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Abstract. Smart environments require context information about their inhabitants in order to dynamically adapt their func-
tionality. The location of persons or entities in an environment is an important piece of the context information. To this end,
several types of indoor localization systems have been developed, with fingerprinting-based systems being the most common.
Fingerprinting-based indoor localization systems tend to achieve higher accuracy compared to other approaches such as signal
propagation modeling. However, they also tend to have a higher effort/cost for deployment and maintenance. Changes in the
configuration of the indoor space like moving of furniture, or defective signal sources can cause the signal characteristic distri-
bution in the environment to change significantly. This renders the fingerprint radio map (used for training the system) outdated,
and causes a corresponding drop in localization performance over time. This paper proposes an approach for environment self-
monitoring and autonomous recalibration using the system infrastructure, and demonstrates that it can reliably detect changes
in signal distribution and recalibrate the radio map of the localization system. The proposed approach achieves localization
performance of up to 93% of the optimum achievable through manual system recalibration.
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1. Introduction

Ubiquitous computing envisions the achievement of
distraction-free support for everyday tasks by means
of context-aware applications. Context-aware applica-
tions are applications which adapt their functionality
based on changes in the context of the user or the ap-
plication. Context can be defined as all the information
that can be used to describe the situation of an entity.
In smart environments, the environment continuously
adapts to achieve optimum conditions for the inhabi-
tants in the environment. This includes examples such
as adaptation of heating, ventilation and air condition-
ing (HVAC), or adaptive lighting controls, as well as
any other connected devices which can be adapted for
user convenience. In order for this adaptation to hap-
pen, the location of the user within the environment is
necessary. This makes location information an impor-
tant piece of context information for ambient intelli-
gence in smart environments.

The past decade has seen a marked increase in the
research and development of indoor localization sys-
tems, many of which rely on the characteristic signal
strength of RF signals for location estimation. Local-
ization typically involves measuring some signal char-
acteristic in an environment, and then applying proba-
bilistic or deterministic techniques to match the signal
characteristics to a previously known pattern. The lo-
cation of the pattern which best matches the user mea-
surement is considered the location of the user. Several
different radio frequency (RF) technologies have been
used in developing localization systems [1,2] such as
WLAN, RFID, GSM, Bluetooth and hybrid combina-
tions thereof. WLAN signals are the most commonly
used due to their pervasiveness (as they can be found
in almost all buildings nowadays), ease of deployment,
and mainstream support in widely available consumer
electronics hardware. There are two main WLAN sig-
nal characteristic estimation techniques used in local-
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ization systems - signal propagation modeling or fin-
gerprinting systems.

The signal propagation modeling approach seeks
to computationally determine the characteristic signal
strength of a particular signal at different areas in the
building. This approach greatly reduces the effort for
manual calibration during deployment of the localiza-
tion system. However, the signal propagation models
tend to be complex in order to accurately capture the
dependence of signal path loss on the environment.

The fingerprinting approach relies on actual mea-
surements of the signal characteristics of the WLAN
signal sources at several positions in the environment.
These measurements, together with the location where
they were measured are saved as tuples to form a fin-
gerprint. The resulting collection of fingerprints over
the whole area forms a radio map, which is then used
to train the localization algorithm. During localiza-
tion, signal measurements from the environment are
matched against fingerprints in the radio map using ei-
ther deterministic of probabilistic techniques. The lo-
cation of the closest matching fingerprint is determined
to be the current location estimate. RADAR [3] is one
of the earliest indoor localization systems which uti-
lizes this approach for fingerprinting and it achieves
50th percentile error distance of 2.67m. There have
been refinements to the basic fingerprinting approach
and pattern matching over the years which have im-
proved its accuracy and reliability [3,4].

Unfortunately, the layouts of indoor areas are not
always static. For example, a signal source may be
moved or disappear over time, and furniture can be
moved around as well. These changes in the environ-
ment layout can alter the characteristic RSSI of the dif-
ferent signals in the space and thereby render the radio
map (which was created during deployment) outdated.
This can lead to a drop in the accuracy of the localiza-
tion system, as the radio map is no longer an accurate
representation of the signal distribution in the environ-
ment. The more changes occur in the environment, the
more the localization performance drops and eventu-
ally the localization system may become unusable.

This paper proposes an approach for autonomous re-
calibration of WLAN fingerprinting-based indoor lo-
calization systems. The main contributions are the use
of off-the-shelf hardware and custom software to cre-
ate a self-monitoring infrastructure as part of the local-
ization system architecture. The system infrastructure
senses and detects changes in the characteristic RSSI
of the signal sources. The detected changes can then be
applied to dynamically recalibrate the signal character-

istics of affected areas in the radio map. Because the
proposed system is software-based, it can be added to
new and existing localization systems with relatively
low effort/cost.

