
Appletizing: Running Legacy Java Code Remotely From a Web Browser

 Eli Tilevich, Yannis Smaragdakis Marcus Handte
College of Computing, Georgia Institute of Technology University of Stuttgart1

 {tilevich, yannis}@cc.gatech.edu m.handte@web.de

Abstract
Adding distributed capabilities to existing programs has
come to the forefront of software evolution. As a standard
Java distributed technology, applets offer the advantages
of being easily deployable over web browsers and requir-
ing little to no explicit distributed programming. Yet
applets are inflexible: they download remote code and run
it only on the client machine. We present appletizing: a
semi-automatic approach to transforming a Java GUI
application into a client-server application, in which the
client runs as a Java applet that communicates with the
server through RMI. To enable appletizing, we have
expanded the capabilities of J-Orchestra, our automatic
partitioning system that takes as input a Java application
in bytecode format and transforms it into a distributed
application, running across multiple standard JVMs. We
discuss the motivation, benefits, and J-Orchestra support
for appletizing, and validate our approach via a set of case
studies and associated benchmarks.

1. Introduction

As the emergence of the Internet has changed the com-
puting landscape, distribution is no longer optional but
necessary in a large and growing number of software sys-
tems. The focus of distributed computing has been shifting
from “distribution for parallelism” to “resource-driven dis-
tribution,” with the resources of an application naturally
remote from each other or from the computation. Because
of this shift, more and more legacy code needs to be
adapted for distributed execution. In out context, the term
‘legacy’ refers to all centralized Java applications, written
without distribution in mind, that need to be changed to
move parts of their execution to a remote machine. The
amount of such legacy code in Java is by no means insig-
nificant with the Java technology being a decade old and
four million Java developers worldwide [4].

A large part of what makes Java a language that
“allows application developers to write a program once
and then be able to run it everywhere on the Internet” [9]

are standard distribution technologies over the web. Such
Java technologies as applets and servlets have two major
advantages: they require little to no explicit distributed
programming and they are easily deployable over standard
web browsers. Nevertheless, these technologies are inflex-
ible. In the case of applets, a web browser first transfers an
applet’s code from the server site to the user system and
then executes it safely on its Java Virtual Machine (JVM),
usually in order to draw graphics on the client’s screen. In
the symmetric case of servlets, code executes entirely on
the server, usually in order to access a shared resource
such as a database, transmitting only simple inputs and
outputs over the network. Therefore, these standard tech-
nologies offer a hard-coded answer to the important ques-
tion of how the distribution should take place, and it is the
same for each applet and servlet. Besides these two
extremes, one can imagine many other solutions that are
customizable for individual programs. A hybrid of the two
approaches promises significant flexibility benefits: the
programmer can leverage both the resources of the client
machine (e.g., graphics, sound, mouse input) and the
resources of a server (e.g., shared database, file system,
computing power). At the same time, the application will
be both safe and efficient: one can benefit from the secu-
rity guarantees provided by Java applets, while communi-
cating only a small amount of data between the applet and
a remote server.

The challenge is to get an approach that runs code both
on clients and on a server while avoiding explicit distrib-
uted systems development, just like applet and servlet
technologies do. This paper presents appletizing: a semi-
automatic approach to transforming a centralized, mono-
lithic Java GUI application into a client-server application,
in which the client runs as a Java applet that communi-
cates with the server through Java RMI. Appletizing
builds upon automatic partitioning, a technology in which
a tool takes as input a regular program and user-supplied
location information for its code and data, and automati-
cally rewrites the program so that both the code and the
data divide into parts that can run in the desired location.
Any data exchange between parts of the program at differ-

1. This research was performed while the author was at the Georgia Institute of Technology.
1

ent locations automatically becomes remote communica-
tion.

Because appletizing is essentially a specialization of
automatic partitioning with a predefined deployment envi-
ronment for the resulting client-server applications, we
implemented it on top of J-Orchestra [21][22], our auto-
matic partitioning system, that takes as input a Java appli-
cation in bytecode format and transforms it into a
distributed application, running across multiple JVMs.
Similarly to regular partitioning, appletizing requires no
explicit programming or modification to the JVM or its
standard runtime classes.

At the same time, the specialized domain makes applet-
izing more automatic, which required adding several new
features to J-Orchestra such as a new static analysis heu-
ristics that automatically assigns classes to the client and
the server sites, a more precise profiling implementation,
special bytecode rewrites that adapt certain operations for
execution within an applet, and runtime support for the
applet/server coordination.

Overall, our approach offers a unique combination of
the following benefits:
• Programming advantages. This includes no-coding dis-

tribution and flexibility in writing applications that use
complex graphical interfaces and remote resources.

• User deployment advantages. With the client part run-
ning as a regular Java applet rather than as a stand-alone
distributed application, our approach is accessible to the
user via any Java-enabled browser.

• Performance advantages. We minimize network traffic
through profiling-based object placement and object
mobility. This results in transferring less data than when
using such remote control technologies as X-Windows.

2. J-Orchestra Overview

As a special-purpose application of our J-Orchestra
automatic partitioning system, appletizing is made possi-
ble by the hallmark ability of J-Orchestra to deal correctly
with system code: the code split during appletizing is sys-
tem code that deals with system resources such as graphics
and file storage. Therefore, we begin by presenting J-
Orchestra and its program transformations for distribution.

2.1. Technical Overview

J-Orchestra is a GUI-enabled tool that, under human
guidance, handles all the tedious tasks of splitting the
functionality of a centralized application into distinct enti-
ties running across different network sites. First, the sys-
tem lists all application classes and the systems classes
they reference. Then, the user creates different “sites” and
(at a first approximation) assigns classes to sites. In the

end, J-Orchestra rewrites the application to produce dis-
tinct partitions that can be run on separate machines, on
standard, unmodified Java VMs. J-Orchestra relieves its
users of the necessity to change the application source
code (or even have source code available), to deal with
middleware directly, and to understand all the potentially
complex data sharing structure of the application. For a
large subset of Java, the partitioned application is guaran-
teed to behave exactly like its original, centralized version.

