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Abstract—Fingerprinting-based indoor localization systems
tend to achieve higher accuracy compared to other approaches
such as signal propagation modeling. However, they also tend
to have a higher effort/cost for deployment and maintenance.
Changes in the configuration of the indoor space like moving
of furniture, or defective signal sources can cause the signal
characteristics in the environment to change significantly, and
thereby render the fingerprint radio map (used for training
the system) outdated. This leads to a drop in localization
performance of the system over time. In this paper, we propose
an approach to using the system infrastructure for periodically
detecting changes in the signal characteristics and autonomously
recalibrating the fingerprint radio map. We demonstrate that we
can reliably detect changes in signal characteristics stemming
from the dampening of a signal source (e.g. induced by moving
of furniture) and recalibrate the localization system with an
accuracy of 83% to 93% of the optimum localization performance
achievable through manual system recalibration.

I. INTRODUCTION

The past decade has seen a marked increase in the research
and development of indoor localization systems, most of
which rely on the characteristic signal strength for location
estimation. Localization typically involves measuring some
signal characteristic in an area, and then applying probabilistic
or deterministic techniques to match the signal characteristic
to a previously known pattern and obtain a location estimate.
Several different technologies have been used in develop-
ing localization systems [1] such as WLAN, RFID, GSM,
Bluetooth and hybrid combinations thereof. WLAN signals
are the most commonly used due to their pervasiveness (as
they can be found in almost all buildings nowadays), ease
of deployment, and mainstream support in widely available
consumer electronics hardware. There are two main WLAN
signal characteristic estimation techniques used in localiza-
tion systems - signal propagation modeling or fingerprinting
systems. The signal propagation modeling approach seeks to
computationally determine the characteristic signal strength
of a particular signal at different areas in the building. This
approach greatly reduces the effort for manual calibration
during deployment of the localization system but has limi-
tations due to dependency on accuracy of the model and the
environment/building materials.

The fingerprinting approach relies on actual measurements
(scans) of the signal characteristics of the WLAN signal
sources at several positions in the building. These measure-
ments, together with the location where they were measured
are then saved as tuples to form a fingerprint. The resulting

radio map (i.e. a collection of fingerprints over the whole area)
is used during localization as a reference, whereby signal scans
from the environment are matched against signals from the
radio map. The location of the closest matching fingerprint is
determined to be the current location estimate. RADAR [2] is
one of the earliest indoor localization systems which utilizes
this approach for fingerprinting and it achieves 50th percentile
error distance of 2.67m. There have been refinements to the
basic fingerprinting approach and pattern matching over the
years which have improved its accuracy and reliability [3] [4].

Unfortunately, the layouts of indoor areas are not always
static. For example, a signal source may be moved or disappear
over time, and furniture can be moved around as well. These
changes in the area layout can alter the characteristic RSSI of
the different signals in the space and thereby render the radio
map (which was created during deployment) outdated. This
can lead to a drop in the accuracy of the localization system, as
the radio map is no longer an accurate reflection of the signal
characteristics in the area. The more changes occur in the area,
the more the localization performance drops and eventually the
localization system may become unusable. In this paper, we
propose an approach for autonomous recalibration of WLAN
fingerprinting-based indoor localization systems. The main
contributions are the use of off-the-shelf hardware and custom
software to create a localization system architecture wherein
the localization infrastructure senses and detects permanent
changes in the characteristic RSSI of the signal sources. The
detected signal changes can then be used to dynamically
recalibrate the signal characteristics of affected areas in the
radio map. Since our system is software-based, it can be added
to new and existing localization systems with relatively low
effort/cost.

The rest of this paper is structured as follows. The next
section discusses related work in indoor localization with re-
spect to self-recalibrating and infrastructure-based localization
systems. Thereafter, we present our proposed approach to
autonomous recalibration of the localization system - sponta-
neous signal change detection and the recalibration algorithm.
The subsequent sections discuss our experimental evaluation
of the recalibration system and finally conclude with a sum-
mary and directions for future research.

II. RELATED WORK

One of the challenges facing the development of localization
systems is the effort for initial calibration of the system and



maintenance of the localization performance characteristics
of the system over time. A lot of research has been done
into systems which seek to either reduce or eliminate the
calibration effort completely.

