
FundExplorer: Supporting the Diversification of
Mutual Fund Portfolios Using Context Treemaps

Christoph Csallner*, Marcus Handte†, Othmar Lehmann‡, John Stasko→

College of Computing/GVU Center
Georgia Institute of Technology

Atlanta, GA 30332-0280

Abstract

An equity mutual fund is a financial instrument that invests in a
set of stocks. Any two different funds may partially invest in
some of the same stocks, thus overlap is common. Portfolio
diversification aims at spreading an investment over many
different stocks in search of greater returns. Helping people with
portfolio diversification is challenging because it requires
informing them about both their current portfolio of stocks held
through funds and the other stocks in the market not invested in
yet. Current stock/fund visualization systems either waste screen
real estate or only visualize the user’s portfolio and therefore do
not show the potentially huge number of stocks available in the
market. Distortion applied to treemaps yields both efficient use of
screen real estate and visualization of all data points. We have
developed a system called FundExplorer that implements a
distorted treemap to visualize both the amount of money invested
in a person’s fund portfolio and the context of remaining market
stocks. The FundExplorer system enables people to interactively
explore diversification possibilities with their portfolios.

CR Categories: H.5 [Information Systems]: Information
interfaces and presentation; J.1 [Computer applications]:
Administrative data processing -- Financial

Keywords: information visualization, context, treemap,
distortion, query, financial data, stock market, FundExplorer

1 Introduction

Recently, many people have become reacquainted with the fact
that a certain amount of risk is associated with investments in the
stock market. Diversification is a well-known strategy to limit the
risks of financial investments. Diversification aims at investing in
a variety of stocks, preferably from different sectors. By
diversifying a portfolio, the risk of the investment is distributed,
and losses in one stock or market segment (e.g., the technology
sector) can potentially be compensated by profits in other market
segments. This principle also holds true for investments in equity
mutual funds.
--

*e-mail: christoph.csallner@cc.gatech.edu
†e-mail: marcus.handte@cc.gatech.edu
‡e-mail: othmar.lehmann@cc.gatech.edu
→e-mail: stasko@cc.gatech.edu

Mutual funds are a popular investment choice for private
investors, because they allow people to invest money and have it
managed by professional fund managers. In this article, we will
concentrate on equity mutual funds, a popular form of mutual
funds that invests in stocks. Diversification management of a fund
portfolio has a number of challenges.

In general, portfolio diversification manages the relation between
the portfolio of a person and the context of the whole stock
market. It determines what part of the whole stock market the
person’s overall investment covers, and whether this coverage and
distribution is reasonable. We feel that it would be beneficial to
support people with an understandable presentation of the
diversification of their portfolios so that they can make informed
investing decisions.

Equity mutual funds usually invest most of their money in stocks.
If a person invests in funds, then he or she is actually investing in
the set of stocks that the fund has purchased. So, for the
diversification of a fund portfolio, it is in general not enough to
buy different funds. For example, although two funds may seem
to be different, they can nevertheless invest most of their money
in overlapping stocks. Thus, distributing an investment between
these funds would not improve portfolio diversification. In order
to determine the optimal fund portfolio, the composition of the
funds should be considered. One might argue this is not important
because the composition of funds changes over time as the
management of the funds continuously adjusts the composition to
react to market developments. Many funds are relatively stable,
however, following a particular investment style and making
long-term investments and infrequent trades. Thus, it makes sense
to base the portfolio diversification decision on the present
composition of the funds.

In this article we present a system that supports investors in the
task of portfolio diversification. First, we clarify characteristics of
this task, then we survey existing systems that can be used to
support the task. Next, we present the concept of the Context
Treemap and show how it was used in building our visualization
system, the FundExplorer. We conclude with a discussion of our
results and we identify possibilities for improvement.

2 The User Task

Fund portfolio diversification consists of two tasks. The first task
is to gain an overview of the diversification in the existing
portfolio. More specifically, people must understand and assess
the stocks and markets held by their funds. Upon gaining this
understanding, investors can determine if the resulting
diversification is appropriate and sufficient. Once the
diversification goals are set, the next task is to modify the existing
diversification structure to meet their needs. If a potential new
fund addition is known, then investors need to know how this new
fund would influence the diversification of their portfolio.
Alternatively, a person may be looking for funds that influence a
portfolio in a special direction. For example, if someone wants to

increase an investment in the utilities sector, the person will be
searching for funds that invest in this sector, while not creating an
imbalance in the other sectors.