To maintain correct execution under distributed mem-
ory spaces, the J-Orchestra rewrite follows the standard
technique of adding proxies to convert all direct object ref-
erences to indirect ones. Proxies hide the location of
objects creating an abstraction of shared memory, which is
necessary for correct execution of the program across dif-
ferent machines in the presence of aliasing: the same data
may be accessible through different names (e.g., two dif-
ferent pointers) on different network sites. Changes intro-
duced through one name/pointer should be visible to the
other, as if on a single machine.

Run-time view of original application

Run-time view of application with indirect references

Figure 1: Indirect referencing schematically. Proxy
objects could point to their targets either locally or
over the network.

object o

object qobject p

object o

object qobject p

proxy of p
proxy of q

object r

object r

Figure 1 shows schemati-
cally the effects of the indirect referencing approach,
which has been used in several prior systems [19][20][23].

Adding indirection without changing the JVM entails
rewriting the code of the partitioned application. Thus,
when the original application would create a new object,
the partitioned application will also create a proxy and
return it; whenever an object in the original application
would access another object’s fields, the corresponding
object in the partitioned application would have to call a
method in the proxy to get/set the field data; whenever a
method would be called on an object, the same method
now needs to be called on the object’s proxy; etc.

The difficulty of this rewrite approach is that it needs to
be applied to all code that might hold references to remote
objects, which is not only the application code, but also
2

the code inside the runtime system. In the case of the Java
VM, such code is encapsulated by system classes that con-
trol various system resources through native code in the
JVM binary (executable or dynamic libraries). JVM code
can, for instance, have a reference to a thread, window,
file, etc., object created by the application. However, not
being able to modify the runtime system code, one can not
make it aware of the indirection. For instance, one cannot
change the JVM code that performs a file operation to
make it access the file object correctly for both local and
remote files. If a proxy is passed instead of the expected
object to runtime system code that is unaware of the distri-
bution, a run-time error will likely occur (e.g., because the
native code will try to read fields directly from the object).
(For simplicity, we assume the application itself does not
contain native code—i.e., it is a “pure Java” application.)

The conceptual novelty of J-Orchestra (compared to
past partitioning systems [13][20][23] and distributed
shared memory systems [1][2][5][24]) consists of address-
ing the problems resulting from inability to analyze and
modify Java VM code. Prior partitioning systems have
ignored the issues arising from native system code. J-
Orchestra features a novel rewrite mechanism that ensures
that, at run-time, references are always in the expected
form (“direct” = local or “indirect” = possibly remote) for
the code that handles them. The result is that J-Orchestra
can split code that deals with system resources, safely run-
ning, e.g., all sound synthesis code on one machine, while
leaving all graphics code on another.

Due to lack of space and previous publication [21], our
discussion of J-Orchestra in this paper is slightly simpli-
fied and omits some interesting elements. These include:
• a type-based “classification” heuristic that groups

classes whose instances can be accessed by the same
native code. Although by nature this analysis cannot be
sound (native code can potentially access all application
objects) in practice it is valuable in helping the user
decide groupings for classes that should be co-located.
The groupings typically reflect distinct resources, e.g.,
classes that deal with graphics, classes that deal with
sound, and classes that deal with files end up in three
distinct groups.

• optimizations for creating remote objects lazily, i.e.,
when the object first gets accessed remotely.

• the handling of Java language features, such as static
methods, inner classes, inheritance, etc.

• limitations of the system: unsupported language features
include reflective field access, dynamic loading, volatile
variables, and more. Prior limitations [21] with respect
to multithreading and monitor-style synchronization
have been addressed and the J-Orchestra distributed
threading mechanism is described in a recent publica-
tion [22].

2.2. The J-Orchestra Rewrite

Appletizing builds upon the J-Orchestra rewrite that
enables remote access to JVM resources, such as graphics,
file I/O, and sound. To accomplish such remote access, J-
Orchestra distinguishes between two different kinds of
classes: anchored and mobile. While “anchored” objects
remain in a single JVM for their entire lifetime, mobile
objects can migrate from site to site at run-time.

The two reasons behind “anchoring” classes are pre-
serving correctness and improving performance. A class
must be anchored if its objects could be accessed through
native code, which also determines where such objects
should be anchored (i.e., if an object can be accessed by
native code running on some machine, the object should
be anchored there). In addition, anchoring a class by
choice can eliminate the overhead of accessing its objects
in local code on a specific site (i.e., make the access as
quick as in the original centralized application). In a typi-
cal J-Orchestra partitioning, the vast majority of objects
are anchored by choice. Anchored objects can still be
accessed indirectly (through a proxy) from other machines
and by mobile objects even when these happen to be on
the same machine.

The J-Orchestra “rewrite engine” is responsible for
transforming existing application code through bytecode
manipulation (we use BCEL [6] for bytecode engineering)
and generating new code to turn a centralized application
into a distributed one. We outline several major steps of
the J-Orchestra rewrite process next.

Some transformations are at the bytecode level. One
example is ensuring that all data exchange among poten-
tially remote objects is done through method calls: every
time an object reference accesses fields of a different
object and that object is either mobile or anchored on a
different site, the corresponding instructions are replaced
with a method invocation that will get/set the required
data. Another example is transforming original application
classes into remote ones that extend the Java RMI class
UnicastRemoteObject and can be registered as RMI
remote objects (i.e., can be passed by-reference over the
network).

In addition to bytecode rewriting, J-Orchestra also gen-
erates some code from scratch, such as a proxy and a
remote interface (i.e., extending java.rmi.Remote) for
each class in the application. These generated classes
define all the methods as in the original class. A J-Orches-
tra proxy is essentially a delegate for a remote class or its
RMI “stub,” providing a mechanism for remote execution.
We show below a simplified version of the code generated
for a class A.
3

//Original mobile class A
class A {
 void foo () { ... }
}

//Proxy for A (generated in source code form)
class A implements java.io.Externalizable {
 //ref at different points can point to either
 //remote implementation directly or RMI stub.
 A__interface ref;
 ...
 void foo () {
 try { ref.foo (); } catch (RemoteException e) {
 //let user provide custom failure handling
 }
 }//foo
}//A

//Interface for A (generated in source code form)
interface A__interface extends java.rmi.Remote {
 void foo () throws RemoteException;
}

//Remote implementation (produced in bytecode
//form by modifying original class A)
class A__remote extends UnicastRemoteObject
 implements A__interface {
 void foo () throws RemoteException {...}
}

In addition, proxies provide logic for various other
pieces of functionality. First, they contain globally unique
identifiers, through which the J-Orchestra runtime system
maintains an “at most one proxy per site” invariant. Also,
proxies manage their own serialization (i.e., implement
java.io.Externalizable), providing a mechanism for
object mobility that can move objects during serialization
as specified by a custom mobility scenario. Finally, prox-
ies are generated as source code to enable the sophisticated
user to supply custom handling code for remote errors.