Signal propagation model-based systems rely on the com-
putational determination of the path loss incurred by a signal
as it travels through space. The path loss for WLAN signals
typically follows a log-normal distribution [5], and by applying
a range of localization algorithms [6], it is possible to estimate
location. Other systems seek to reduce the initial calibration
effort, like MapGENIE [7] and ARIADNE [8] use a minimal
amount of fingerprints and some information about the build-
ing to generate a radio map for the area. SEAMLOC [9] seeks
to reduce the effort by combining an interpolation algorithm
with measurements at fixed points to estimate location. A
similar approach is used by PiLoc [10] to estimate absolute
location of mobile devices. In addition, some systems such
as [11] have sought to optimize the deployment of access
points in the area in order to minimize calibration effort
while increasing localization performance. However, these
approaches are limited by the difficulty in accurately modeling
the propagation of WLAN signals in indoor environments.
An accurate model requires a high number of variables, or
a limitation thereof, which reduces the complexity of the
model and consequently, its performance. Furthermore, the
simultaneous localization and mapping systems tend to have
lower accuracy immediately after deployment and depend on
the active usage of the system.

Although there is much work done on reducing initial cali-
bration effort, there is relatively little work focusing on system
recalibration. [12] and [13] rely on sniffers which serve as
anchors in the environment and the measurements from these
sniffers are used to predict the signal characteristics of the
environment and therefore compute location estimates. In [14],
the authors propose an approach for spontaneous recalibration
of an FM-based localization system by lessening the signal
degradation through a combination of signal pre-processing
and having pre-defined locations in the environment where the
position of the mobile device is known. When situated at these
anchors, the mobile device can supply measurements which
can be used to recalibrate the system. A similar approach
is used in [15] to adjust the location estimate for temporal
variations in the signal characteristics. KARMA [16] uses fin-
gerprints which are collected by the mobile devices to model
changes in the environment, and then improve the location
estimate during the online localization phase. It thus relies on
the active usage of the system to maintain performance.

Our approach however, uses the access points both as
signal sources and receivers to monitor other access points
and detect significant changes in the signal characteristics.
This infrastructure-based approach allows us flexibility in
deployment and better anticipation of usage patterns which
could potentially lead to system performance degradation. It
also does not depend on the presence of users actively using
the system, and can autonomously adapt to significant changes
in the signal characteristics over time.

Fig. 1. Overview of system deployment setup

III. APPROACH

In this section, we present our system architecture and
approach to recalibration of the signal characteristics. The
basis for our work is a fingerprinting-based localization system
which is fully calibrated as is done in most WLAN finger-
printing systems. In order to perform a system recalibration,
we need to detect that signal characteristics for an access point
have changed, and then use the changes to recalibrate the radio
map used for localization. In the following sections, we present
in more detail the system architecture, signal change detection
and recalibration algorithm for continuous adaptation of the
localization system.

A. System Setup

Our system infrastructure uses off-the-shelf hardware for the
access points. In particular, we use TP-LINK M3020 access
points which are small, easily deployable and inexpensive.
We install the OpenWRT firmware on the access points and
configure two virtual wireless interfaces. One of the interfaces
serves as a beacon and actively transmits a WLAN signal,
while the other is passive and acts as a sniffer, capturing signal
frames from the other access points in the environment. These
sniffer measurements from all the deployed access points
provide an overview of the state of the signal characteristics
in the environment. In order to access these measurements on
a continuous basis, we configure one access point to serve
as a passive sink for receiving data and configure all the
other access points to send their measurements to the sink
using the Optimized Link State Routing (OLSR) [17] protocol.
Therefore information can flow from one access point to reach
any other access point via the resulting wireless mesh network.
This eliminates the need for all the access points to have a
physical connection to the sink and enables greater flexibility
in the deployment of the access points in new or existing
localization systems, with better coverage of especially large
indoor areas. The sink access point is connected via Ethernet to
a server which aggregates the measurements. Figure 1 shows
an overview of the resulting system architecture.

