have found both 
approaches to be much slower (15x) than using bytecode 
engineering to inject our own profiling code in the applica-
tion. The profiler rewrite is isomorphic to the J-Orchestra 
rewrite, except that no distribution is supported—proxies 
keep track of the amount of data passed instead.

An important issue with profiling concerns the use of 
off-line vs. on-line profiling. Several systems with goals 
similar to ours (e.g., Coign [13] and AIDE [18]) use on-
line profiling in order to dynamically discover properties 
of the application and possibly alter partitioning decisions 
on-the-fly. So far, we have not explored an on-line 
approach in J-Orchestra, because of its overheads for regu-
lar application execution. Since J-Orchestra has no control 
over the JVM, these overheads can be expected to be 
higher than in other systems that explicitly control the 
runtime environment. Without low-level control, it is hard 
to keep such overhead to a minimum. Sampling tech-
niques can alleviate the overhead (at the expense of some 
accuracy) but not eliminate it: some sampling logic has to 
be executed in each method call, for instance. We hope to 
explore the on-line profiling direction in the future.  

3.3. Rewriting Bytecode for Appletizing

Once all the classes are assigned to their destination 
sites, J-Orchestra rewrites the application for appletizing, 
which augments the regular J-Orchestra rewrite with an 
additional step that modifies unsafe instructions in GUI 
classes for executing within an applet. The applet security 
manager imposes many restrictions on what resources 
applets can access, and many of these restrictions affect 
GUI code. J-Orchestra inspects the bytecode of an applica-
tion for problematic operations and “sanitizes” them for 
safe execution within an applet. Depending on the nature 
of an unsafe operation, J-Orchestra uses two different 
replacement approaches. The first approach replaces an 
unsafe operation with a safe, semantically similar (if not 
identical) version of it. For example, an unsafe operation 
that reads a graphical image from disk gets rewritten with 
a safe operation that reads the same image from the 
applet’s jar file. The second approach, replaces an unsafe 
operation with a semantically different operation. For 
example, since applets are not allowed to call Sys-
tem.exit, this method call gets replaced with a call to the 

J-Orchestra runtime service that informs the user that they 
can exit the applet by directing the web browser to another 
page. Sometimes, replacing an unsafe instruction requires 
a creative solution. For example, the applet security man-
ager prevents the setDefaultCloseOperation method in 
class javax.swing.JFrame from accepting the value 
EXIT_ON_CLOSE. Since we cannot change the code inside 
JFrame, which is a system class, we modify the caller 
bytecode to pop the potentially unsafe parameter value off 
the stack and push the safe value DO_NOTHING_ON_CLOSE
before calling setDefaultCloseOperation. Once unsafe 
instructions in GUI classes have been replaced, J-Orches-
tra proceeds with its standard rewrite that ends up packag-
ing all the rewritten classes in client and server jar files 
ready for deployment.

The GUI-intensive nature of appletizing also allows us 
to perform special-purpose code transformations to opti-
mize remote communication. For instance, knowing the 
design principles of the Swing/AWT libraries allows us to 
pass Swing event objects using by-copy semantics. This is 
done by making event objects implement java.io.Seri-
alizable and adding a default no arguments constructor if 
it is not already present. Passing event objects by-copy is 
typically safe because event listener code commonly uses 
event objects as read-only objects, since the programming 
model makes it very difficult to determine in what order 
event listeners receive events.

The rewrite also maintains the Swing design invariant 
of having all event-dispatching and painting code execute 
in a single event-dispatching thread. Splitting a single-
threaded application into a client and server parts creates 
implicit multithreading. Thus, the server could call client 
Swing code remotely through RMI on a thread different 
from the event-dispatching one. To resolve this issue, the 
rewrite generates special-purpose code inside translator 
classes. The code uses the existing Swing facility (Swing-
Utilities.invokeLater method) to enable any thread to 
request that the event-dispatching thread runs certain code.