Because anchored classes are accessed directly by their
co-anchored clients (i.e., classes anchored on the same
site), they cannot change their superclass (to UnicastRem-
oteObject) and must use a different mechanism to enable
remote execution. An extra level of indirection is added
through special purpose classes called translators, which
implement remote interfaces and make anchored classes
look like mobile classes as far as the rest of the J-Orches-
tra rewrite is concerned. Regular proxies, as well as
remote versions are created for translators, exactly like for
mobile classes.

In addition to giving anchored classes a “remote” iden-
tity, translators perform one of the most important func-
tions of the J-Orchestra rewrite: the dynamic translation of
direct references into indirect and vice versa, as these ref-
erences get passed between anchored and mobile code.
Consider what happens when references to anchored
objects are passed from mobile code to anchored code. For
instance, in Figure 2,

anchored object
java.awt.Componentproxy

proxy

anchored object
java.awt.Point

mobile object o

p
direct reference
to the Point

Figure 2: Mobile code refers to anchored objects indi-
rectly (through proxies) but anchored code refers to
the same objects directly. Each kind of reference
should be derivable from the other.

translator

translator

a mobile application object o holds a
reference p to an object of type java.awt.Point. Object o

can pass reference p as an argument to the method con-
tains of a java.awt.Component object. The problem is
that the reference p in mobile code is really a reference to
a proxy for the java.awt.Point, but the contains

method cannot be rewritten and, thus, expects a direct ref-
erence to a java.awt.Point (for instance, so it can assign
it or compare it with a different reference). In general, the
two kinds of references should be implicitly convertible to
each other at run-time, depending on what kind is
expected by the code currently being run.

Translation takes place when a method is called on an
anchored object. The translator implementation of the
method “unwraps” all method parameters (i.e., converts
them from indirect to direct) and “wraps” all results (i.e.,
converts them from direct to indirect). Since all data
exchange between mobile code and anchored code hap-
pens through method calls (which go through a translator)
we can be certain that references are always of the correct
kind.

Past systems that follow a similar rewrite as J-Orches-
tra [11][19][20][23] do not offer a translation mechanism.
The partitioned application is safe only if objects passed to
system code are guaranteed to always be on the same site
as that code. This is a big burden to put on the user. The
translation mechanism of J-Orchestra ensures that all the
interactions between application and system code are in
the right form, making appletizing possible.

3. Supporting Appletizing

The foremost reason for distributing an application
with J-Orchestra is to take advantage of remote hardware
or software resources (e.g., a processor, a database, a
graphical screen, or a sound card). Several special-purpose
technologies do this already: distributed file systems allow
storage on remote disks; remote desktop applications (e.g.,
VNC, X) allow transferring graphical data from a remote
machine; network printer protocols let users print
remotely. Nonetheless, the advantage of automatic parti-
tioning is that it can put the code near the resource that it
4

controls. Specifically, partitioning makes it possible to
draw graphics locally on the client machine from less data
than it takes to transfer the entire graphical representation
over the network, while collocating the server resources
with the code that controls them. As a special kind of par-
titioning, appletizing not only offers the same benefits but
also provides a higher degree of automation. The J-
Orchestra mechanisms that make this automation possible
are static analysis and profiling that in addition to byte-
code rewriting and runtime services enable appletizing.
We describe them in turn next.

3.1. Static Analysis for Appletizing

Consider an arbitrary centralized Java AWT/Swing
application that we want to transform into a client-server
application through appletizing. First, we classify the
application’s code (both application classes and the refer-
enced JRE system classes) into four distinct groups, as
Figure 3 demonstrates schematically.

GUI code accepted by
the applet security
manager

GUI code rejected by
the applet security
manager

Code
not controlling
any resources
directly

Code
controlling
non-GUI
system
resources
(e.g., File
system, shared
DB, native
code, etc.)

I

II
III

IV

Runs on
the client

Runs on
the server

Figure 3: The appletizing perspective code view of a
centralized Java GUI application.

Runs on the

server or both
client or on the

Group I contains the GUI classes that can safely exe-
cute within an applet. Group II contains the GUI classes
whose code include instructions that the applet security
manager prevents from executing within an applet. For
example, an applet cannot perform disk I/O. Group III
contains the classes that must execute on the server. The
classes in this group control various non-GUI system
resources that applets are not allowed to access, such as
file I/O operations, shared resources (e.g., a database), and
native (JNI) code. Group IV contains the classes that do
not control any system resources directly and as such can
be placed on either the client or the server sites, purely for
performance reasons. Moreover, objects of classes in this
group do not have to remain on the same site during the
execution of the program: they can migrate on demand, or
according to an application-specific pattern.

We implemented the analysis of classes for appletizing
on top of the standard J-Orchestra type-based “classifica-
tion” heuristic that groups classes whose instances can be
accessed by the same native code. At a first approxima-
tion, the heuristic examines the application bytecode files
to see which class types get passed as arguments to system
code, and groups these classes together with their sub-
classes and the native code front-end classes in an
anchored group. Access through interfaces is safe even
when the class is replaced by a proxy, so it does not entail
any constraints in the analysis. Since the heuristic is type-
based it would not be safe if type information were
obscured (e.g., if a method accepted an Object type and
used reflection to determine if the object is suitable). How-
ever, we did not find this to be an issue in practice.