After deploying the necessary access points, we calibrate
our system by collecting fingerprints of the area with multiple



mobile devices using the method described in [18]. The
fingerprints are collected by moving along different paths
defined in the building and having the devices continuously
scan the area for WLAN signals. The person performing the
calibration (trainer) carries multiple devices in both front and
back pockets, thereby having them face different orientations
so as to mitigate the effects of the presence of the human body
during fingerprinting [19]. Several measurements are collected
per device along the path walked by the trainer and later
aggregated and interpolated along the path to create finger-
prints which comprise the signal characteristics and the GPS
coordinates of the location. The group of all fingerprints forms
the characteristic signal map of the environment which is used
for training the localization algorithm. The algorithm used is
based on the RADAR alogrithm [2], with some additional
aggregation for stabilization of temporal effects similar to
HORUS [4]. Given a fingerprint scan, the algorithm computes
the location probabilities for all fingerprints in the training
set and then ranks them from highest to lowest. We then
use dynamic deterministic nearest neighbor averaging of the
fingerprint matches with the highest probabilities to compute
the location estimate. The number of nearest neighbors is set to
a minimum value, k, which expands to include any matching
fingerprints with identical probability as the k-th one.

B. Signal Change Detection
The deployed access points in our setup each continuously

monitor the signal characteristics of the environment and
transmit this information to the central server via a sink, as
previously described. By examining the aggregated measure-
ments from all access points on the server, it is possible to
have an overview of the stability of the system infrastructure
for any given time duration. If a significant change occurs in
the characteristic RSSI of a particular access point, it will
be observed by the other access points in the immediate
vicinity. The mesh of co-measurements formed by the access
points enables any significant change in one to be immediately
measured in multiple links in the network as illustrated in
Figure 2. By continuously evaluating these links, it is possible
to reliably detect dynamic RSSI changes in the environment.
Although WLAN signals are subject to temporal fluctuations
[4], for recalibration, we need to determine the access points
whose signal characteristics have changed significantly over
a measured period of time beyond the threshold of temporal
fluctuation. Temporal fluctuations could be caused by people
walking past the access points, but we aim to detect sustained
changes to the signals which may be due to permanent
repositioning of furniture or other items in the environment.

In order to achieve this, we consider two time windows for
which we want to determine if there is a change in the signal
characteristics. The time windows can be chosen depending
on the environment and localization requirements. Given one
access point A1, we aggregate (by averaging the RSSI per
signal source) all the RSSI readings, R(Ai) collected by A1

for the two time windows t1 and t2:

Vt1 = {Rt1(A2), Rt1(A3), .., Rt1(AN )}

Fig. 2. Link quality change detection in mesh network

Vt2 = {Rt2(A2), Rt2(A3), .., Rt2(AN )}

where V is the set of aggregated average WLAN RSSI scans
and N is the number of access points in the deployment. We
then compute the difference between the average RSSI values
between the two time windows for all access points observed
by A1. Any access points which were not visible in the time
range t2 are assigned a value of -100 dBm which is lower than
reported RSSI values and indicates absence of the signal.

δV = Vt2 − Vt1

δVA1 = ((Rt2 −Rt1)A2 ....(Rt2 −Rt1)AN
)

We repeat this process for all access points in the system and
thereby generate a list, ∆V which is an aggregation of the
lists of average RSSI deltas that each access point observes in
all other access points between the two time windows:

∆V = (δVA1
, δVA2

, ..., δVAN
)

Given this information, we can now determine those access
points whose signal characteristics have significantly changed.
Consider again the access point A1, we extract the average
RSSI delta for A1, δVA1

, from all RSSI delta lists in ∆V as
follows:

M(A1) = (δVA2
(A1), δVA3

(A1), ..., δVAN
(A1))

M(A1) only contains measurements from external access
points since A1 cannot measure its own RSSI. We then take
the median value of this list of average RSSI deltas for A1

and compare it against a given threshold for fluctuations. The
median metric is analogous to performing a simple majority
vote amongst the different observations. If the median, χAi

of
all the changes observed is above the threshold for change,
τ , then the signal characteristics for access point A1 are
considered to have changed significantly.

We repeat this process for all the access points in the system
in order to obtain a list of all significantly modified access
points where χ̃APi

> τ . Previous studies have demonstrated
that there is on average temporal fluctuations in the access
points of up to 6 dBm [20]. Therefore, we set our change
threshold at τ = 8 dBm in order to clearly differentiate
temporal fluctuations from RSSI characteristic changes.