The rest of this paper is structured as follows. The
next section discusses related work in indoor localiza-
tion with respect to self-recalibrating and infrastructure-
based localization systems. Thereafter is presented the
proposed approach to autonomous recalibration of the
localization system - spontaneous signal change detec-
tion and the recalibration algorithm. Finally, there is a
conclusion with a summary and directions for future
research.

2. Related Work

There has been a lot of research on RF-based indoor
localization systems in recent years [5], with a partic-
ular focus on the use of WLAN signals. One of the
challenges facing the development of localization sys-
tems is the effort for initial calibration of the systems
and maintenance of the localization performance char-
acteristics over time. There are two major categories
of WLAN-based localization systems, signal propaga-
tion modeling and fingerprinting systems, both which
approach the challenge from different perspectives.

Signal propagation model based systems rely on
computational determination of the path loss incurred
by a signal as it travels through space. Such a model
was proposed by [6] for path loss at 914 MHz, and
this has been used a basis for determining path loss
for WLAN signals which follow a log-normal distribu-
tion [7]. By determining the signal strength at different
points in an area, it is possible to apply a range of lat-
eration algorithms to estimate the location [8]. Signal
propagation model-based systems have minimal effort
for initial calibration. However, signal propagation is
heavily influenced by factors such as building materi-
als and layout, furniture, etc. Thus, it is difficult to ac-
curately model the propagation of WLAN signals in
indoor environments due to the dense multi-path ef-
fects, such as the reflection, diffraction and scattering
of the signal [9]. This results in a high number of vari-
ables for an accurate model, or a limitation thereof,
which reduces the complexity of the model and conse-
quently, its performance.

An alternative to signal propagation modeling is
fingerprinting-based localization, and several systems
have been built based on WLAN [10]. One of the
earliest systems built is RADAR [3] which collects
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the RSSI strength of WLAN signals scans and cou-
ples them with location information to form a finger-
print. A collection of these fingerprints over the indoor
area forms the radio map. This radio map is used as a
training set for the localization algorithm. During lo-
calization, signal scans are then matched against the
radio map to obtain a location estimate. The system
achieves accuracy of 2-3m and was later further im-
proved upon with a Viterbi-like algorithm [11]. Other
systems have built upon similar principles as RADAR
such as HORUS[4] which addresses the wireless chan-
nel variations and temporal fluctuations in the area.

While WLAN fingerprinting-based indoor localiza-
tion systems tend to achieve higher accuracy than the
signal propagation model counterparts [2], the cost
of deployment of fingerprinting systems can be pro-
hibitively high especially in large indoor areas. The
effort for collecting the fingerprints can be a signif-
icant hurdle for the adoption of such systems. As a
result, several research systems focus on reducing or
completely eliminating the initial calibration effort.
SEAMLOC [12] seeks to reduce the effort by combin-
ing an interpolation algorithm with measurements at
fixed points to estimate location. A similar approach
is used by PiLoc [13] and Calibree [14] to estimate
absolute location of mobile devices. MapGENIE [15]
and ARIADNE [16] use a minimal amount of finger-
prints and some information about the building to gen-
erate a radio map for the area. Other systems such as
[17,18] have sought to optimize the deployment of ac-
cess points in the area in other to minimize calibra-
tion effort while increasing localization performance.
In [19,20], the systems rely on sniffers which serve
as anchors in the environment and the measurements
from these sniffers are used to predict the signal char-
acteristics of the environment and therefore compute
location estimates.

Although there is much work done on reducing ini-
tial calibration effort, there is relatively little focusing
on system recalibration. In [21], the authors propose
an approach for spontaneous recalibration of an FM-
based localization system. They propose to lessen the
resulting signal degradation through a combination of
signal pre-processing and applying the measurements
of the user mobile devices at known locations in the en-
vironment. In order to facilitate this, several positions
with fixed locations are defined throughout the envi-
ronment. These positions are referred to as "anchors",
and typically involve a deliberate user action. When
situated at these anchors and triggered by user action,
the measurements made by the user mobile device can

be used to recalibrate the system. KARMA [22] uses
fingerprints which are collected by the mobile devices
to model changes in the environment, and then im-
prove the location estimate during the online localiza-
tion phase. It thus relies on the continuous measure-
ments obtained during use of the system. A similar ap-
proach is used in [23], whereby measuring devices are
placed at several reference points and measurements
made continuously. The measurements collected are
then used in the online localization phase to adjust the
location estimate for temporal variations in the signal
characteristics. The work focuses on temporal changes
in the system and depends on the relationship between
the reference points and the mobile devices. The ap-
proach proposed in this paper however, uses the access
points both as signal sources and receivers to monitor
other access points and detect significant changes in
the signal distribution in an environment. It therefore
does not depend on the presence of users actively us-
ing the system, and can autonomously adapt to both
temporal and permanent changes in the signal charac-
teristics over time.