3.2. Profiling for Appletizing

Having completed the aforementioned classification
heuristics, J-Orchestra assigns the classes in groups I, II,
and III to the client, client, and server sites, respectively.
The classification does not offer any help in assigning the
classes in group IV, so the user has to do this manually
before the rewriting for appletizing can commence. Decid-
ing on the location of a class just by looking at its name
can be a prohibitively difficult task, particularly if no
source code is available and the user has only a black-box
view of the application. To help the user in determining a
good placement, J-Orchestra offers an off-line profiler that
reports data exchange statistics among different entities
(i.e., anchored groups and mobile classes). Integrated with
the profiler is a clustering heuristic that, given some initial
locations and the profiling results, determines a good
placement for all classes. The heuristic is strictly advi-
sory—the user can override it at will. Our heuristic imple-
ments a greedy strategy: start with the given initial
placement of a few entities and compute the affinity of
each unassigned entity to each of the locations. (Affinity
to a location is the amount of data exchanged between the
entity and all the entities already assigned to the location
combined.) Pick the overall maximum of such affinity,
assign the entity that has it to the corresponding location
and repeat until all entities are assigned. In principle,
appletizing offers more opportunities than general applica-
tion partitioning for automation in clustering: optimal
clustering for a client-server partitioning can be done in
polynomial time, while for 3 or more partitions the prob-
lem is NP-hard. In practice we have not yet had the need to
replace our heuristic for better placement.

In terms of implementation, the J-Orchestra profiler has
evolved through several incarnations. The first profiler
worked by instrumenting the Java VM through the JVMPI
and JVMDI (Java Virtual Machine Profiling/Debugging

5

Interface) binary interfaces. We found the overheads of
this approach to be very high, even for recent VMs that
enable compiled execution under debug mode. The reason
is the “impedance mismatch” between the profiling code
(which is written in C++ and compiled into a dynamic
library that instruments the VM) and the Java object lay-
out. Either the C++ code needs to use JNI to access object
fields, or the C++ code needs to call a Java library that will
use reflection to access fields. We have found both
approaches to be much slower (15x) than using bytecode
engineering to inject our own profiling code in the applica-
tion. The profiler rewrite is isomorphic to the J-Orchestra
rewrite, except that no distribution is supported—proxies
keep track of the amount of data passed instead.

An important issue with profiling concerns the use of
off-line vs. on-line profiling. Several systems with goals
similar to ours (e.g., Coign [13] and AIDE [18]) use on-
line profiling in order to dynamically discover properties
of the application and possibly alter partitioning decisions
on-the-fly. So far, we have not explored an on-line
approach in J-Orchestra, because of its overheads for regu-
lar application execution. Since J-Orchestra has no control
over the JVM, these overheads can be expected to be
higher than in other systems that explicitly control the
runtime environment. Without low-level control, it is hard
to keep such overhead to a minimum. Sampling tech-
niques can alleviate the overhead (at the expense of some
accuracy) but not eliminate it: some sampling logic has to
be executed in each method call, for instance. We hope to
explore the on-line profiling direction in the future.

3.3. Rewriting Bytecode for Appletizing

Once all the classes are assigned to their destination
sites, J-Orchestra rewrites the application for appletizing,
which augments the regular J-Orchestra rewrite with an
additional step that modifies unsafe instructions in GUI
classes for executing within an applet. The applet security
manager imposes many restrictions on what resources
applets can access, and many of these restrictions affect
GUI code. J-Orchestra inspects the bytecode of an applica-
tion for problematic operations and “sanitizes” them for
safe execution within an applet. Depending on the nature
of an unsafe operation, J-Orchestra uses two different
replacement approaches. The first approach replaces an
unsafe operation with a safe, semantically similar (if not
identical) version of it. For example, an unsafe operation
that reads a graphical image from disk gets rewritten with
a safe operation that reads the same image from the
applet’s jar file. The second approach, replaces an unsafe
operation with a semantically different operation. For
example, since applets are not allowed to call Sys-
tem.exit, this method call gets replaced with a call to the

J-Orchestra runtime service that informs the user that they
can exit the applet by directing the web browser to another
page. Sometimes, replacing an unsafe instruction requires
a creative solution. For example, the applet security man-
ager prevents the setDefaultCloseOperation method in
class javax.swing.JFrame from accepting the value
EXIT_ON_CLOSE. Since we cannot change the code inside
JFrame, which is a system class, we modify the caller
bytecode to pop the potentially unsafe parameter value off
the stack and push the safe value DO_NOTHING_ON_CLOSE
before calling setDefaultCloseOperation. Once unsafe
instructions in GUI classes have been replaced, J-Orches-
tra proceeds with its standard rewrite that ends up packag-
ing all the rewritten classes in client and server jar files
ready for deployment.

The GUI-intensive nature of appletizing also allows us
to perform special-purpose code transformations to opti-
mize remote communication. For instance, knowing the
design principles of the Swing/AWT libraries allows us to
pass Swing event objects using by-copy semantics. This is
done by making event objects implement java.io.Seri-
alizable and adding a default no arguments constructor if
it is not already present. Passing event objects by-copy is
typically safe because event listener code commonly uses
event objects as read-only objects, since the programming
model makes it very difficult to determine in what order
event listeners receive events.

The rewrite also maintains the Swing design invariant
of having all event-dispatching and painting code execute
in a single event-dispatching thread. Splitting a single-
threaded application into a client and server parts creates
implicit multithreading. Thus, the server could call client
Swing code remotely through RMI on a thread different
from the event-dispatching one. To resolve this issue, the
rewrite generates special-purpose code inside translator
classes. The code uses the existing Swing facility (Swing-
Utilities.invokeLater method) to enable any thread to
request that the event-dispatching thread runs certain code.

3.4. Runtime Support for Appletizing

Appletizing works with standard Java-enabled brows-
ers that download the applet code from a remote server. To
simplify deployment, the downloaded code is packaged
into two separate jar files, one containing the application
classes that run on the client and the other J-Orchestra
runtime classes. In other words, the client of an appletized
application does not need to have pre-installed any J-
Orchestra runtime classes, as a Java-enabled browser
downloads them along with the applet classes. Once the
download completes, the J-Orchestra runtime client estab-
lishes an RMI connection with the server and then invokes
the main method of the application through reflection. The
6

name of the application class that contains the main
method along with the URL of the server’s RMI service
are supplied as applet parameters in an automatically gen-
erated HTML file. This arrangement allows hosting multi-
ple J-Orchestra applets on the same server that can share
the same set of runtime classes. In addition, multiple cli-
ents can simultaneously run the same applet, but they will
also spawn distinct server components. Our approach can-
not make an application execute concurrently when it was
not designed to do so. In addition to communication, the J-
Orchestra applet runtime provides various convenience
services such as access to the properties of the server
JVM, a capacity for terminating the server process, and a
facility for browsing the server’s file system efficiently.