3 Existing Systems

A variety of tools are available to support investors in the
selection of funds for a portfolio. Most tools and methods mainly
utilize performance indicators such as past performance, expense
ratios, fund ratings, etc., and they often use tables of some sort.
The tools usually list the ten largest holdings of a fund and
provide pie charts of how the fund’s assets are distributed
throughout the market sectors. These visualizations give people
little support in determining how a new fund fits into an existing
fund portfolio, and how it overlaps with funds already owned.

A treemap is an information visualization technique that uses
nested rectangles to create a space-filling representation of
hierarchical data [Shneiderman 1992]. It has been noted that
treemaps are well suited to support decision-making processes in
hierarchical structures [Asahi et al. 1995]. The stock market can
be viewed as a hierarchical structure, where every stock is part of
a sector. Treemaps already have been utilized successfully in the
visualization of stock portfolios and markets, e.g., Jungmeister
and Turo’s [1992] FolioMap prototype and Smartmoney.com’s
Map of the Market [Wattenberg 1999]. (Actually,
Smartmoney.com uses a variation of the original treemap
algorithm in which rectangles exhibit more square aspect ratios.
Recently, a number of algorithmic variants like this have been
introduced [Bederson et al. 2002]). Because of all these desired
capabilities, we decided to utilize a treemap in our visualization.

Smartmoney.com also uses treemaps to visualize fund portfolios
(at http://www.smartmoney.com/portfoliomap/ as of March
2003). The website uses a treemap to visualize how much money
a person has invested in various funds. While this visualization
gives a good overview of how the investments are distributed
between the funds, it does not support the diversification process
very well because it does not show where the money is really
invested by the funds, i.e., the individual stocks.

Another straightforward way to visualize individual’s fund
holdings would be to create a treemap view of the entire market,
like Map of the Market, but use color and/or brightness to indicate
fund weighting rather than stock performance.

4 Problem Analysis

It is relatively straightforward to use treemaps to visualize how
much money a person has invested, by buying funds, in the
various stocks of the various sectors of the overall market. The
visualization would map invested money value(node) to screen
area area(node). In a classic treemap1 the quantity area(node) is
the product of value(node) and the quotient of the screen real
estate area(parent) of the node’s parent node and the money
value(parent) invested into the parent node. The quotient
area(node) / value(node) given in pixels per dollar is constant
throughout the entire tree:

)(/)(*)()(parentvalueparentareanodevaluenodearea =

Unfortunately, a classic treemap has a limitation that is
problematic for communicating portfolio diversity: only nodes

1 We use the term “classic treemap” inclusively to refer to any of the
existing layout algorithms such as the original technique or the new
squarer aspect ratio variants.

that have an associated (positive) value are shown. For
value(stock) = 0 we have area(stock) = 0. So, with a classic
treemap, only the stocks already owned by the investor are
visible. Recall that stocks are leaf nodes in a tree with the
following levels given in top down order: root, sector, stock. As
the treemap displays this hierarchy using a recursive algorithm, it
would transitively eliminate sectors as well if the user has not
(yet) invested in any of the sector’s stocks. Thus, using a classic
treemap algorithm as is supports portfolio visualization but does
not support the discovery of unknown parts of the market.

Shneiderman [1992] has noted this issue of disappearing nodes. In
his working example of visualizing a file system, this issue is not
really a drawback if the user is only interested in the top n files
wasting most space. But if the user cares about small files, this
situation also faces our problem.

A B C
node

value(node)

0
1
2 A

2 $
C

1 $

Figure 1: Mapping value(stock) area(stock) visualized by a bar

chart on the left and a classic treemap on the right.

Figure 1 illustrates that the usual suspect, “lack of screen real
estate”, is not the cause of the problem here. The example shows a
tiny market consisting of three stocks A, B, and C. A person has
invested two dollars in A, zero in B, and one dollar in C. Both
portfolio visualizations, the bar chart and the treemap, have
enough screen real estate to adequately present the data. Yet the
bar chart more clearly shows the values and relationships of all
data points whereas the classic treemap does not show B.
Portfolio diversification is as much about the stocks and sectors
not invested in as it is about the stocks and market sectors already
invested in. What is needed is a treemap that shows not only the
tree nodes (stocks) already present, but also their context.