3. Approach

This section describes the system architecture and
approach to recalibration of the signal characteristics.
The basis for this work is a fingerprinting-based lo-
calization system which is fully calibrated as is done
in most WLAN-based fingerprinting systems. It relies
on access points running custom software which are
deployed in the indoor localization area. The access
points simultaneously serve as signal sources and snif-
fers for measuring the RSSI of the signals in the en-
vironment. The readings from the access point snif-
fers are saved for different time frames and com-
pared with each other in order to determine which ac-
cess points’ signal strength characteristics have signif-
icantly changed between the two time frames. The ob-
served changes are then applied to the radio map from
the initial calibration in order to create a new radio
map which is a better representation of the signal dis-
tribution in the environment. This should improve the
localization accuracy of the system. In the following
sections, the environmental infrastructure and system
architecture, signal change detection and recalibration
algorithm for continuous autonomous adaptation of the
localization system are presented in more detail.
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3.1. System Setup

The system infrastructure uses off-the-shelf hard-
ware for the access points. In particular, it uses TP-
LINK M3020 access points which are small, eas-
ily deployable and inexpensive. The OpenWRT [24]
firmware is installed on the access points and used
to configure two virtual wireless network interfaces
which are simulated by the real wireless network in-
terface. One of the virtual wireless network interfaces
serves as a beacon and actively transmits regular IEEE
802.11 beacon frames which can be measured by any
compatible device. This interface can also serve to pro-
vide normal network access for mobile devices in an
indoor area. The other virtual wireless interface is pas-
sive and acts as a sniffer, using a network packet cap-
ture library [25] in order to capture beacon frames
from the other access points in the environment. These
sniffer measurements from all the deployed access
points provide an overview of the state of the signal
characteristics in the environment. To be able to ac-
cess these measurements on a continuous basis, one
access point is configured to serve as a passive sink for
receiving data. All the other access points are config-
ured to send their measurements to the sink. In order
to avoid running cables through a large indoor area,
the Optimized Link State Routing (OLSR) [26] proto-
col is installed and configured on all the access points.
This forms a mesh network between the access points,
and allows them to transmit their measurements to the
sink using the wireless interface by routing through
the neighboring access points. Therefore information
can flow from one access point to reach any other ac-
cess point via the resulting wireless mesh network. The
sink access point is connected via Ethernet to a server
which aggregates the measurements and runs evalua-
tions of the system state on a continuous basis. Figure
1 shows an overview of the system architecture.

The access points are deployed for optimum cov-
erage of the indoor area while maximizing the differ-
entiation of the RSSI signals at different physical lo-
cations [27] for better localization accuracy. After de-
ployment, the system is calibrated by collecting finger-
prints of the area using the method described in [28].
The fingerprints are collected by moving along dif-
ferent paths defined in the building and having multi-
ple devices continuously scan the area for WLAN sig-
nals. The person performing the calibration (trainer)
carries multiple devices in both front and back pock-
ets. The devices thereby face different orientations so
as to compensate for the signal attenuation caused by
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Fig. 1. Overview of system deployment setup

the human body during fingerprinting [29]. Several
measurements are collected per device along the path
walked by the trainer and later aggregated. The mea-
surements are interpolated along the path walked by
the trainer to create fingerprints which comprise the
signal characteristics and the geographic coordinates
of the location. The group of all fingerprints forms
the characteristic signal distribution map of the envi-
ronment. This radio map is uploaded to the central
server and used for training the localization algorithm.
The algorithm used for location estimation is based on
RADAR [3], with some additional aggregation for sta-
bilization of temporal effects similar to HORUS [4].
Given a measurement, the algorithm computes the lo-
cation probabilities for all fingerprints in the training
radio map and then ranks them from highest to lowest.
A dynamic deterministic nearest neighbor averaging
of the fingerprint matches (with the highest probabili-
ties) is then used to compute a location estimate for the
measurement. The number of nearest neighbors is set
to a minimum value, k, which expands to include any
matching fingerprints with identical probability match
as the k-th one.