Fig. 3. Building floorplan with access point layout and Voronoi partitions

C. System Recalibration

Before we use the RSSI delta values observed by the access
points for recalibration of the radio map created using the
mobile devices, it is necessary to understand how the RSSI
measurements from the access points correlate to those from
the mobile device. We therefore evaluated the relationship
between the access point RSSI measurements and the mobile
device RSSI measurements. We collected the RSSI values
measured by all the other access points (sniffers) and the
mobile devices at fixed increasing distances from each signal
source. The correlation of the two data sets matched a linear
regression described by:

Rr = 1.03 ∗Rm + 5.78

where Rr and Rm are the RSSI measured by the access points
and mobile devices respectively. The quotient for Rm is very
close to 1 and if we round the constant to the nearest integer
(the format in which the RSSI values are reported), then the
equation indicates that the access point measurements are on
average, approximately 6dBm higher than the mobile device
readings. Therefore, when we consider only differences in the
RSSI, we can translate RSSI delta observations from the access
points to the mobile devices without much loss in accuracy.
This approach for using the signal deltas in environments
with heterogenous hardware has been shown [21] to improve
system stability and localization performance.

For system recalibration, we use the average RSSI delta
of the modified access point as observed by each and every
other access point in the vicinity. For each access point which
observes a change, we apply the delta to all the fingerprints in
the radio map which are closest to this access point. The reason
being that the fingerprints closest to the access point are most
likely to have experienced a similar change as the access point.
To this end, we create a Voronoi tessellation of the indoor area
with the access points serving as the nodes excluding those
access points which have changed significantly. The location
coordinates for the access points are dynamically computed
from intial calibration radio map using the method described
in [22]. The radio map from the initial calibration is thereby
grouped into buckets of fingerprints which are closest to a
particular access point, each forming a partition as illustrated
in Figure 3. During the creation of the Voronoi tessellation, we
do not consider any access points whose signal characteristics
have been determined to have changed significantly. These

changed access points have potentially skewed observations of
all other access points which could be due to some obstacle
placed in front of the access point. The observations of the
modified access point would therefore not be representative of
the signal characteristics in the environment, hence we exclude
them during recalibration.

For all the fingerprints in each Voronoi zone, and for each
signal scan we add the RSSI delta observed by the anchor
node for the corresponding access point. At the end of this
process, we would have recalibrated all the fingerprints in
the radio map. The generalized recalibration algorithm can
be summarized as follows:

Input: Vbase = {R1(A1), .., R1(AN )}
Input: M(A1) = (δVA2(A1), .., δVAN

(A1))
Output: Vrecal = {R2(A1), .., R2(AN )}
detect modified access points
begin

CA : set of all changed APs
foreach i ∈ {1, .., N} do

χ̃Ai
: Median(M(Ai))

if χ̃Ai
> τ then

CA ← Ai

end
end

end

compute Voronoi partitions P (Ai)
begin

P (Ai) = {PA1
, PA2

, ...PAN
} : Ai /∈ CA

foreach Vj ∈ Vbase do
Dj ← distance(Vj , Ai) : ∀i = {1, .., N}
Dj is minimum ⇒ PAi

← Vj
end

end

recalibrate fingerprints
begin

foreach Ai ∈ CA do
foreach Vj ∈ P (Ai) do

Vrecal ← R1(Aj) + δVAi(Aj)
end

end
end

Algorithm 1: System recalibration algorithm

We repeat the recalibration process on demand, or on
a continuous rolling basis with a fixed period in order to
maintain the freshness of the radio map.

IV. EVALUATION

In this section, we evaluate the performance of our approach
to recalibration with respect to the quality of the recalibrated
signals and the localization performance over time of the radio
map generated through recalibration and the radio map from
the initial calibration.



A. Setup

The experimental evaluation is done in our office area which
is 11.5m x 28m in dimension. We set up our localization
system as described in our approach in Section III, with 5
access points as depicted in Figure 3. We collect two sets
of approximately 2400 fingerprints each in the whole area to
form the radio maps for the evaluation of the base system
performance. We proceed to dampen the access point A3 in
order to simulate the effects of a change in the signal properties
of an access point, and then create two radio maps in this state
with approximately 1600 fingerprints each. The access point is
dampened by covering it in an aluminium foil sheet in order to
have a consistent effect during the course of the evaluation for
the different access points. The dampening produces changes
in the signal characteristics which are typical of observations
we have made when some metal furniture is placed in front of
the access point. The same technique is used to successively
dampen access points A4 and A5, with radio maps created for
each configuration. At the end of the process, we have two
radio maps for each of the following configurations:

