
Experiences: Minimalism and Extensibility in BASE

Marcus Handte, Christian Becker, Gregor Schiele

Institute for Parallel and Distributed Systems (IPVS)
Universität Stuttgart, Germany

{marcus.handte|christian.becker|gregor.schiele}@informatik.uni-stuttgart.de

Abstract. In the vision of Ubiquitous Computing everyday objects become
smart. Technically, this requires some sort of processing and communication
technology. We have designed and implemented a middleware for spontaneous
networking in Ubiquitous Computing environments. The major objectives were
minimalism and extensibility in order to deploy the middleware on a variety of
devices ranging from sensor nodes to classical general purpose computers. In
this paper we will assess the taken approach based on two follow-up projects:
the port of BASE to a small embedded system and the design and implementa-
tion of a component system on top of BASE. While the fundamental concepts
and design principles of BASE have proven to be solid, both projects provided
insights that led to minor conceptual and major technical changes.

1 Introduction

Ubiquitous Computing (UC) [10] envisions spontaneous interaction of computer-

ized devices in order to achieve complex goals and support people’s tasks. As in ordi-

nary distributed system settings, interaction is achieved through the exchange of data

and therefore is based on mechanisms that enable communication of computer sys-

tems. Support for communication in UC environments faces challenges that go be-

yond those of systems in static environments. Apart from the heterogeneity of devices

which, to some degree, can also be found in ordinary distributed systems, UC is based
on networks that form spontaneously and change dynamically. The mobility of de-

vices makes it inevitable, that devices integrate in their ever-changing surrounding

networks in order to utilize the functionality provided by them.

Resulting from the need to enable communication between heterogeneous com-

puter systems in dynamic environments, a number of infrastructures have been pro-

posed. These infrastructures are designed to provide an easy and efficient way of

building and executing applications for ubiquitous computer systems. Depending on

the degree of device mobility anticipated, they can be classified into two categories.

The first category of infrastructures is based on the concept of smart environments.

Prominent examples are Gaia [8], Aura [5] and iRos [7]. They provide means to inte-

grate small, mobile devices into relatively heavy weight environments with the im-

mense processing power and storage capacities of today’s desktop systems. The sec-
ond category of infrastructures is targeted at supporting mobile devices with limited

resources without relying on the processing power or storage capacity of the envi-

ronment. Two representatives of this category are RCSM [11] and BASE [3], a mid-

dleware that supports spontaneous communication between devices. BASE has been

designed to support a wide range of devices from sensor platforms to general purpose

computers. Its micro-broker architecture allows the creation of a portable system with

minimal hardware requirements, but it makes extension mechanisms inevitable in

order to optimally utilize the capabilities of different devices.

In this paper we present our experiences with porting BASE to a JStamp processor

[9], a Java-based embedded system supporting only the Java 2 Micro Edition [6] in
the Connected Limited Device Configuration (CLDC). Further experiences where

gained when we designed and implemented a component system for UC on top of

BASE. Our experiences so far are promising. Both projects together enabled a first

evaluation of minimalism and extensibility of BASE and led to optimizations regard-

ing the internal mechanisms and external abstractions provided by this middleware.

The remainder of this paper is structured as follows. Next, we will present an over-

view of BASE’s architecture. Section three briefly describes the projects that led to

the experiences described in this paper. In the forth section we will discuss the prob-

lems that we have encountered, their solutions and lessons learned. Section five sum-

marizes and concludes the paper.

2 BASE – A Micro-broker Based Middleware

In order to understand the approach taken during the design of BASE’s architecture, it

is necessary to explain the underlying requirements and design rationales. As a com-

plete description would go beyond the scope of this paper we only present a brief
overview before presenting the architecture. A more detailed discussion of the re-

quirements can be found in [2] while BASE is described in [1], [3] in more detail.

2.1 Design Rationales

BASE was designed to fulfill three major requirements. First, application pro-

grammers should be provided with a uniform programming interface for accessing

device capabilities, like a GPS receiver, and application objects, both, local and re-
mote ones. This allows transparently switching functionality at runtime or more gen-

eral, adapting to changes in the availability of functionality in a uniform way, e.g. by

switching to a remote location service once the GPS receiver stops operating indoors.

Therefore, in BASE, a service abstraction is provided to the application programmer

to access device capabilities and application objects.

Second, the variety of different devices will likely lead to a number of different in-

teroperability protocols with different communication models, e.g. events, remote

procedure calls (RPC), etc. These should be decoupled by the middleware from the

application communication model. This allows for example using an event-based

interoperability protocol to deliver request/response messages of an RPC.