3.2. Signal Change Detection

Indoor environments are not static and over time,
positioning of furniture or other objects in the environ-
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Fig. 2. Link quality change detection in mesh network

ment can change, or access points could malfunction.
The deployed access points in the setup each continu-
ously monitor the signal characteristics of the environ-
ment and transmit this information to the central server
via a sink, as previously described. By examining the
aggregated measurements from all access points on the
server, it is possible to have an overview of the sta-
bility of the system infrastructure for any given time
duration. If a significant change occurs in the char-
acteristic RSSI of a particular access point, it will be
observed by the other access points in the immediate
vicinity. The mesh of co-measurements formed by the
access points enables any significant change in one to
be immediately measured in multiple links in the net-
work as illustrated in Figure 2. Having multiple obser-
vations reinforces confidence in the observed change.
By continuously evaluating these links, it is possible to
reliably detect dynamic RSSI changes in the environ-
ment. Although WLAN signals are subject to tempo-
ral fluctuations [4], it is necessary to determine the ac-
cess points whose signal characteristics have changed
significantly beyond the threshold of temporal fluctu-
ation. This is because the measurements from those
changed access points can no longer be trusted to be
an accurate representation of the signal characteristics
of the environment.

In order to detect signal distribution changes, con-
sider a time duration for which it is required to deter-
mine if there is a change in the environment. The time
duration can be chosen depending on the environment
and localization requirements. For example, an airport
hangar may use a specific duration to adapt to changes
in the signal distribution which might occur, depend-
ing on the presence or absence of a plane in the hangar.
The duration will depend on how long an airplane is
usually present in the hangar for maintenance before
it is removed. Similarly, a train station might use an
hourly duration in order to account for peak times in
the mornings and evenings when there are large num-
bers of workers commuting.

Given one router A1, all the RSSI readings, R(Ai)
collected by A1 for the two time frames t1 and t2 are
aggregated (by averaging the RSSI per signal source)
as such:

Vt1 = {Rt1(A2),Rt1(A3), ..,Rt1(AN)}

Vt2 = {Rt2(A2),Rt2(A3), ..,Rt2(AN)}

where V is the set of aggregated average WLAN RSSI
scans and N is the number of access points in the de-
ployment. Access point A1 cannot measure its own sig-
nal strength, hence the set includes only external ac-
cess points. Then the difference between the average
RSSI values between the two time windows for all ac-
cess points observed by A1 is computed. Any access
points which were not visible in the t2 time frame are
assigned a value of -100 dBm which is lower than the
minimum reported RSSI values and indicates absence
of the signal.

δV = Vt2 − Vt1

δVA1 = ((Rt2 − Rt1)A2 ....(Rt2 − Rt1)AN )

This process is repeated for all access points in the sys-
tem to generate a list, ∆V which is an aggregation of
the lists of average RSSI deltas that each access point
observes in all other access points for the duration be-
tween the two time frames t1 and t2:

∆V = (δVA1 , δVA2 , ..., δVAN )

Given this information, it is now possible to determine
those access points whose signal characteristics have
significantly changed. Consider again the access point
A1, and extract the average RSSI delta for A1, δV(A1),
from all RSSI delta lists in ∆V as follows:

M(A1) = (δVA2(A1), δVA3(A1), ..., δVAN (A1))

M(A1) only contains measurements from external ac-
cess points since A1 cannot measure its own RSSI. The
median value of this list of average RSSI deltas for
A1 is computed and compared against a given thresh-
old for fluctuations. The median metric is analogous to
performing a simple majority vote amongst the differ-
ent observations. If the median of all the changes ob-
served is above the threshold for change, τ, then the
signal characteristics for access point A1 are consid-
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ered to have changed significantly.

χ̃Ai = Median(M(A1))

χ̃A1 > τ⇒ AP changed

This process is repeated for all the access points in the
system in order to obtain a list of all significantly mod-
ified access points where χ̃APi > τ. Previous studies
have demonstrated that there is on average temporal
fluctuations in the access points of up to 6 dBm [9].
Therefore, the change threshold is set at τ = 8 dBm
in order to clearly differentiate temporal fluctuations
from RSSI characteristic changes.

3.3. System Recalibration

Having determined the access points whose signal
distribution has changed significantly, the system can
now be recalibrated accordingly. The input for the re-
calibration comprises the list of all observed RSSI
changes (by each access point) between the two time
frames. The recalibration is performed by applying a
function of the observed RSSI deltas to the fingerprints
in the radio map from the initial calibration. But first, it
is necessary to quantitatively describe the function that
correlates the infrastructure RSSI measurements to the
mobile device measurements in the radio map.