• B - Base configuration
• D3 - A3 dampened
• D3 D4 - A3, A4 dampened
• D3 D4 D5 - A3, A4, A5 dampened
Furthermore, we perform a recalibration of the signals

for each of the dampened configurations. We use the base
configuration fingerprints and the signal observations from the
different access points as input. The recalibration is performed
offline for evaluation purposes, and classified into the follow-
ing evaluation configurations:

• R3 - Recalibrated after D3
• R3 R4 - Recalibrated after D3 D4
• R3 R4 R5 - Recalibrated after D3 D4 D5

In the next sections, we analyze results of the signal character-
istics and localization performance evaluation of the system.

B. Signal Characteristics

In order to evaluate the effect of the recalibration on the
characteristic RSSI of the signals, we compare the signal
differences between the different configurations enumerated
in evaluation setup. We overlay a grid on the floor plan with
2m x 2m cells and aggregate all the WLAN measurements
within each cell to form one characteristic fingerprint reading
for the radio maps of each of the configurations. We then
compute the differences for each cell between the different
configurations. As a starting reference, we compare the mea-
surements between two sets of base, B(1) and B(2). We further
compare the RSSI deltas between the B(1) and the D3(1)
configuration, as well as the R3 and the D3(1) configuration.
Figure 4 shows a visualization of the RSSI differences per
cell between the different radio maps overlaid on the floor
plan for access point A3. The cells where differences in the
signal RSSI are observed are colored red, with the intensity
of the shade of red being directly proportional to the absolute
value of the RSSI delta. To highlight the differences, the

Fig. 4. Signal differences for AP3 in different configurations

visualization only shows the cells where the signal is present in
both configurations. We can observe that for the access point
A3, the two base measurements in Figure 4a are very similar
and exhibit only minor temporal RSSI differences, which are
generally well within a tolerance of 6 dBm. However, after A3

is significantly dampened, we observe in Figure 4b that there
is a corresponding increase in the RSSI differences between
the base radio map and the dampened radio map. There is also
a corresponding drop in the occurrences of the signal samples
from A3. This phenomenon has been observed in previous
work [23], that the average number of samples received from a
signal drops with reduction in the signal strength. We observe
a drop of approximately 70% in the signal occurrences of
A3 between the base radio map and the D3(1) radio map. A
similar drop in signal samples was noticeable for the two other
dampened configurations as well.

We calculate the signal deltas for A3 between D3(1) and R3
as depicted in Figure 4c. We can observe that the average RSSI
delta drops significantly across the whole area. There are some
outliers in cells C2, C3, D2 and K4 which can be attributed to
measurement errors in the dampened radio map. Upon further
analysis of the RSSI deltas of A3 in the configurations B(1)-
vs-D3(1) and R3-vs-D3(1), we see that they exhibit a strong
positive correlation with a Pearson correlation coefficent, rD
of 0.8.

We repeat the above experiment for all the signal radio map
configurations in the evaluation setup and obtain similar results
for the other access points A4 and A5. The recalibration of
the fingerprint radio map leads to a reduction in the overall
average RSSI delta. The results obtained for the different
configurations are listed in Table I. We can observe from the
data that the average RSSI delta over the whole radio map
is very low when comparing two base measured radio maps.



TABLE I
AVERAGE RSSI DELTA FOR THE COMPARISONS

AP δ(B(1) vs B(2)) δ(B(1) vs Damp.) δ(Rec. vs Damp.) rD
A3 1.95 10.4 4.8 0.8
A4 3.2 9.1 4.9 0.8
A5 2.2 4.3 2.4 0.8

where δ is the RSSI difference between the configurations (in dBm)
rD : Correlation coefficient of δ(B(1) vs Di)− δ(Ri vs Di) for access

point Ai

However, the average increases dramatically in the dampened
radio map and is again reduced after recalibration. The access
points A4 and A5, due to their positions in the building, were
not visible in all locations of the indoor area and therefore have
even less signal samples after dampening. This phenomenon
somewhat hides the effect of the dampening, which is more
obvious for access point A3 which is visible in many more
locations due to it’s centralized position in the indoor area.