3.4. Runtime Support for Appletizing

Appletizing works with standard Java-enabled brows-
ers that download the applet code from a remote server. To 
simplify deployment, the downloaded code is packaged 
into two separate jar files, one containing the application 
classes that run on the client and the other J-Orchestra 
runtime classes. In other words, the client of an appletized 
application does not need to have pre-installed any J-
Orchestra runtime classes, as a Java-enabled browser 
downloads them along with the applet classes. Once the 
download completes, the J-Orchestra runtime client estab-
lishes an RMI connection with the server and then invokes 
the main method of the application through reflection. The 
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name of the application class that contains the main 
method along with the URL of the server’s RMI service 
are supplied as applet parameters in an automatically gen-
erated HTML file. This arrangement allows hosting multi-
ple J-Orchestra applets on the same server that can share 
the same set of runtime classes. In addition, multiple cli-
ents can simultaneously run the same applet, but they will 
also spawn distinct server components. Our approach can-
not make an application execute concurrently when it was 
not designed to do so. In addition to communication, the J-
Orchestra applet runtime provides various convenience 
services such as access to the properties of the server 
JVM, a capacity for terminating the server process, and a 
facility for browsing the server’s file system efficiently.

4. Case Studies and Discussion

To demonstrate our approach, we appletized three real-
istic, third-party applications: JBits [10], JNotepad [15], 
and Jarminator [14]. Our experience confirms the benefits 
of the approach. Appletizing requires no programming: we 
did not have to write distribution code or recode the sub-
ject applications; it is flexible: each of the subjects has a 
complex GUI and could not be written as a servlet; it is 
easy to deploy: all subjects run as applets over a standard 
browser communicating with a server part; and results in 
good performance: by putting the GUI code on the client, 
we transmit less data than transferring all the graphics. 

In our measurements, we compare the partitioned 
applications’ behavior to using a remote X display to 
remotely control and monitor the application. Since all 
three subjects are interactive applications and we could not 
modify what they do, we got measurements of the data 
transferred and not the time taken to update the screen 
(i.e., we measured bandwidth consumption but not 
latency). Our experience is that appletizing is an even 
greater win in terms of perceived latency. In all cases, the 
overall responsiveness of the appletized versions is much 
better than using remote X displays. This is hardly surpris-
ing, as many GUI operations require no network transfer. 
Note that the data transfer numbers would not change in a 
different measurement environment. For reference, how-
ever, our environment consisted of a SunBlade 1000 (dual 
UltraSparc III 750MHz, 2GB RAM) and a Pentium III, 
600MHz laptop connected via 10Mbps ethernet. 

4.1. JBits

JBits, the largest of the three applications, is an FPGA 
simulator by Xilinx—a web search shows many instances 
of industrial use. The JBits GUI (see [10] for a picture of 
an older version) is very rich with a graphical area present-
ing the results of the simulation cells, as well as multiple 

smaller areas presenting the simulated components. The 
GUI allows connecting to various hardware boards and 
simulators and depicting them in a graphical form. It also 
allows stepping through a simulation offering multiple 
views of a hardware board, each of which can be zoomed 
in and out, scrolled, etc. The JBits GUI is quite representa-
tive of CAD tools in general.

JBits was given to us as a bytecode-only application. 
The installed distribution (with only Java binary code 
counted) consists of 1,920 application classes that have a 
combined size of 7,577 KBytes. These application classes 
also use a large part of the Java system libraries. We have 
no understanding of the internals of JBits, and only limited 
understanding of its user-level functionality.

For our partitioning, the vast majority (about 1,800) of 
the application’s classes are anchored by choice on the 
server. Thus co-anchored objects can access each other 
directly and impose no overhead on the application’s exe-
cution. This is particularly important in this case, as the 
main functionality of JBits is the simulation, which is 
compute-intensive. With the anchoring by choice, the sim-
ulation steps of JBits incur no measurable overhead. 

259 classes are always anchored on the client (i.e., 
GUI) site. Of these, 144 are JBits application classes and 
the rest are classes from the Java system’s graphical pack-
ages (AWT and Swing). The rest of the classes are 
anchored on the server site. (We later discuss a variation in 
which we make some objects mobile.) 

The appletized JBits performs arbitrarily better than a 
remote X-Window display. For instance:
• JBits has multiple views of the simulation results (“State 

View”, “Power View”, “Core View”, and “Routing Den-
sity View”). Switching between views is a completely 
local operation in the J-Orchestra partitioned version—
no network transfers are caused. In contrast, the X win-
dow system needs to constantly refresh the graphics on 
screen. For cycling through all four views, X needed 
3.4MBytes transferred over the network.