3.3.1. RSSI Correlation
An experiment is designed and executed to deter-

mine the relationship between the access point RSSI
measurements and the mobile device RSSI measure-
ments. The mobile device used is an LG Nexus 4 run-
ning Android 4.4. The access points are configured to
function both as beacons and sniffers, so they can mea-
sure RSSI signals in the environment. Nine of the ac-
cess points are placed 2m apart from each other in a
straight line in a hallway 4m wide by 28m long. RSSI
measurements are collected using four of the afore-
mentioned mobile devices throughout the length of the
corridor at the same locations as the access points. The
access points are themselves measuring the RSSI sig-
nals in the environment.

After the data collection, an examination is per-
formed of the correlation between measurements by
the different access points and those collected on the
mobile devices for the same positions along the corri-
dor. The measurements of an access point, for exam-
ple, Ai, as observed by the other access points are com-
pared to the measurements from the mobile devices at
the same successive distances from Ai. This process is
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Fig. 3. Correlation of access point and mobile device RSSI measure-
ments

repeated for all nine access points. This gives, for each
access point, a mapping of its RSSI observations by
other access points to those measured using the mobile
devices. By aggregating all the readings from all the
access points for the different positions and plotting
them against the RSSI values from the mobile device
readings at the same positions, the plot in Figure 3 is
obtained. The data best fits a linear regression which
can be described by

Rr = 1.03 ∗ Rm + 5.78

where Rr and Rm are the RSSI for the access points
and mobile devices respectively. The quotient for Rm

is very close to 1 and if the constant is rounded to
the nearest integer (the format in which the RSSI val-
ues are reported), then the equation indicates that the
access point measurements are on average, approxi-
mately 6 dBm higher than the mobile device read-
ings. This indicates that there is a linear relation-
ship between the RSSI measured by the access point
and those measured by the mobile devices. Therefore,
when considering only differences in the RSSI, it is
possible translate RSSI delta observations from the ac-
cess points to the mobile devices without much loss
in accuracy. This approach for using the signal deltas
in environments with heterogenous hardware has been
shown [30] to improve system stability and localiza-
tion performance.

3.3.2. Autonomous Recalibration
The system recalibration algorithm makes use of the

average RSSI delta of the significantly changed access
point as observed by each and every other access point
in the vicinity. For each access point which observes
a change, the observed change (RSSI delta) is applied
to all the fingerprints in the radio map which are clos-
est to this access point. The reason being that the fin-
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gerprints closest to the access point are most likely to
have experienced a similar change as the access point.
Therefore, the fingerprints in the environment need to
be partitioned by grouping them according to the ac-
cess points to which they are closest. A Voronoi tes-
sellation, which is a partitioning of space according
to proximity of points to a node, is suitable for mak-
ing approximating the effect of the signal distortion
on the fingerprints. A Voronoi tessellation of the in-
door area is created, with the access points serving as
the nodes excluding those access points which have
changed significantly. The location coordinates for the
access points are dynamically computed from initial
calibration radio map using the method described in
[31]. The radio map from the initial calibration is
thereby grouped into buckets of fingerprints which are
closest to a particular access point, each forming a par-
tition as illustrated in Figure 4. During the Voronoi par-
titioning, any access points whose signal distribution
has been determined to have changed significantly are
excluded. These changed access points possess poten-
tially skewed observations of all other access points.
The observations of the modified access point would
therefore not be representative of the signal distribu-
tion in the environment.

As an example of the recalibration process, consider
the case of recalibrating the signals of access point A1

whose signal characteristics have been determined to
have changed significantly. Given the list of RSSI dif-
ferences of A1 observed by the other access points:

M(A1) = (δVA2
(A1), δVA3

(A1), ..., δVAN (A1))

This list of RSSI changes M(A1) was already deter-
mined during the signal change detection. A Voronoi
tesselation is created using all other access points ex-
cept A1 as nodes for the partitions. Then, for each node
in the Voronoi tessellation, go through all the signals
within its partition and add the value of the RSSI delta
observed by the node to the original RSSI R1(A1) ob-

served for A1 in the radio map.

R2(A1) = R1(A1) + δVAi(A1) ∀i ∈ {2, ..,N}

Each of the signal scans for A1 in the different Voronoi
partitions would thereby have a different delta value
(or none at all) applied to it, depending on the observa-
tions of the node in that partition. The end result of this
process is a fully recalibrated radio map for A1. This
process is generalized and applied for all access points
in the deployment whose signal distribution are deter-
mined to have changed significantly. The end result of
which is the recalibration of all signals from signifi-
cantly changed access points within all fingerprints in
the radio map. The generalized recalibration process is
summarized in Algorithm 1.