Last but not least, the middleware should be minimal and tailorable. This allows

the installation on resource restricted devices, e.g. sensors, as well as using resources
on more powerful devices, such as presentation systems or desktop computers.

Figure 1. BASE Architecture

2.2 Architectural Overview

The architecture of BASE is depicted in figure 1. BASE offers application pro-

grammers a static (SII) and a dynamic invocation interface (DII). For the SII, stubs
and skeletons are generated by a compiler and are used to map a method call to/from

a so-called invocation object. If the DII is used, the application composes invocation

objects directly. Invocation objects are Java objects, containing the unmarshalled

invocation parts, like method name and parameters as well as further information on

how to thread the invocation, e.g. which synchronization pattern should be used. Whi-

le marshalling typically is a stub/skeleton responsibility, it was omitted on this layer

and pushed down to the transport plug-ins to give the middleware maximum

flexibility in choosing a suitable interoperability protocol at runtime.

In the system core layer, the invocation broker is responsible for delivering the in-

vocation to either a local device capability or a remote service by choosing an appro-

priate plug-in. The invocation broker relies on information from the service registry

(local services) and the device registry (currently reachable devices and the corre-
sponding transport plug-ins) in order to dispatch an invocation. Since plug-ins can

realize arbitrary protocols the invocation broker has to synchronize the invocation

according to the application programming model and the underlying plug-in.

Plug-ins can be dynamically loaded and thus allow the extensibility of the middle-

ware. The invocation broker follows the micro-kernel philosophy by only offering

minimal functionality, i.e. how to find a service responsible for the invocation, dis-

patch it, and synchronize the invocation according to the application communication

model. Thus, we call it a micro-broker.

Since all plug-ins, i.e. for device discovery, device capability, and transports rely

on the same interface, i.e. handle invocations, applications can use the same pro-

gramming interface (SII, DII) to access them. As stubs and skeletons do not provide
any marshalling functionality, transport plug-ins have to ensure the marshalling of

parameters and construction of interoperability protocol messages.

2.3 First Experiences

The first prototype of BASE was developed using an IBM J9 implementation of

the Java 2 Micro Edition with the Connected Device Configuration (CDC). The CDC

omits a variety of features from the Standard Edition, e.g. reflection, while others,

such as object serialization, are present. Initial measurements [3] showed a reasonable

small memory footprint of about 130 Kbytes but also that the initial marshalling re-
sulted in two to three times overhead compared to Java RMI. This overhead mostly

resulted from the naïve approach taken, i.e. serializing an invocation object with

Java’s object serialization.

3 Porting and using BASE

After the initial prototypical implementation that built upon the J2ME CDC plat-

form, we started two projects related to BASE. One project ported BASE from its

original platform the JStamp. The other project aimed at the development of a com-

ponent system on top of BASE. The combined experiences created a picture that

allowed an initial evaluation of both, the internal structure and the external abstrac-

tions.

3.1 Porting BASE

Although BASE is targeted at systems of all sizes we decided not to deal with all

complexities that arise from the application of extremely restricted platforms during

the development of the first prototype. Therefore, we did not build upon the most

restricted platform defined by the J2ME specification. Instead we used the CDC,

since it has a range of advanced features that allowed us to speed up the initial devel-

opment. These features included for instance, JVM support for object serialization

and dynamic class loading. The typical hardware that provides CDC sized runtime

environments are high-end personal digital assistants or TV set-top boxes. Clearly,

UC aims at devices that are even smaller. Therefore, we began to port BASE to the
CLDC shortly after the first prototype was built successfully. The CLDC is targeted at

devices including low-end personal digital assistants and embedded processors. Port-

ing BASE required two tasks. First, we had to remove or reconstruct all convenient

features that were solely available on CDC enabled systems. Second, we had to build

platform specific transport and discovery plug-ins, since the JStamp processor did not

support our existing IP-based transport and discovery plug-ins. Both tasks together

gave us a chance to evaluate the internal structures when porting BASE to other plat-

forms.

3.2 BASE as a Platform for Components

BASE aims at abstracting from platform specifics, but it leaves application pro-

grammers with only basic support, when dealing with fluctuating availability of local

and remote services. As these fluctuations are inherent in mobile ad hoc networks,

code of stable applications is necessarily tangled with code that manages dependen-

cies on functionality provided by services. Since this kind of tangled code raises the

complexity of application development, we decided to automate dependency man-

agement by the middleware using a component abstraction. The resulting component

system used BASE as means of communication. Since we did not want to change the

main mechanism and abstractions provided by BASE during its development, the

component system can be seen as an application built on top of BASE. Therefore, this
project enabled us to evaluate BASE’s external structures that are used during appli-

cation development.