4. Case Studies and Discussion

To demonstrate our approach, we appletized three real-
istic, third-party applications: JBits [10], JNotepad [15],
and Jarminator [14]. Our experience confirms the benefits
of the approach. Appletizing requires no programming: we
did not have to write distribution code or recode the sub-
ject applications; it is flexible: each of the subjects has a
complex GUI and could not be written as a servlet; it is
easy to deploy: all subjects run as applets over a standard
browser communicating with a server part; and results in
good performance: by putting the GUI code on the client,
we transmit less data than transferring all the graphics.

In our measurements, we compare the partitioned
applications’ behavior to using a remote X display to
remotely control and monitor the application. Since all
three subjects are interactive applications and we could not
modify what they do, we got measurements of the data
transferred and not the time taken to update the screen
(i.e., we measured bandwidth consumption but not
latency). Our experience is that appletizing is an even
greater win in terms of perceived latency. In all cases, the
overall responsiveness of the appletized versions is much
better than using remote X displays. This is hardly surpris-
ing, as many GUI operations require no network transfer.
Note that the data transfer numbers would not change in a
different measurement environment. For reference, how-
ever, our environment consisted of a SunBlade 1000 (dual
UltraSparc III 750MHz, 2GB RAM) and a Pentium III,
600MHz laptop connected via 10Mbps ethernet.

4.1. JBits

JBits, the largest of the three applications, is an FPGA
simulator by Xilinx—a web search shows many instances
of industrial use. The JBits GUI (see [10] for a picture of
an older version) is very rich with a graphical area present-
ing the results of the simulation cells, as well as multiple

smaller areas presenting the simulated components. The
GUI allows connecting to various hardware boards and
simulators and depicting them in a graphical form. It also
allows stepping through a simulation offering multiple
views of a hardware board, each of which can be zoomed
in and out, scrolled, etc. The JBits GUI is quite representa-
tive of CAD tools in general.

JBits was given to us as a bytecode-only application.
The installed distribution (with only Java binary code
counted) consists of 1,920 application classes that have a
combined size of 7,577 KBytes. These application classes
also use a large part of the Java system libraries. We have
no understanding of the internals of JBits, and only limited
understanding of its user-level functionality.

For our partitioning, the vast majority (about 1,800) of
the application’s classes are anchored by choice on the
server. Thus co-anchored objects can access each other
directly and impose no overhead on the application’s exe-
cution. This is particularly important in this case, as the
main functionality of JBits is the simulation, which is
compute-intensive. With the anchoring by choice, the sim-
ulation steps of JBits incur no measurable overhead.

259 classes are always anchored on the client (i.e.,
GUI) site. Of these, 144 are JBits application classes and
the rest are classes from the Java system’s graphical pack-
ages (AWT and Swing). The rest of the classes are
anchored on the server site. (We later discuss a variation in
which we make some objects mobile.)

The appletized JBits performs arbitrarily better than a
remote X-Window display. For instance:
• JBits has multiple views of the simulation results (“State

View”, “Power View”, “Core View”, and “Routing Den-
sity View”). Switching between views is a completely
local operation in the J-Orchestra partitioned version—
no network transfers are caused. In contrast, the X win-
dow system needs to constantly refresh the graphics on
screen. For cycling through all four views, X needed
3.4MBytes transferred over the network.

• JBits has deep drop-down menus (e.g., a 4-level deep
menu under “Board->Connect”). Navigating these drop-
down menus is a local operation for the J-Orchestra par-
titioned application, but not for remote access with the
X window system. For interactively navigating 4 levels
of drop-down menus, X transferred 1.8MBytes of data.

• GUI operations like resizing the virtual display, scroll-
ing the simulated board, or zooming in and out (four of
the ten buttons on the JBits main toolbar are for resizing
operations) do not result in network traffic with the
appletized JBits. In contrast, the remote X display pro-
duces heavy network traffic for such operations. With
our example board, one action each of zooming-in com-
pletely and zooming-out results in 3.5MBytes of data
transferred. Scrolling left once and down once produces
7

about 2MBytes of data over the network with X, but no
network traffic with the J-Orchestra partitioned version.
Continuous scrolling over a 10Mbps link is unusably
slow with the X window system. Clearly, a slower con-
nection (e.g., DSL) is not suitable for remote interactive
use of JBits with X.
Even for a regular board redraw, in which the applet-

ized JBits needs to transfer data over the network, less data
get transferred than in the X version. Specifically, the
appletized version needs to transfer about 1.28MB of data
for a complete simulation step including a redraw of the
view. The X window system transfers about 1.68MBytes
for the same task. Furthermore, J-Orchestra transfers these
data using five times fewer total TCP segments, suggest-
ing that for a network in which latency is the bottleneck, X
would be even less efficient.

Although there may be ways (e.g., compression, or a
more efficient protocol) to reduce the amount of data
transferred by X, the important point is that some data
transfer needs to take place anyway. In contrast, the
appletized version only needs to transfer a data object to
the remote site, and all GUI operations presenting the
same data can then be performed locally. For the cases that
do produce network traffic, the appletized version can also
have its bandwidth requirements optimized by using a ver-
sion of Java RMI with compression.

Experiment: Mobility. In the previous discussion we did
not examine the effects of object mobility. In fact, very
few of the potentially mobile objects in JBits actually need
to move in an interesting way. The one exception is JBits
View Adaptor objects (instances of four *ViewAdaptor
classes). View adaptors seem to be logical representations
of visual components and they also handle different kinds
of user events such as mouse movements. During our pro-
filing we noticed that such objects are used both on the
server and the client partition and in fact can be seen as
carriers of data among the two partitions. Thus, no static
placement of all view adaptor objects is optimal—the
objects need to move to exploit locality. We specified a
mobility policy that originally creates view adaptors on the
client site, moves them to the server site when they need to
be updated, and then moves them back to the client site.

Surprisingly, object mobility results in more data trans-
ferred over the network! With mobile view adaptor objects
and an otherwise indistinguishable partitioning, J-Orches-
tra transferred more than 2.59MBytes per simulation step
(as opposed to 1.28MBytes without a mobility policy).
The reason is that the mobile objects are quite large (in the
order of 300-400KBytes) but only a small part of their
data are read/written. In terms of bytes transferred it would
make sense to leave these objects on one site and send
them their method parameters remotely. Nevertheless,

mobility results in a decrease in the total number of remote
calls: 386 remote calls take place instead of 484 for a static
partitioning, in order to start JBits, load a file and perform
5 simulation steps. Thus, the partitioned version of JBits
with mobile objects may perform better for high band-
width networks, in which latency is the bottleneck.