• JBits has deep drop-down menus (e.g., a 4-level deep 
menu under “Board->Connect”). Navigating these drop-
down menus is a local operation for the J-Orchestra par-
titioned application, but not for remote access with the 
X window system. For interactively navigating 4 levels 
of drop-down menus, X transferred 1.8MBytes of data.

• GUI operations like resizing the virtual display, scroll-
ing the simulated board, or zooming in and out (four of 
the ten buttons on the JBits main toolbar are for resizing 
operations) do not result in network traffic with the 
appletized JBits. In contrast, the remote X display pro-
duces heavy network traffic for such operations. With 
our example board, one action each of zooming-in com-
pletely and zooming-out results in 3.5MBytes of data 
transferred. Scrolling left once and down once produces 
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about 2MBytes of data over the network with X, but no 
network traffic with the J-Orchestra partitioned version. 
Continuous scrolling over a 10Mbps link is unusably 
slow with the X window system. Clearly, a slower con-
nection (e.g., DSL) is not suitable for remote interactive 
use of JBits with X.
Even for a regular board redraw, in which the applet-

ized JBits needs to transfer data over the network, less data 
get transferred than in the X version. Specifically, the 
appletized version needs to transfer about 1.28MB of data 
for a complete simulation step including a redraw of the 
view. The X window system transfers about 1.68MBytes 
for the same task. Furthermore, J-Orchestra transfers these 
data using five times fewer total TCP segments, suggest-
ing that for a network in which latency is the bottleneck, X 
would be even less efficient.

Although there may be ways (e.g., compression, or a 
more efficient protocol) to reduce the amount of data 
transferred by X, the important point is that some data 
transfer needs to take place anyway. In contrast, the 
appletized version only needs to transfer a data object to 
the remote site, and all GUI operations presenting the 
same data can then be performed locally. For the cases that 
do produce network traffic, the appletized version can also 
have its bandwidth requirements optimized by using a ver-
sion of Java RMI with compression.

Experiment: Mobility. In the previous discussion we did 
not examine the effects of object mobility. In fact, very 
few of the potentially mobile objects in JBits actually need 
to move in an interesting way. The one exception is JBits 
View Adaptor objects (instances of four *ViewAdaptor
classes). View adaptors seem to be logical representations 
of visual components and they also handle different kinds 
of user events such as mouse movements. During our pro-
filing we noticed that such objects are used both on the 
server and the client partition and in fact can be seen as 
carriers of data among the two partitions. Thus, no static 
placement of all view adaptor objects is optimal—the 
objects need to move to exploit locality. We specified a 
mobility policy that originally creates view adaptors on the 
client site, moves them to the server site when they need to 
be updated, and then moves them back to the client site.

Surprisingly, object mobility results in more data trans-
ferred over the network! With mobile view adaptor objects 
and an otherwise indistinguishable partitioning, J-Orches-
tra transferred more than 2.59MBytes per simulation step 
(as opposed to 1.28MBytes without a mobility policy). 
The reason is that the mobile objects are quite large (in the 
order of 300-400KBytes) but only a small part of their 
data are read/written. In terms of bytes transferred it would 
make sense to leave these objects on one site and send 
them their method parameters remotely. Nevertheless, 

mobility results in a decrease in the total number of remote 
calls: 386 remote calls take place instead of 484 for a static 
partitioning, in order to start JBits, load a file and perform 
5 simulation steps. Thus, the partitioned version of JBits 
with mobile objects may perform better for high band-
width networks, in which latency is the bottleneck.

4.2. JNotepad

JNotepad emulates the functionality of the Windows 
Notepad editor. It allows the user to read and write text 
files. As in any simple text editor, the functionality of 
JNotepad consists of a user interface and I/O facilities. 
The user manipulates the content of a text file through the 
user interface, which includes the interaction with the I/O 
facilities for writing and retrieval of files to and from disk. 
One appletizing scenario for Notepad places the user inter-
face on the client, while processing the I/O on the server. 