Algorithm 1: System recalibration algorithm
Input: Vbase = {R1(A1), ..,R1(AN)}
Input: M(A1) = (δVA2(A1), .., δVAN (A1))
Output: Vrecal = {R2(A1), ..,R2(AN)}
detect modified access points
begin

CA : set of all changed APs
foreach i ∈ {1, ..,N} do

χ̃Ai : Median(M(Ai))
if χ̃Ai > τ then

CA ← Ai

end
end

end

compute Voronoi partitions P(Ai)
begin

P(Ai) = {PA1 , PA2 , ...PAN} : Ai /∈ CA

foreach V j ∈ Vbase do
D j ← distance(V j, Ai) : ∀i = {1, ..,N}
D j is minimum⇒ PAi ← V j

end
end

recalibrate fingerprints
begin

foreach Ai ∈ CA do
foreach V j ∈ P(Ai) do

Vrecal ← R1(A j) + δVAi(A j)
end

end
end
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The recalibration process can be repeated on de-
mand, or on a continuous rolling basis with a fixed
period in order to maintain the freshness of the radio
map. The latter configuration is especially useful in in-
door areas whose configuration is constantly changing,
such as shopping malls which may have peak periods
during the day and other periods of relatively low ac-
tivity. In the next section, an experimental evaluation
of the proposed autonomous recalibration approach is
presented.

4. Evaluation

In this section, the proposed recalibration approach
is evaluated with respect to the quality of the recali-
brated signals, and with regards to the modified char-
acteristic signal distribution of the environment. Fur-
thermore, the localization performance gains from au-
tonomous recalibration vs manual recalibration (or no
recalibration) are evaluated.

4.1. Setup

The experimental evaluation is done in an office area
which is 11.5m x 28m in dimensions. The localization
system is set up as described previously in Section 3.1.
The deployment consists of 5 access points as depicted
in Figure 4. Two sets of approximately 2400 finger-
prints each are collected in the whole area to form the
radio maps for the evaluation of the base system per-
formance. The access point A3 is dampened in order
to simulate the effects of a change in the signal prop-
erties of an access point. Two radio maps of the envi-
ronment in this state are created, with approximately
1600 fingerprints each. The access point is dampened
by covering it in an aluminium foil sheet in order to
have a consistent effect during the course of the eval-
uation for the different access points. The dampening
produces changes in the signal characteristics which
are typical of observations made when some metal fur-
niture is placed in front of the access point. The same
technique is used to successively dampen access points
A4 and A5, with radio maps created for each configu-
ration. At the end of the process, there exist two radio
maps for each of the following configurations:

– B - Base configuration
– D3 - A3 dampened
– D3_D4 - A3, A4 dampened
– D3_D4_D5 - A3, A4, A5 dampened

Furthermore, a recalibration of the signals for each
of the dampened configurations is performed. The base
configuration fingerprints and the signal observations
from the different access points are used as input to the
recalibration algorithm. The recalibration is performed
offline for evaluation purposes, and classified into the
following evaluation configurations:

– R3 - Recalibrated after D3
– R3_R4 - Recalibrated after D3_D4
– R3_R4_R5 - Recalibrated after D3_D4_D5

In the next sections, the results of the signal charac-
teristics and localization performance evaluation of the
system are analyzed in detail.

4.2. Signal Characteristics

In order to evaluate the effect of the recalibration
on the characteristic RSSI of the signals, a comparison
of the signal differences between the different config-
urations enumerated in evaluation setup is performed.
First, a grid is overlaid on the floor plan with 2m x 2m
cells. Then all the WLAN measurements within each
cell are aggregated to form one characteristic finger-
print reading for the radio maps of each of the config-
urations. Next, the differences for each cell between
the different configurations are computed. As a starting
reference, the measurements between two sets of base,
B(1) and B(2) are compared. Furthermore, the RSSI
deltas between the B(1) and the D3(1) configuration,
as well as the R3 and the D3(1) configuration are also
compared. Figure 5 shows a visualization of the RSSI
differences per cell between the different radio maps
overlaid on the floor plan for access point A3. The cells
where differences in the signal RSSI are observed are
colored red, with the intensity of the shade of red be-
ing directly proportional to the absolute value of the
RSSI delta. To highlight the differences, the visualiza-
tion only shows the cells where the signal is present in
both configurations.