4.2. JNotepad

JNotepad emulates the functionality of the Windows
Notepad editor. It allows the user to read and write text
files. As in any simple text editor, the functionality of
JNotepad consists of a user interface and I/O facilities.
The user manipulates the content of a text file through the
user interface, which includes the interaction with the I/O
facilities for writing and retrieval of files to and from disk.
One appletizing scenario for Notepad places the user inter-
face on the client, while processing the I/O on the server.

The analysis for appletizing showed that the application
has a total of 106 classes (66 JRE system classes, and 40
application classes). It also assigned 98 classes to the cli-
ent site, 7 classes to the server site, and left 2 classes unas-
signed. To help determine a good placement for the
unassigned classes named Center and Actions, we per-
formed a scenario-based profiling that consisted of open-
ing a file, searching for a word in it, changing its content,
and saving it back to disk. The data exchange patterns,
revealed by the profiling, showed that the Center class has
been tightly coupled with the client classes, calling each
other’s methods 17 times. Therefore, the most logical
placement for this class is on the client, together with the
GUI classes. The Actions class exhibited a more complex
data exchange pattern, communicating with both the client
(18 method calls) and the server (42 method calls). More
detailed profiling showed that the data exchange between
the server classes and the Actions class happens inside the
savE method, with the rest of the methods communicating
only with the client classes. This is exactly a case for
which object mobility can provide an elegant solution. The
objects of type Actions can be created at the client site
and then temporarily move to the server for the duration of
the savE method. As our measurements have shown, this
mobility arrangement does not result in less data being
transferred over the network, but significantly decreases
the number of remote calls made (from 60 to 17).

We compared the behaviors of the partitioned applica-
tion to the original one, run remotely under the X window
system. The test scenario was similar to the profiling one,
described above. (We believe that this reflects typical
JNotepad use.) The appletized version transferred less
than 1/7th the amount of data over the network (~1 MB vs.
~7 MB). With all the GUI operation not generating any
network traffic, the appletized version sent data over the
8

network only when reading and writing the text file. Under
X, JNotepad, running on the server that had the text file,
accessed it directly. However, its every interaction with the
GUI resulted in sending data over the network.

4.3. Jarminator

Jarminator is a popular Java application that examines
the content of multiple jar files and displays their com-
bined content in a tree view. The user can have only a sub-
set of the content displayed by supplying a wildcard filter.
We have appletized Jarminator so that it can examine jar
files on a remote machine and display the results locally.
The analysis for appletizing showed that the application
uses a total of 74 classes: 55 JRE system classes, and 19
application classes. The appletizing analysis assigned 62
classes to the client site, 4 classes to the server sites, and
left 8 classes unassigned. A case-based profiling suggested
assigning 6 classes to the client, 1 to the server, and did not
detect any data exchange with the remaining class. It also
did not reveal any communication patterns in which a
mobility scenario could be useful.

Again, we compared the behaviors of the partitioned
application to the original one, run remotely under the X
window system. In this benchmark, we used Jarminator to
explore three third-party jar files used by J-Orchestra. The
use scenario included loading the jars, navigating through
the tree view, and applying wildcard filters to the dis-
played content. The appletized version exhibits significant
benefits, transferring less than 1/30th the amount of data
over the network (~500 KB vs. ~15 MB). In fact, opera-
tions such as filtering the displayed contents are entirely
local in the appletized version and do not generate any net-
work traffic.

4.4. Limitations

Appletizing, just like general application partitioning,
is not free of limitations. Applications can be arbitrarily
complex and can defy correct partitioning. Furthermore,
although we handle common cases of invalid operations
inside applets, we do not have an exhaustive approach to
sanitize all Java code for applet execution. More common
in practice, however, is the case of applications that can be
correctly appletized (i.e., they do not employ unsupported
Java features such as dynamic loading or code rejected by
the applet security manager) yet require manual interven-
tion to override conservative decisions of the J-Orchestra
heuristic analyses.

Of our three case studies, JNotepad and Jarminator
were partitioned completely automatically within 1-2
hours of time. JBits required more intervention (but still
no explicit programming) to arrive at a good partitioning

within 1-2 days. For example, knowing only the JBits exe-
cution from the user perspective, we speculated that the
integer arrays transferred from the server towards the GUI
part of JBits could safely be passed by-copy. These arrays
turned out to never be modified at the GUI part of the
application. A more conservative rewrite would have
introduced a substantial overhead to all array operations.

Even in the less automatic cases, however, the expertise
required to appletize an application is analogous to that of
a system administrator, rather than that of a distributed
systems programmer. For instance, in the JBits case we
partitioned a 7.5MB binary application without knowledge
of its internals. Even though the partitioning was not auto-
matic, the effort expended was certainly much less than
that of a developer who would need to change an applica-
tion with about 2,000 classes, more than 200 of which
need to be modified to be accessed remotely.

5. Related Work

Several recent systems can be classified as automatic
partitioning tools. In the Java world, the closest
approaches are the Addistant [23] and Pangaea [20] sys-
tems. The Coign system [13] has promoted the idea of
automatic partitioning for applications based on COM
components. All three systems do not address the problem
of partitioning unmodifiable system code (e.g., GUI code)
and, thus, are unsuitable for appletizing.

Coign is the only one of these systems to have a claim
at scalability, but the applications partitioned by Coign
consist of independent components to begin with. Just like
appletizing, the Coign approach performs only client-
server partitioning. Coign does not address the hard prob-
lems of application partitioning, which have to do with
pointers and aliasing: components cannot share data
through memory pointers. Such components are deemed
non-distributable and are located on the same machine.
Practical experience with Coign [13] showed that this is a
severe limitation for the only real-world application
included in Coign’s example set (the Microsoft Photo-
Draw program). The overall Coign approach would not be
feasible for applications in a general purpose language
(like Java, C, C#, or C++) where pointers are prevalent,
unless a strict component-based implementation method-
ology is followed.