4 Experiences

Before we present the lessons learned from conducting the port and the develop-

ment of a component system, we will describe the resulting modifications to BASE.

The modifications can be divided into two classes depending on their effects. The first

class has been foreseeable and did not have conceptual impact. The second class is

more interesting as it affects the fundamental concepts of BASE.

4.1 Technical Modifications

The additional restrictions imposed by the CLDC led to technical issues that could

be resolved in a straight forward manner. Most noteworthy we were facing the fol-

lowing difficulties:

Class loading: the initial version of BASE made use of dynamic class loading in

order to locate and execute plug-ins and services at runtime. As dynamic class loading

is very restricted by the CLDC, we had to reduce this flexibility. Instead of dynamic

class loading we modified BASE to use linked classes. We simplified the resulting

more complex configuration process by providing a graphical configuration tool that

generates desired configurations.

Object serialization: the CLDC does not provide means for serialization of objects.

Since plug-ins are responsible for the marshalling, the first prototype of BASE simply
serialized the invocation object. As mentioned before, this resulted in an unnecessary

overhead and additionally, it was not possible on the CLDC. Our solution to this

problem is straight forward. Via a serialization interface the marshalling code can

access the object’s state and write/read it to/from an output/input stream. We will later

describe a solution for a more flexible and performance oriented plug-in structure.

4.2 Conceptual Modifications

BASE’s plug-in concept offers a rather coarse grained structure currently including

marshalling, interoperability, discovery, and transport layer abstractions. As the

JStamp did not support our existing transport and discovery plug-ins, we had to de-

velop new plug-ins. Although developing plug-ins is a fairly simple undertaking, due

to their coarse grained structure, we were not able to reuse much of the existing code.

Along with the marshalling performance mentioned earlier and current activities for

QoS management, we have to conclude that the plug-in concept so far provides suit-

able abstractions to interface to the micro-broker but requires additional structuring

into an interoperability framework. Optimized marshalling code for distinct inter-

faces, service discovery, as well as transport layer related issues, e.g. SSL encryption,

can be integrated via interceptors offering a simple configuration and re-use of these

elements in other plug-ins.
Apart from the technical modification described earlier, the inability to load classes

dynamically also led to conceptual changes. Just like JINI [4] services, BASE ser-

vices were designed to provide stubs for their clients. The automated delivery of stubs

allows service-instance specific stubs and skeletons, but it relies on the ability to load

classes dynamically. Porting BASE led to the conclusion that, due to its overall archi-

tecture, service-instance specific stubs and skeletons are an unnecessary feature. With

respect to JINI services, loadable stubs are the only way to support flexible communi-

cation mechanisms. While BASE decouples stubs from the specifics of the transport

and interoperability layers, JINI’s stubs cut right through all communication layers.

Therefore, JINI clients have to use the stub provided by the service. Otherwise they

will not be able to create valid requests. The only functionality provided by BASE’s

stubs is the creation of Invocations. Encoding and transmission of data is handled by
plug-ins. As a result, clients are able to include stubs for all services that they might

use. The fact that BASE does not need service-instance specific stubs and skeletons

results in a leaner ServiceRegistry.

4.3 Lessons Learned

From conducting both projects we learned a lot about the design decisions made
during the initial development of BASE. A very obvious lesson that can be learned is

that porting a Java-based system is not always as simple as some people claim. Al-

though Java is usually considered to be a platform independent language, switching to

a more restricted J2ME configuration can lead to costs that are comparable to the

costs of porting platform dependent programs. Both, the lack of object serialization

and dynamic class loading required the design of new mechanisms to achieve a simi-

lar level of convenience.

Apart from the platform related issues, the conceptual modifications provided two

interesting insights. First, we learned that it is possible to use our plug-in concept to

successfully build plug-ins for small devices. At the same time, we discovered that the

granularity of the plug-in layer is not yet satisfactory. Therefore we have to conclude

that the plug-in concept offers the required extensibility, but it needs a more sophisti-
cated structure to increase reuse of existing code and to provide improved support for

developers.

The second modification showed that the plug-in architecture allows removing ser-

vice specific stubs and skeletons without loss of functionality. The extensibility pro-

vided by BASE’s plug-in layer is sufficient to achieve at least the same degree of

flexibility as systems like JINI.