It can be observed that for the access point A3, the
two base measurements in Figure 5a are very similar
and exhibit only minor temporal RSSI differences. The
average absolute RSSI delta across all the cells is 1.95
dBm, which is well within the normal temporal fluc-
tuations of up to 7 dBm. However, after A3 is signifi-
cantly dampened, it can be observed in Figure 5b that
there is a corresponding increase in the RSSI differ-
ences between the base radio map and the dampened
radio map. The average absolute RSSI delta across all
cells increases to 10.4 dBm, and there is also a cor-
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Fig. 5. Signal differences for AP3 in different configurations

responding drop in the occurrences of the signal sam-
ples from A3. This phenomenon has been observed in
previous work [32], that the average number of sam-
ples received from a signal drops with reduction in the
signal strength. Also observed is a drop of approxi-
mately 70% in the signal occurrences of A3 between
the base radio map and the D3(1) radio map. A similar
drop in signal samples was noticeable for the two other
dampened configurations as well. After recalibration,
the signal deltas between configurations D3(1) and R3
(for access point A3) are again calculated as depicted in
Figure 5c. It is observed that the average absolute RSSI

delta drops significantly across the whole area, with
the total average at 4.8 dBm. There are some outliers
in cells C2, C3, D2 and K4 which can be attributed to
measurement errors in the dampened radio map. Upon
further analysis of the RSSI deltas of A3 in the con-
figurations B(1)-vs-D3(1) and R3-vs-D3(1), it can be
seen that they exhibit a strong positive correlation with
a Pearson correlation coefficient, rD of 0.8.

The above experiment is repeated for all the signal
radio map configurations in the evaluation setup and
similar results for the other access points A4 and A5

are obtained. The recalibration of the fingerprint radio
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Table 1
Average RSSI delta for the different configurations

AP δ(B(1) vs B(2)) δ(B(1) vs D) δ(Recal. vs D) rD

A3 1.95 10.4 4.8 0.8
A4 3.2 9.1 4.9 0.8
A5 2.2 4.3 2.4 0.8

where δ is the RSSI difference between the configurations (in dBm)
rD: Correlation coefficient of δ(B(1) vs Di)− δ(Ri vs Di) for

access point Ai

map leads to a reduction in the overall average RSSI
delta. The results of the average absolute RSSI delta
obtained for the different configurations are listed in
Table 1. It is observed from the data that the average
RSSI delta over the whole radio map is very low when
comparing two base measured radio maps. However,
the average increases dramatically in the dampened ra-
dio map and is again reduced after recalibration. The
access points A4 and A5, due to their positions in the
building, were not visible in all locations of the indoor
area and therefore have even less signal samples after
dampening. This phenomenon somewhat masks the ef-
fect of the dampening on the signal distribution. The
effects are however, more obvious for access point A3

since it is visible in many more locations due to it’s
centralized position in the indoor environment.

All three configurations demonstrate a strong pos-
itive correlation between the base-vs-dampened RSSI
deltas and the recalibrated-vs-dampened RSSI deltas
as shown in Table 1. This implies that the base and re-
calibrated radio maps exhibit similar properties with
respect to the dampened radio map and are compa-
rable in terms of RSSI characteristics. It is therefore
possible to conclude that the recalibration process suc-
cessfully captures the characteristic RSSI changes in
the environment and applies these changes to the radio
map. Thus, by applying the recalibration as described
above, it is possible generate fingerprints that are more
representative for the signal propagation in the envi-
ronment, which should improve the accuracy of any
fingerprinting-based localization algorithm. In the fol-
lowing section, this effect is quantitatively evaluated
for one localization deployment using one particular
algorithm that provides a high accuracy for the base
configuration in this environment.

4.3. Localization Performance

The localization performance evaluation is per-
formed offline using the fingerprint radio maps which
were created for the different evaluation configura-

tions. The localization algorithm is a derivative of the
algorithm used by the RADAR system [3] with some
additional aggregation for stabilization of temporal
RSSI flucturations, similar to that performed by the lo-
calization algorithm in the HORUS [4] indoor localiza-
tion system. A dynamic k-Nearest Neighbors location
estimation method is used with a deterministic k mini-
mum value of 4, determined empirically to achieve the
best performance for the base deployment radio maps.
The actual value of k used for each localization itera-
tion expands to include any matching fingerprints with
identical probability as the kth one. In order to get a
reference localization accuracy for the evaluation, the
accuracy of the localization system is computed us-
ing the base configuration radio maps B(1) and B(2)
for training and evaluation respectively. The average
error distance thus obtained is 2.7m, with over 90%
of the location matches within 4.4m. This serves as
a baseline for comparing the degradation or improve-
ment in performance of the subsequently different en-
vironment configurations. In addition, the localization
performance in the environment is evaluated after the
signal distribution has changed but with no changes
to the training radio map from the initial calibration.
This serves to indicate the effect on localization per-
formance when the signal distribution changes, but no
recalibration is done.