JavaParty [11][19] is closely related to J-Orchestra. The
similarity is not so evident in the objectives, since Java-
Party only aims to support manual partitioning and does
not deal with system classes. The implementation tech-
niques used, however, are very similar to J-Orchestra,
especially for the newest versions of JavaParty [11]. Simi-
lar comments apply to the FarGo [12] and AdJava [8] sys-
tems. Notably, however, FarGo has focused on grouping
9

classes together and moving them as a group. FarGo
groups are similar to J-Orchestra anchored groups. In fact,
groups of J-Orchestra objects that are all anchored by
choice could well move, as long as they do it all together.
We have not investigated such mobile groups, however.

Automatic partitioning is essentially a Distributed
Shared Memory (DSM) technique. Nevertheless, auto-
matic partitioning differs from traditional DSMs in several
ways. First, automatic partitioning systems do not change
the runtime system, but only the application. This is essen-
tial for deploying applets that will work on standard VMs
inside web browsers. Traditional DSM systems like Munin
[5], Orca [2], and, in the Java world, cJVM [1], and Java/
DSM [24] use a specialized run-time environment in order
to detect access to remote data and ensure data consis-
tency. Also, DSMs have usually focused on parallel appli-
cations and require programmer intervention to achieve
high-performance. In contrast, automatic partitioning con-
centrates on resource-driven distribution, which intro-
duces a new set of problems (e.g., the problem of
distributing around unmodifiable system code, as dis-
cussed). Among distributed shared memory systems, the
ones most closely resembling the J-Orchestra approach are
object-based DSMs, like Orca [2].

Mobile object systems, like Emerald [3] have formed
the inspiration for many of the J-Orchestra ideas on object
mobility scenarios.

Both the D [17] and the Doorastha [7] systems allow
the user to easily annotate a centralized program to turn it
into a distributed application. Although these systems are
higher-level than explicit distributed programming, they
are significantly lower-level than J-Orchestra. All the bur-
den is shifted to the programmer to specify what semantics
is valid for a specific class (e.g., whether objects are
mobile, whether they can be passed by-copy, etc.). Pro-
gramming in this way requires full understanding of the
application behavior and can be error-prone: a slight error
in an annotation may cause insidious inconsistency errors.

6. Conclusions

Adding distributed capabilities to existing programs is
currently one of the most important software evolution
tasks in practice [16]. We presented appletizing, a semi-
automatic approach to transforming a Java GUI applica-
tion into a client-server application. We discussed the
motivation, benefits, and J-Orchestra support for appletiz-
ing, and validated our approach via a set of case studies
and associated benchmarks. We believe that our approach,
having the benefits of automation, flexibility, ease of
deployment, and good performance, is a useful tool for
software evolution, and that similar tools will become
mainstream in the future.

Acknowledgements. This research was supported by the
NSF under Grants No. CCR-0220248 and CCR-0238289.

References
[1] Yariv Aridor, Michael Factor, and Avi Teperman, “CJVM: a
Single System Image of a JVM on a Cluster”, in Proc. ICPP’99.
[2] Henri E. Bal, Raoul Bhoedjang, Rutger Hofman, Ceriel
Jacobs, Koen Langendoen, Tim Ruhl, and M. Frans Kaashoek,
“Performance Evaluation of the Orca Shared-Object System”,
ACM Trans. on Computer Systems, 16(1):1-40, February 1998.
[3] Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy,
and Larry Carter, “Distribution and Abstract Types in Emerald”,
in IEEE Trans. Softw. Eng., 13(1):65-76, 1987.
[4] Jon Byous, “Opportunities Everywhere”, http://
java.sun.com/javaone/general_sessions1.html.
[5] John B. Carter, John K. Bennett, and Willy Zwaenepoel,
“Implementation and performance of Munin”, 13th ACM
Symposium on Operating Systems Principles (SOSP), 1991.
[6] Markus Dahm, “Byte Code Engineering”, JIT 1999.
[7] Markus Dahm, “Doorastha—a step towards distribution
transparency”, JIT 2000.
[8] Mohammad M. Fuad and Michael J. Oudshoorn,
“AdJava— Automatic Distribution of Java Applications”, 25th
Australasian Computer Science Conference (ACSC), 2002.
[9] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha,
“The Java Language Specification”, Second Edition, Addison
Wesley, 2000.
[10] Steven A. Guccione, Delon Levi and Prasanna
Sundararajan, “JBits: A Java-based Interface for Reconfigurable
Computing”, 2nd Annual Military and Aerospace Applications of
Programmable Devices and Technologies Conference (MAPLD),
1999.
[11] Bernhard Haumacher, Jürgen Reuter, Michael Philippsen,
“JavaParty: A distributed companion to Java”, http://
wwwipd.ira.uka.de/JavaParty/
[12] Ophir Holder, Israel Ben-Shaul, and Hovav Gazit,
“Dynamic Layout of Distributed Applications in FarGo”, Int.
Conf. on Softw. Engineering (ICSE), 1999.
[13] Galen C. Hunt, and Michael L. Scott, “The Coign
Automatic Distributed Partitioning System”, 3rd Symposium on
Operating System Design and Implementation (OSDI), 1999.
[14] Jarminator: Free software application. From http://
www.javasvet.net/prj/jarminator/
[15] JNotepad: Free software application. From http://
www.pscode.com/
[16] Nelson King, “Partitioning Applications”, DBMS and
Internet Systems magazine, May 1997. See http://www.dbms-
mag.com/9705d13.html .
[17] Cristina Videira Lopes and Gregor Kiczales, “D: A
Language Framework for Distributed Programming”, PARC
Technical report, February 97, SPL97-010 P9710047.
[18] Alan Messer, Ira Greenberg, Philippe Bernadat, Dejan
Milojicic, Deqing Chen, T.J. Giuli, Xiaohui Gu, “Towards a
Distributed Platform for Resource-Constrained Devices”,
International Conference on Distributed Computing Systems
(ICDCS), 2002.
[19] Michael Philippsen and Matthias Zenger, “JavaParty -
Transparent Remote Objects in Java”, Concurrency: Practice
and Experience, 9(11):1125-1242, 1997.
[20] Andre Spiegel, Automatic Distribution of Object-Oriented
Programs, PhD Thesis. FU Berlin, FB Mathematik und
Informatik, December 2002.
[21] Eli Tilevich and Yannis Smaragdakis, “J-Orchestra:
Automatic Java Application Partitioning”, European Conference
on Object-Oriented Programming (ECOOP), June 2002.
[22] Eli Tilevich and Yannis Smaragdakis, “Portable and
Efficient Distributed Threads for Java”, Middleware’04
conference, October 2004.
[23] Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba, and
Kozo Itano, “A Bytecode Translator for Distributed Execution of
‘Legacy’ Java Software”, European Conference on Object-
Oriented Programming (ECOOP), June 2001.
[24] Weimin Yu, and Alan Cox, “Java/DSM: A Platform for
Heterogeneous Computing”, Concurrency: Practice and
Experience, 9(11):1213-1224, 1997.
10