5 The Context Treemap Solution

Our visualization is based on the notion of distorting the classic
treemap visualization, trading proportionality of a mapped
attribute for a more inclusive visualization. Figure 2 illustrates the
general idea. The distorted treemap (bottom) is a compromise
between showing all the data elements—even those with zero
value—and a classic treemap that preserves values’ proportions
(top). So, in many cases a distorted treemap can show one more
attribute than a classic treemap, though now the node area is no
longer proportional to the attribute visualized. In the following
paragraphs we discuss a number of different implementation
strategies for this idea.

The first approach uses a regular treemap algorithm, but it
modifies the data points’ values by applying a function before
visualizing them. To work around the problem of non-portfolio
stocks having zero value, we can simply add one to the values of
all data points. Thus, “absent” stocks receive a value of 1 and all
others retain appropriate proportions. Unfortunately, as a
portfolio grows in value, the context stocks are essentially
squeezed down to be virtually indistinguishable in this strategy.

A
2 $

C
1 $

A
2 $

B
0 $

C
1 $

Classic Treemap
Preserves value proportions

Context Treemap
Distorts value proportions to
preserve identity

Figure 2: A classic treemap and a Context Treemap displaying the

same data set.

An alternative data mapping strategy could use an exponential
function to map similar values to more easily distinguishable node
areas on screen, as was illustrated by Turo [1994]. For instance,
we could use area(node) = 2^(value(node)). Such an exponential
function maps a zero value to the value one, which is very useful
in our case. However, an exponential function approach generally
inflates large values while the context (i.e., small values or zero
value for us) only receives the remaining fraction of the screen
real estate. The fraction approaches zero as the total amount of
invested money increases. This holds true even for functions such
as 1.0001^(value(node)), where almost everything is mapped to
one until we encounter the explosive exponential growth.
Fundamentally, using an exponential function changes the
proportionality for non-zero values, which is a serious
shortcoming in our problem domain.

Another possible strategy is to assign some minimum screen area
to zero value items in order to prevent them from disappearing
[Turo and Johnson 1992]. This approach is problematic in that the
presence of many zero value items can dominate the display,
leaving little room for valued items, and with small-value items
essentially disappearing. Furthermore, the strategy requires
modifying the underlying treemap algorithm, thus making it less
modular.

The solution we developed is an approach that takes ideas from
the strategies above. More specifically, it uses another type of
distortion function to recalculate node values before display.
Conceptually, we reserve a configurable portion of the screen real
estate, which is not influenced by the current mix of nodes’
values, for the context as follows. First, we calculate the total
invested money value(total). Second, we create an additional
amount of money value(total) * v for the context. The screenshots
in this article are based on v = 0.5. This reserves 33 percent of the
total screen real estate for context—stocks in which the viewer
has not invested. If there are no investments at all we reserve 100
percent of the space for context. The context screen real estate is
split equally among the “empty” stocks by assigning each of them
the value valuec, where valuec = value(total) * v / #emptyStocks.
Thus, we utilize the following mapping:



 =

=
otherwise)(

0)(if
)`(

nodevalue
nodevaluevalue

nodevalue c

So, for a Context Treemap, we use the following modified chain
of functions:
value(node) value`(node); value`(node) area(node)

The advantages of this approach are that it strikes a good balance
between the existing stock portfolio and the context in terms of
display real estate, it preserves proportions for held stocks, and no
changes to the treemap algorithm are necessary. Thus, it enables
the reuse of existing implementations and allows easy switching
between them.

6 The FundExplorer

Using the idea of a Context Treemap, we implemented
FundExplorer, a tool that supports people in adjusting the
diversification of their equity mutual fund portfolios. As shown in
Figure 3, a Context Treemap is used to visualize a person’s
portfolio. FundExplorer shows the stocks in which a person has
invested through his or her fund portfolio. The stocks and market
segments that an investor has not invested in appear as context.