The analysis for appletizing showed that the application 
has a total of 106 classes (66 JRE system classes, and 40 
application classes). It also assigned 98 classes to the cli-
ent site, 7 classes to the server site, and left 2 classes unas-
signed. To help determine a good placement for the 
unassigned classes named Center and Actions, we per-
formed a scenario-based profiling that consisted of open-
ing a file, searching for a word in it, changing its content, 
and saving it back to disk. The data exchange patterns, 
revealed by the profiling, showed that the Center class has 
been tightly coupled with the client classes, calling each 
other’s methods 17 times. Therefore, the most logical 
placement for this class is on the client, together with the 
GUI classes. The Actions class exhibited a more complex 
data exchange pattern, communicating with both the client 
(18 method calls) and the server (42 method calls). More 
detailed profiling showed that the data exchange between 
the server classes and the Actions class happens inside the 
savE method, with the rest of the methods communicating 
only with the client classes. This is exactly a case for 
which object mobility can provide an elegant solution. The 
objects of type Actions can be created at the client site 
and then temporarily move to the server for the duration of 
the savE method. As our measurements have shown, this 
mobility arrangement does not result in less data being 
transferred over the network, but significantly decreases 
the number of remote calls made (from 60 to 17).

We compared the behaviors of the partitioned applica-
tion to the original one, run remotely under the X window 
system. The test scenario was similar to the profiling one, 
described above. (We believe that this reflects typical 
JNotepad use.) The appletized version transferred less 
than 1/7th the amount of data over the network (~1 MB vs. 
~7 MB). With all the GUI operation not generating any 
network traffic, the appletized version sent data over the 
8



network only when reading and writing the text file. Under 
X, JNotepad, running on the server that had the text file, 
accessed it directly. However, its every interaction with the 
GUI resulted in sending data over the network.

4.3. Jarminator

Jarminator is a popular Java application that examines 
the content of multiple jar files and displays their com-
bined content in a tree view. The user can have only a sub-
set of the content displayed by supplying a wildcard filter. 
We have appletized Jarminator so that it can examine jar 
files on a remote machine and display the results locally. 
The analysis for appletizing showed that the application 
uses a total of 74 classes: 55 JRE system classes, and 19 
application classes. The appletizing analysis assigned 62 
classes to the client site, 4 classes to the server sites, and 
left 8 classes unassigned. A case-based profiling suggested 
assigning 6 classes to the client, 1 to the server, and did not 
detect any data exchange with the remaining class. It also 
did not reveal any communication patterns in which a 
mobility scenario could be useful.

Again, we compared the behaviors of the partitioned 
application to the original one, run remotely under the X 
window system. In this benchmark, we used Jarminator to 
explore three third-party jar files used by J-Orchestra. The 
use scenario included loading the jars, navigating through 
the tree view, and applying wildcard filters to the dis-
played content. The appletized version exhibits significant 
benefits, transferring less than 1/30th the amount of data 
over the network (~500 KB vs. ~15 MB). In fact, opera-
tions such as filtering the displayed contents are entirely 
local in the appletized version and do not generate any net-
work traffic.

4.4. Limitations

Appletizing, just like general application partitioning, 
is not free of limitations. Applications can be arbitrarily 
complex and can defy correct partitioning. Furthermore, 
although we handle common cases of invalid operations 
inside applets, we do not have an exhaustive approach to 
sanitize all Java code for applet execution. More common 
in practice, however, is the case of applications that can be 
correctly appletized (i.e., they do not employ unsupported 
Java features such as dynamic loading or code rejected by 
the applet security manager) yet require manual interven-
tion to override conservative decisions of the J-Orchestra 
heuristic analyses.

Of our three case studies, JNotepad and Jarminator 
were partitioned completely automatically within 1-2 
hours of time. JBits required more intervention (but still 
no explicit programming) to arrive at a good partitioning 

within 1-2 days. For example, knowing only the JBits exe-
cution from the user perspective, we speculated that the 
integer arrays transferred from the server towards the GUI 
part of JBits could safely be passed by-copy. These arrays 
turned out to never be modified at the GUI part of the 
application. A more conservative rewrite would have 
introduced a substantial overhead to all array operations.