All three configurations demonstrate a strong positive cor-
relation between the base-vs-dampened RSSI deltas and the
recalibrated-vs-dampened RSSI deltas as shown in Table I.
This implies that the base and recalibrated radio maps exhibit
similar properties with respect to the dampened radio map and
are comparable in terms of RSSI characteristics. The recalibra-
tion process therefore successfully captures the characteristic
RSSI changes in the environment. Thus, by applying the
recalibration as described above, we can generate fingerprints
that are more representative for the signal propagation in
the environment which should improve the accuracy of any
fingerprinting-based localization algorithm. In the following
section, we quantify this effect for our deployment using one
particular algorithm that provides a high accuracy in the base
configuration.

C. Localization Performance

The localization performance evaluation is performed of-
fline on the fingerprints which we created for the different
evaluation configurations. The localization algorithm used is
described in section III-A, with a deterministic k-nearest
neighbor value of 4, determined empirically to achieve the best
performance for the base deployment radio maps. In order to
get a reference localization accuracy for the evaluation, we
compute the accuracy of the localization system using the
base configuration radio maps B(1) and B(2) for training and
evaluation respectively. We obtain an average error distance
of 2.7m, with over 90% of the location matches within 4.4m.

The larger the indoor localization area, the more localized
the impact of dampening an access point. The resulting
effect of dampening is masked when considering localization
performance over the whole indoor area. Therefore during
the localization evaluation with dampened configurations, we
consider only those fingerprints which contain at least one
signal from the affected access point in order to systematically
evaluate the actual impact of dampening on the system perfor-
mance in the local area where the access point is visible. The

Fig. 5. Localization error distribution for one dampened access point

performance data for localization evaluation taking the whole
area into consideration is included in Table II for reference.

We first perform an evaluation with just one access point,
A3 dampened. We use the B(1) radio map as training set and
D3(1) as the evaluation set in order to observe the effects of
signal dampening on the accuracy. Furthermore, we perform
a localization evaluation using R3 as the new training set
(after recalibration) and D3(1) as the evaluation set. This gives
an indication of the gains in localization performance from
periodically recalibrating the B1 training map with the new
signal characteristics of the environment. To determine the
optimum achievable localization accuracy after dampening,
we additionally match our two sets of measurements for
D3 against each other. This gives us an indication of the
localization performance if we manually recalibrate the system
when we detect changes in the signal characteristics of the
environment. The system in this state has an average error
distance of 2.8m, with 90% of the matches within 4.5m. This
indicates that there is a slight drop in the optimum localization
performance achievable after one access point is dampened.
The cumulative distribution functions of the localization error
are illustrated in Figure 5.

We observe that the localization performance of the system
drops to an average location error of 3.7m when access point
A3 is dampened, with 90% of the matches within 6m. The
error distribution is also lower overall for all the different
percentiles of the distribution function. After recalibration is
performed, the performance increases again to an average error
distance of 3.0m, with 90% of the matches within 5m. This is
very close to the optimum achievable localization performance
in the D3 configuration, with a difference of only 0.2m of
the average error distance compared to manual recalibration.
For this experiment, our autonomous recalibration approach
is thereby within 93% of the optimum achievable localization
performance.

In order to further explore the effect of the dampening and
recalibration on the localization system performance, we eval-
uate the case where there are two dampened access points in
the system. This represents the configuration D3 D4 where the



Fig. 6. Localization error distribution for two dampened access points

access points A3 and A4 are dampened, and the corresponding
recalibrated configuration R3 R4. Similar to the previous
experiment, the optimum achievable localization performance
after dampening drops to an average error distance of 3.0m,
with 90% of the matches within 5m. We also compare the
scenarios of B(1) vs B(2), B(1) vs D3 D4(1) and R3 R4
vs D3 D4(1). We can see from the plot of the cumulative
probability distribution function for the error distance in Figure
6, that the impact of dampening two access points is even
stronger than for just one, as expected. The average error
distance increases from 2.7m for the base performance to 4.9m
for the dampened radio map, and then again back down to
3.5m after recalibration. This represents a difference in average
error distance of only 0.5m from the optimum performance
achievable with manual recalibration of the system. Our ap-
proach thereby achieves up to 83.4% of the optimum system
performance in this configuration.