At first, a person needs to define the initial portfolio he or she
wants to visualize. For this task, the FundExplorer provides a list
of all available funds in the top left corner of the screen. The user
can select owned funds and add them to the portfolio, which is
displayed in the bottom of the three regions at the left edge of the
screen. Next, the user specifies the amount of money invested in
the fund and the color of its representation.

The portfolio shown in Figure 3 consists of one fund. The Context
Treemap visualization presents every stock in the market that is
available via some fund in the master list. The stocks are grouped
by market segment. Each visual item provides a tooltip showing
the represented stock’s name and sector. Stocks that are held in
the investor’s funds (the larger rectangles here) are represented by
rectangles whose size corresponds to the amount of money
invested in them through the funds. The colors of the stock
representations are determined by the fund that invests in them—
if multiple funds invest in a stock, the stock representation has
multiple colors, weighted proportionally. Stocks not held in any of
the user’s funds are only visible as context and are shown in grey.
For the layout of the context treemap, we use a squarified treemap
algorithm called pivot-by-size [Bederson et al. 2002] though any
of the other algorithms could easily be substituted.

Suppose that an investor already has one fund in the portfolio and
wants to diversify this investment. Figure 3 shows that the
investor is not invested in the industrial sector—all the stocks in
that region are shown as context. So the investor may want to buy
additional funds to tap into the industrial sector.

The context feature of the treemap enables investors to utilize the
visualization as a query device [Shneiderman 1994]. This
capability is perhaps the key feature of the system. In Figure 4 the
user has issued a query for funds that invest in the industrial
sector by clicking on the border of this sector, which is now
marked red. In the center list (marked “Filter”) on the left side of
the screen, the system then provides a list of funds that invest in
the industrial sector. If the investor selects a fund from that list,
the FundExplorer shows the stocks of that fund by marking them
with blue borders (see Figure 4). Thus, viewers can quickly assess
where the new fund overlaps with already owned stocks and how
adding this fund would influence the portfolio. By scrolling
through the list of funds, an investor can explore which fund may
be the best supplement for the existing portfolio. Thereafter, the
investor can add the fund to the portfolio and specify the amount
to be invested as was described earlier. Individual stocks, as well
as sectors, can be used as filtering parameters in this way.

Figure 3: Visualizing one fund with FundExplorer. On the left side, FundExplorer lists from top to bottom: all funds, the funds returned by

the current filter and the funds that are part of the depot. On the right side, the context treemap displays the owned fund embedded in its
context. Moving the mouse across the context treemap activates tooltips that describe the items pointed at.

Figure 4: The context can be used to formulate queries. Therefore, all items of the context treemap can be selected and deselected by mouse
clicks, and the resulting query is visualized by red borders. Similarly, selecting a fund or set of funds in the overview, filter, or depot view

(Prudential is selected in the Filter here) emphasizes the stocks owned by the fund(s) via blue borders.

Figure 5: Stocks held by multiple funds are visualized by

rectangles with different colors. The distribution of funds within
stocks is simply another level of the visualized tree.

Figure 5 shows the user’s portfolio after investing in an additional
fund. In this example, the stock in the upper right corner
(indicated by the mouse pointer) is common to both funds, so it is
rendered in two different colors with the areas of the two regions
corresponding to the holding by each fund. Note that any number
of funds can be added to a portfolio as desired by the user.

7 Discussion

Enhancing a treemap with context extends its potential
applications and uses. The FundExplorer system demonstrates the
following two additional applications.

First, the Context Treemap of the FundExplorer enables the
visualization of a user’s fund portfolio within the stock market.
The visualization of data within its context enables an investor to
visually determine the diversification of his or her portfolio within
the stock market. Additionally, it enables direct comparisons
between items (i.e., funds or stocks) that belong to the portfolio
and items that are part of the context.

Second, the permanent and complete visualization of the whole
stock market enables the formulation of queries. The
FundExplorer uses these queries to filter the original set of
available funds. The query mechanism provides fast access to
funds that have a desired impact on the diversification of an
investor’s portfolio. The natural formulation of queries provides
an easy-to-use interface that also supports iterative selection
processes since the user can refine a query visually at anytime.