	Appletizing: Running Legacy Java Code Remotely From a Web Browser
	Eli Tilevich, Yannis Smaragdakis Marcus Handte
	College of Computing , Georgia Institute of Technology University of Stuttgart {tilevich, yannis}@cc.gatech.edu m.handte@web.de
	Abstract
	1. Introduction
	2. J-Orchestra Overview
	2.1. Technical Overview
	Figure 1 : Indirect referencing schematically. Proxy objects could point to their targets either locally or over the network.

	2.2. The J-Orchestra Rewrite
	Figure 2 : Mobile code refers to anchored objects indirectly (through proxies) but anchored code refers to the same objects directly. Each kind of reference should be derivable from the other.

	3. Supporting Appletizing
	3.1. Static Analysis for Appletizing
	Figure 3 : The appletizing perspective code view of a centralized Java GUI application.

	3.2. Profiling for Appletizing
	3.3. Rewriting Bytecode for Appletizing
	3.4. Runtime Support for Appletizing

	4. Case Studies and Discussion
	4.1. JBits
	Experiment: Mobility

	4.2. JNotepad
	4.3. Jarminator
	4.4. Limitations

	5. Related Work
	6. Conclusions
	Acknowledgements

	References
	[1] Yariv Aridor, Michael Factor, and Avi Teperman, “CJVM: a Single System Image of a JVM on a Cluster”, in Proc. ICPP’99.
	[2] Henri E. Bal, Raoul Bhoedjang, Rutger Hofman, Ceriel Jacobs, Koen Langendoen, Tim Ruhl, and M. Frans Kaashoek, “Performance Evaluation of the Orca Shared-Object System”, ACM Trans. on Computer Systems, 16(1):1-40, February 1998.
	[3] Andrew Black, Norman Hutchinson, Eric Jul, Henry Levy, and Larry Carter, “Distribution and Abstract Types in Emerald”, in IEEE Trans. Softw. Eng., 13(1):65-76, 1987.
	[4] Jon Byous, “Opportunities Everywhere”, http:// java.sun.com/javaone/general_sessions1.html.
	[5] John B. Carter, John K. Bennett, and Willy Zwaenepoel, “Implementation and performance of Munin”, 13th ACM Symposium on Operating Systems Principles (SOSP), 1991.
	[6] Markus Dahm, “Byte Code Engineering”, JIT 1999.
	[7] Markus Dahm, “Doorastha-a step towards distribution transparency”, JIT 2000.
	[8] Mohammad M. Fuad and Michael J. Oudshoorn, “AdJava- Automatic Distribution of Java Applications”, 25th Australasian Computer Science Conference (ACSC), 2002.
	[9] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha, “The Java Language Specification”, Second Edition, Addison Wesley, 2000.
	[10] Steven A. Guccione, Delon Levi and Prasanna Sundararajan, “JBits: A Java-based Interface for Reconfigurable Computing”, 2nd Annual Military and Aerospace Applications of Programmable Devices and Technologies Conference (MAPLD), 1999.
	[11] Bernhard Haumacher, Jürgen Reuter, Michael Philippsen, “JavaParty: A distributed companion to Java”, http:// wwwipd.ira.uka.de/JavaParty/
	[12] Ophir Holder, Israel Ben-Shaul, and Hovav Gazit, “Dynamic Layout of Distributed Applications in FarGo”, Int. Conf. on Softw. Engineering (ICSE), 1999.
	[13] Galen C. Hunt, and Michael L. Scott, “The Coign Automatic Distributed Partitioning System”, 3rd Symposium on Operating System Design and Implementation (OSDI), 1999.
	[14] Jarminator: Free software application. From http:// www.javasvet.net/prj/jarminator/
	[15] JNotepad: Free software application. From http:// www.pscode.com/
	[16] Nelson King, “Partitioning Applications”, DBMS and Internet Systems magazine, May 1997. See http://www.dbmsmag.com/9705d13.html .
	[17] Cristina Videira Lopes and Gregor Kiczales, “D: A Language Framework for Distributed Programming”, PARC Technical report, February 97, SPL97-010 P9710047.
	[18] Alan Messer, Ira Greenberg, Philippe Bernadat, Dejan Milojicic, Deqing Chen, T.J. Giuli, Xiaohui Gu, “Towards a Distributed Platform for Resource-Constrained Devices”, International Conference on Distributed Computing Systems (ICDCS), 2002.
	[19] Michael Philippsen and Matthias Zenger, “JavaParty - Transparent Remote Objects in Java”, Concurrency: Practice and Experience, 9(11):1125-1242, 1997.
	[20] Andre Spiegel, Automatic Distribution of Object-Oriented Programs, PhD Thesis. FU Berlin, FB Mathematik und Informatik, December 2002.
	[21] Eli Tilevich and Yannis Smaragdakis, “J-Orchestra: Automatic Java Application Partitioning”, European Conference on Object-Oriented Programming (ECOOP), June 2002.
	[22] Eli Tilevich and Yannis Smaragdakis, “Portable and Efficient Distributed Threads for Java”, Middleware’04 conference, October 2004.
	[23] Michiaki Tatsubori, Toshiyuki Sasaki, Shigeru Chiba, and Kozo Itano, “A Bytecode Translator for Distributed Execution of ‘Legacy’ Java Software”, European Conference on Object- Oriented Programming (ECOOP), June 2001.
	[24] Weimin Yu, and Alan Cox, “Java/DSM: A Platform for Heterogeneous Computing”, Concurrency: Practice and Experience, 9(11):1213-1224, 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