TABLE II
LOCALIZATION AVERAGE ERROR DISTANCE (M)

Config B(1) vs B(2) B(1) vs D(1) R vs D(1) D(1) vs D(2)
All Ds All Ds All Ds All Ds

D3 2.7 2.6 3.2 3.7 3.1 3.0 2.8 2.8
D3 D4 2.7 2.7 4.0 4.9 3.4 3.5 3.1 3.0
D3 D4 D5 2.7 2.7 4.3 4.7 3.5 3.3 3.1 2.9

where Ds: Localization using only fingerprints with signals from dampened
access point in the configuration Dx

We repeat the experiment for the third configuration
D3 D4 D5 and observe a similar pattern to the previous two
discussed cases, as illustrated in Figure 7. Here, our approach
achieves an average localization accuracy of up to 86.3% of the
optimum achievable localization performance in the dampened
state. The average error distance of our approach shows a
difference of only 0.4m to the case of a manual recalibra-
tion of the system (optimum performance). The localization
performance results obtained for the different configuration
combinations are summarized in Table II, which includes

Fig. 7. Localization error distribution for three dampened access points

also the localization performance when all fingerprints in the
building were used for localization rather than just those local
to the dampened access point signal.

We observe that the average error distance is lower when
fingerprints from the whole indoor area are considered than
when only fingerprints containing signals from the dampened
access points are considered. This is due to the fact that when
looking at all fingerprints, the average localization accuracy
directly depends on the ratio between the number of affected
and unaffected fingerprints. For configurations where only one
access point is affected, only measurements in its vicinity (i.e.
surrounding the dampened access point) can lead to increased
the localization errors. Consequently, when looking at the
localization accuracy of the whole area, the impact seems
somewhat limited. However, this hides the fact that in the
affected area there is a significant performance degradation.
By dampening more access points, the affected area (and thus,
the fraction of affected fingerprints) increases and as a result,
the performance degradation becomes much more noticeable
across the whole area.

We take note of the fact that the localization performance
for the recalibrated radio map does not quite get back as high
the performance of the manually recalibrated radio map. This
can be attributed to the fact that the signal propagation path
loss (with the accompanying multipath effects) cannot be fully
replicated by the recalibration using a constant delta within
the different Voronoi partitions. However, the gains from the
application of the recalibration are very close to the optimum
performance achievable through manual configuration. This
means that our recalibration algorithm is able to capture
and compensate the most significant impacts on the signal
propagation and is therefore worthwhile to apply regularly to
a system deployment.

Furthermore, given that the recalibration procedure uses
a majority voting to determine which access points have
changed, the algorithm becomes inapplicable when more than
half of the access points in the deployment experience a
sudden change in the signal characteristics. In many practical



cases, this scenario can be avoided by simply increasing the
frequency of recalibration of the system which will ensure
that any changes to a particular access point are promptly
detected and fixed. In other words, our recalibration approach
is applicable in areas where there is constant but periodic
change in the environment which seriously affects the local-
ization signal. The localization system can be configured to
recalibrate the training radio map to match the environmental
signal characteristics and thereby significantly limit the decay
of the localization performance. In cases where the majority
of the access points’ signal characteristics do not all change
at the same time, the system could detect those that change
and recalibrate them.

V. CONCLUSION

In this paper we have presented an approach to autonomous
recalibration of a fingerprint-based indoor localization system.
Our approach is software-based using off-the-shelf hardware
components, making it cost-effective to deploy in localization
systems. Our experimental evaluation results indicate that
changes to the signal characteristics induced by dampened
signal sources – which can be caused, for example, by moving
of furniture – can have a significant negative impact on the
localization performance. Our approach can lessen this impact
in a fully automated fashion. When quantifying the impact
with a specific algorithm that performs well in our deployment,
the recalibrated radio map is able to achieve a localization per-
formance of 83% to 93% of the optimum (achievable through
manual recalibration). However, since a recalibrated radio map
is more representative of the actual signal characteristics, it
should lead to performance improvements for any fingerprint-
based localization algorithm.

In the future, we plan to extend this work to detect and
handle other types of changes which can occur in the envi-
ronment. Specifically, we are planning to investigate how to
detect and handle the movement of access points from one
location to another. If such changes can occur in a deployment,
we would argue that the infrastructure measurements must be
augmented with measurements of mobile devices using the
system in order to reliably categorize the change and perform
a suitable recalibration.
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