The combination of these two techniques supports people in
optimizing the diversification of their fund portfolios. Compared
to the usual table-based approach supported by most existing
systems, the FundExplorer enables an easier and faster visual
approach based on treemaps. People no longer must create a
mental image of their funds within the stock market. They can
instead use the treemap representation generated by FundExplorer
as a form of external cognition aid. In order to optimize or change

their portfolio, people can directly manipulate this representation
to achieve the desired effect in terms of diversification.

We have tested FundExplorer with a set of 200 funds that share a
common basis of 1000 stocks. Without changes the visualization
should easily scale up to 4000 to 5000 stocks on a screen with a
resolution of 1024x768 pixels because on average this would
leave more than 150 pixels per stock.

Considering that the NASDAQ alone consists of nearly 5000
stocks one might question the applicability of the FundExplorer
for the whole stock market. However, we argue that for most tasks
of portfolio diversification with funds, it is not necessary to
visualize the entire market. First, investors will only be interested
in stocks that are owned by at least one fund. If a stock is not part
of at least one fund, people do not have a chance to invest in it
through funds. Second, investors will be more interested in the
stocks that bind a high percentage of a fund’s money. Therefore
one could reduce the number of stocks by ignoring stocks that fall
below a certain threshold. Also, changing the treemap
implementation to utilize newer techniques as proposed in [Fekete
and Plaisant 2002] could help increase the number of displayable
stocks.

Although we are confident that the FundExplorer’s Context
Treemap is a valuable support tool, the following five aspects of
our implementation can be improved.

First, the notion of context generally leads to increased visual
clutter. In comparison to a classic treemap in which the size of
each node directly corresponds to the value of that item within the
tree, the Context Treemap introduces a second meaning for the
nodes that belong to the context. The FundExplorer separates
those two meanings by using different colors. Such a color
scheme does mitigate the problem of different proportions within
the same visualization but does not solve it completely. The
FundExplorer example shows that the Context Treemap is in
general slightly harder to understand than a conventional treemap.

Second, with all the context information presented by the Context
Treemap, the performance of the Context Treemap is worse than
the performance of a classic treemap when it comes to tasks that
do not rely on context information. It is not quite clear whether it
would make sense to allow the user to disable the context for
tasks that do not rely on context, since switching between two
similar representations might also confuse the user.

Another issue that we have discovered during our analysis
involves the context itself. The Context Treemap implementation
allocates the same weight for all context stocks. Thus, sectors
with more stocks have more area devoted to them, which could
perhaps be viewed as misleading. In FundExplorer, the context
currently serves only as a reminder about stocks not owned, and
the user does not perceive any visual clues about the importance
of such stocks.

A more elaborate scheme could use domain knowledge to map the
domain-specific importance of a node to its size. For instance,
while preserving a constant area for the context altogether, the
context area devoted to each sector could vary and correspond to
the size of that sector relative to the total market. We have not
implemented such a mapping to date as it would increase the
visual complexity of the tool. More specifically, having different
size context nodes in different sectors would complicate the
current simple-to-understand mapping. What if a person has

many stocks in a relatively small sector? How big is that sector’s
area? By trying to map rectangle (stock) area to both current fund
holding and to market capitalization, there is greater potential to
confuse users. Still, basic functions like specifying queries would
benefit from such a custom mapping as the size of a context item
would indicate its importance. Clearly, this is a direction to be
explored in follow-on work.

Fourth, since the task of diversifying a fund portfolio is usually
part of a larger task that aims at balancing the risk-profit-ratio, it
is likely that people will be interested in more than just
diversification. Other criteria like price-earning-ratio or
management cost will be of major interest to the user. Investors
will not buy a fund that is likely to produce losses just to achieve
better diversification. At the moment, the FundExplorer does not
address this issue, that is, it does not visualize additional
information within the Context Treemap. Standard GUI
techniques like tooltips could be used to present other stock/fund
metrics, but this integration likely would not reach the desired
level of support for the complex selection process to balance risk
and profit. Alternatively, the area, color, and/or other visual
attributes such as brightness of an owned stock or a stock in the
context could be used to encode any variety of data attributes.
Any such addition would increase the visual complexity of the
tool, however, making visual inspection and analysis more
involved.