The previously discussed lessons can be derived directly from modifications, but

there are also lessons learned that result from keeping existing concepts. For example,

one interesting feature of BASE that did not change during the projects is its reflec-

tion mechanism. In contrast to the Standard Edition, J2ME does not support reflec-

tion. However, in the presence of dynamic invocation creation and appropriate means

to specify services and their interfaces via the service registry, a simple reflection

mechanism is provided by BASE. It was an ongoing discussion in the team whether to

aim for general reflection, i.e. storing signatures and class-relations in the service
registry, or only providing interface names and the class-hierarchy information. So

far, we have chosen the latter approach without experiencing any restrictions. Our

component system provides more powerful concepts for interface description and

exploration including non-functional parameters and hence we decided to keep BASE

minimal.

Another and probably the most important lesson that we have learned is also a re-

sult of not changing anything. During the development of the component system,

there was no need to modify BASE. All necessary additions were implemented in the

application layer. Only two extensions were integrated directly into BASE. First,

components managed by the component system use stubs and skeletons that inherit

from the original stubs and skeletons provided by BASE. This enables a faster dis-

patch of messages since there is no additional indirection in the dispatch chain. Sec-
ond, some of the functionality provided by the Registries is accessed directly in order

to remove indirections that might have negative impact on the performance of the

system. Note, that these design decisions are performance optimizations. We could

have done everything in the application layer (although this would have led to a much

slower system). This brings us to the conclusion that BASE provides suitable abstrac-

tions for implementing applications as well as high-level infrastructures.

The successful development of the component system also raised questions. Our

preliminary evaluation indicates that the overhead caused by a carefully designed

component system is reasonably small compared with the initial cost of using BASE.

The current version of BASE requires 90KB. Through the usage of the component

system, these requirements are increased by 30KB. Considering target systems like
the JStamp that have at least 1MB of memory, we are currently considering whether it

makes sense to completely abandon the service abstraction and use components in-

stead. But at the moment it is too early to fully assess all consequences of such a

move.

5 Conclusions

In this paper we have presented our experiences with conducting two projects that

build upon BASE. While the internal structures have undergone technical and concep-

tual modifications, the external structures stayed remarkably stable. The conceptual

modifications led to a follow up project, in which we began to design an improved

plug-in layer to overcome the described deficiencies. Furthermore, we were able to

successfully port BASE to a new set of target devices and to utilize it for a larger

application. This success is encouraging and it shows that BASE is not only suited for

smaller devices, but also that it can be used as infrastructure for applications as well

as for further high-level abstractions. We are highly confident that the minimalism of

our micro-broker approach together with the extensibility of its plug-in architecture

will prove to be adequate for UC environments.

BASE and the component system are freely available to research institutions and

can be downloaded at http://www.3pc.info.

References

1. Becker, C., Schiele, G.: BASE: A Minimal yet Extensible Platform for Pervasive Comput-
ing, International Conference on Tales of the Disappearing Computer, Santorin, Greece,
2003

2. Becker, C., Schiele, G.: Middleware and Application Adaptation Requirements and their
Support in Pervasive Computing. 3rd International Workshop on Distributed Auto-adaptive
and Reconfigurable Systems (DARES) at ICDCS, pp. 98-103, May 19-22, Providence,
USA, 2003

3. Christian Becker, Gregor Schiele, Holger Gubbels, Kurt Rothermel: BASE - A Micro-
broker-based Middleware For Pervasive Computing. In Proceedings of the First IEEE Inter-
national Conference on Pervasive Computing and Communication (PerCom), pp. 443-451,
March 23-26, Fort Worth, USA, 2003

4. Edwards, W.K.: Core JINI. The SUN Microsystems Press Java Series, Prentice Hall, 1999
5. Garlan, D., Siewiorek, D., Smailagic, A., Steenkiste, P.: Project Aura: Towards Distraction-

Free Pervasive Computing. IEEE Pervasive Computing, vol.1, no.2, pp.22-31, April-June
2002

6. Java Micro Edition home page, http://java.sun.com/j2me/
7. Johanson, B., Fox, A., Winograd, T.: The Interactive Workspaces Project: Experiences with

Ubiquitous Computing Rooms. IEEE Pervasive Computing, vol.1, no.2, pp.67-74, April-
June 2002

8. Román, M., Campbell, R.: Gaia: Enabling Active Spaces. In Proceedings of the 9th ACM
SIGOPS European Workshop, Kolding, Denmark, pp. 229-234, September 2000

9. Systronix Inc home page, http://www.jstamp.com/
10. Weiser, M.: The Computer for the Twenty-First Century. Scientific American, vol.265,

no.3, pp.94-104, September 1991
11. Yau, S.S., Karim, F., Wang, Y., Wang, B., Gupta, S.K.S.: Reconfigurable Context-

Sensitive Middleware for Pervasive Computing. IEEE Pervasive Computing, vol.1, no.3,
pp.33-40, 2002