Even in the less automatic cases, however, the expertise 
required to appletize an application is analogous to that of 
a system administrator, rather than that of a distributed 
systems programmer. For instance, in the JBits case we 
partitioned a 7.5MB binary application without knowledge 
of its internals. Even though the partitioning was not auto-
matic, the effort expended was certainly much less than 
that of a developer who would need to change an applica-
tion with about 2,000 classes, more than 200 of which 
need to be modified to be accessed remotely.

5. Related Work

Several recent systems can be classified as automatic 
partitioning tools. In the Java world, the closest 
approaches are the Addistant [23] and Pangaea [20] sys-
tems. The Coign system [13] has promoted the idea of 
automatic partitioning for applications based on COM 
components. All three systems do not address the problem 
of partitioning unmodifiable system code (e.g., GUI code) 
and, thus, are unsuitable for appletizing.

Coign is the only one of these systems to have a claim 
at scalability, but the applications partitioned by Coign 
consist of independent components to begin with. Just like 
appletizing, the Coign approach performs only client-
server partitioning. Coign does not address the hard prob-
lems of application partitioning, which have to do with 
pointers and aliasing: components cannot share data 
through memory pointers. Such components are deemed 
non-distributable and are located on the same machine. 
Practical experience with Coign [13] showed that this is a 
severe limitation for the only real-world application 
included in Coign’s example set (the Microsoft Photo-
Draw program). The overall Coign approach would not be 
feasible for applications in a general purpose language 
(like Java, C, C#, or C++) where pointers are prevalent, 
unless a strict component-based implementation method-
ology is followed. 

JavaParty [11][19] is closely related to J-Orchestra. The 
similarity is not so evident in the objectives, since Java-
Party only aims to support manual partitioning and does 
not deal with system classes. The implementation tech-
niques used, however, are very similar to J-Orchestra, 
especially for the newest versions of JavaParty [11]. Simi-
lar comments apply to the FarGo [12] and AdJava [8] sys-
tems. Notably, however, FarGo has focused on grouping 
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classes together and moving them as a group. FarGo 
groups are similar to J-Orchestra anchored groups. In fact, 
groups of J-Orchestra objects that are all anchored by 
choice could well move, as long as they do it all together. 
We have not investigated such mobile groups, however.

Automatic partitioning is essentially a Distributed 
Shared Memory (DSM) technique. Nevertheless, auto-
matic partitioning differs from traditional DSMs in several 
ways. First, automatic partitioning systems do not change 
the runtime system, but only the application. This is essen-
tial for deploying applets that will work on standard VMs 
inside web browsers. Traditional DSM systems like Munin 
[5], Orca [2], and, in the Java world, cJVM [1], and Java/
DSM [24] use a specialized run-time environment in order 
to detect access to remote data and ensure data consis-
tency. Also, DSMs have usually focused on parallel appli-
cations and require programmer intervention to achieve 
high-performance. In contrast, automatic partitioning con-
centrates on resource-driven distribution, which intro-
duces a new set of problems (e.g., the problem of 
distributing around unmodifiable system code, as dis-
cussed). Among distributed shared memory systems, the 
ones most closely resembling the J-Orchestra approach are 
object-based DSMs, like Orca [2]. 

Mobile object systems, like Emerald [3] have formed 
the inspiration for many of the J-Orchestra ideas on object 
mobility scenarios.

Both the D [17] and the Doorastha [7] systems allow 
the user to easily annotate a centralized program to turn it 
into a distributed application. Although these systems are 
higher-level than explicit distributed programming, they 
are significantly lower-level than J-Orchestra. All the bur-
den is shifted to the programmer to specify what semantics 
is valid for a specific class (e.g., whether objects are 
mobile, whether they can be passed by-copy, etc.). Pro-
gramming in this way requires full understanding of the 
application behavior and can be error-prone: a slight error 
in an annotation may cause insidious inconsistency errors.

6. Conclusions

Adding distributed capabilities to existing programs is 
currently one of the most important software evolution 
tasks in practice [16]. We presented appletizing, a semi-
automatic approach to transforming a Java GUI applica-
tion into a client-server application. We discussed the 
motivation, benefits, and J-Orchestra support for appletiz-
ing, and validated our approach via a set of case studies 
and associated benchmarks. We believe that our approach, 
having the benefits of automation, flexibility, ease of 
deployment, and good performance, is a useful tool for 
software evolution, and that similar tools will become 
mainstream in the future.
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