Finally, we are presently using the pivot-by-size treemap
algorithm that is very “unstable”, that is, small changes to data
values can cause massive movements of treemap nodes. For the
task of exploring alternative portfolios, this is a clear problem. It
would be wise to explore alternative layout algorithms such as the
strip treemap [Bederson et al. 2002] that are more stable.

8 Future Work

As stated in the previous section, the current implementation of
the FundExplorer still has room for improvement. The following
ideas could increase the usefulness of the tool and thereby
mitigate some of the discussed problems.

First, we could increase the value of the context by weighing its
stocks according to different analysis metrics such as, for
example, market capitalization. With this enhancement, users
would get visual clues about the relevance of stocks that are not
part of their portfolio. The knowledge gained from these clues
would then support users during the evaluation of their portfolio
diversification with respect to market capitalization. The filter
mechanism of the FundExplorer would also benefit from this
functionality since users will be able to find important stocks
much faster. In general, we could enhance the user interface of
the system to provide flexible controls for mapping visual
attributes, such as area, color and brightness, of both portfolio
stocks and context stocks to different stock analysis metrics.

Second, we would like to mitigate the problem of visual clutter
introduced by the Context Treemap for tasks that do not
necessarily require context. As discussed earlier, one could
imagine switching on demand between the conventional and the
Context Treemaps, but abrupt changes might be very confusing. A
better solution would allow users to specify the percentage of
screen real-estate used for the contextual information via an
interactor such as a dynamic query slider [Shneiderman 1994].
Smooth transitions would convey the feeling of zooming the
context in and out. For this idea to be implemented, a stable (i.e.,
minimal-jumping) treemap algorithm would be required.

Third, apart from technical optimizations we would like to
measure the usefulness of the FundExplorer with representative
users. So far we have not performed systematic user studies.
People that have seen and used the FundExplorer generally liked
the idea and the system, but it would be interesting to compare the
table-based selection process and the visual approach using
treemaps in a controlled experimental setting. Additionally, it
would be interesting to see results of comparisons of the
understandability of Context Treemaps in contrast to conventional
treemaps as a general visualization.

9 Conclusion

In this article, we have presented a system that makes equity
mutual fund portfolios much more transparent and facilitates the
task of portfolio diversification. For this system, building on
concepts described in [Turo 1994], we have created an extended
treemap that visualizes the context of the visualized tree structure.
Using the Context Treemap visualization in the FundExplorer
system allows us to better show how the investments of a person
are situated within the overall stock market and to use the treemap
as task specific query device. In summary, our experiences with
the FundExplorer are promising, and we believe that the concept
of the Context Treemap can be applied to other domains as well.

References

ASAHI, T., TURO, D., AND SHNEIDERMAN, B. 1995. Using treemaps to

visualize the analytic hierarchy process. Information Systems Research
6, 4, 357–375.

BEDERSON, B.B., SHNEIDERMAN, B., AND WATTENBERG, M. 2002.

Ordered and quantum treemaps: making effective use of 2D space to
display hierarchies. ACM Transactions on Graphics 21, 4, 833–854.

FEKETE, J. AND PLAISANT, C. 2002. Interactive Information Visualization

of a Million Items. In Proceedings of IEEE Symposium on Information
Visualization (InfoVis'02), 117–124.

JUNGMEISTER, W.-A. AND TURO, D. 1992. Adapting treemaps to stock

portfolio visualization. University of Maryland, Center for Automation
Research technical report CAR-TR-648 (also CS-TR-2996, SRC-TR-
92-120).

SHNEIDERMAN, B. 1992. Tree visualization with tree-maps: 2-d space-

filling approach. ACM Transactions on Graphics 11, 1, 92–99.

SHNEIDERMAN, B. 1994. Dynamic Queries for Visual Information

Seeking. IEEE Software, 11, 6, 70-77.

TURO, D. AND JOHNSON, B. 1992. Improving the visualization of

hierarchies with treemaps: design issues and experimentation. In
Proceedings of IEEE Visualization '91, 124–131.

TURO, D. 1994. Hierarchical visualization with treemaps: making sense of

pro basketball data. In ACM CHI '94 Conference Companion, 441–442.

WATTENBERG, M. 1999. Visualizing the stock market. In ACM CHI 1999

Extended Abstracts, 188–189.