In order to evaluate the effect that the proposed re-
calibration algorithm has on localization performance,
the recalibrated radio map is used for training the
localization system and then its performance in the
dampened environment is analyzed. The signal mea-
surements gotten from the environment after the damp-
ening of the signal are matched against the recalibrated
radio map of the environment. The localization error
distribution and average error distance are computed
from all the localization samples to assess the qual-
ity of the recalibrated radio map in comparison to the
baseline radio map. Given that changes in the signal
distribution can also affect the best possible accuracy
achievable by the localization system, the localization
performance using the two manually calibrated radio
maps of the system in the dampened state is also com-
pared. A summary of the different evaluation configu-
rations used are illustrated in Figure 6.

First, an evaluation with just one access point, A3

dampened is performed. The B(1) radio map is used
as training set and D3(1) as the evaluation set in order
to observe the effects of signal dampening on the ac-
curacy. Furthermore, a localization evaluation is per-
formed using R3 as the new training set (after recal-
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Fig. 6. Configurations for Localization Performance Evaluation

ibration) and D3(1) as the evaluation set. This gives
an indication of the gains in localization performance
from periodically recalibrating the B1 training map
with the new signal characteristics of the environment.
To determine the optimum achievable localization ac-
curacy after dampening, two sets of measurements for
D3 are matched against each other. This gives us an
indication of the localization performance if the sys-
tem is manually recalibrated when changes in the sig-
nal characteristics of the environment are detected. The
system in this state has an average error distance of
2.8m, with 90% of the matches within 4.5m. This in-
dicates that there is a slight drop in the optimum local-
ization performance achievable after one access point
is dampened. The overall evaluation is repeated for
successive simultaneous dampening of 2 and 3 ac-
cess points. The cumulative error distribution plots are
shown in Figure 7.

Considering the localization performance over the
whole indoor environment when only A3 is dampened,
the effect of dampening is limited, but very noticeable.
There is an increase of average distance error from
2.7m to 3.2m which represents an 18.5% drop in per-
formance. The overall cumulative probability distribu-
tion of the localization error is shown in Figure 7(a)
for one dampened access point. The localization per-
formance drops, but the system is still usable. This is
due to the fact there are several other unaffected loca-
tions in the environment which compensate for the per-
formance degradation in the few cells where A3 was
visible. Also, there are still several unchanged access
points in the area which provide reasonable good lo-
calization accuracy. With only few signals in the whole
environment affected, the effect of recalibration lim-
ited resulting in an average localization error of 3.1m.
However, the percentual gains of recalibration are still
significant, representing 89.3% of the optimum perfor-
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Fig. 7. Localization Error Distribution With All Fingerprints

mance through manual recalibration with an average
distance error of 2.8m. When two access points are
dampened, then a bigger drop in the localization per-
formance from an average error of 2.7m to 4.0m is no-
ticeable. This represents a 48.1% drop in performance
and the distribution of the error is now much worse
than the base case as depicted in Figure 7(b).

After recalibration, the average error distance is re-
duced to 3.4m, which represents a 15% improvement
over the dampened case. The automatic recalibration
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Table 2
Localization average error distance (m) - all fingerprints

Config B(1) vs B(2) B(1) vs D(1) R vs D(1) D(1) vs D(2)

D3 2.7 3.2 3.1 2.8
D3_D4 2.7 4.0 3.4 3.1
D3_D4_D5 2.7 4.3 3.5 3.1

radio map is thus within 90.4% of the optimum perfor-
mance with an average distance error of 3.1m. A sim-
ilar effect is observed when 3 access points are damp-
ened as shown in Figure 7(c). The drop in average error
distance is even larger at 4.3m, representing a 59.3%
drop compared to the base localization performance.
A recalibration of the system reduces the average er-
ror distance from 4.3m to 3.5m. Table 2 summarizes
of the localization average error distance for all three
scenarios.

In aggregate, it can be observed that the recalibra-
tion of the indoor environment yields improvements in
the localization performance of the system. The error
distribution is restored to levels which are compara-
ble to the optimum achievable through manual recali-
bration of the environment. However, from the results
it is possible to deduce that the other signals in the
environment compensate for the changed one during
localization. The larger the indoor localization area,
the more localized the impact of dampening an access
point. The resulting effect of dampening is masked
when considering localization performance over the
whole indoor area. Therefore, it is necessary to also
consider the localization evaluation in the dampened
configurations, with only those fingerprints that con-
tain at least one signal from the affected access point
in order to systematically evaluate the actual impact
of dampening on the system performance in the local
area where the access point is visible. Figure 8 shows
the cumulative distribution functions of the localiza-
tion error when only the fingerprints containing damp-
ened signals are used in the evaluation. The probabil-
ity distributions cover different configurations for one,
two and three successive access point dampenings.

It can be observed in Figure 8(a) that the localization
performance of the system drops to an average loca-
tion error of 3.7m when access point A3 is dampened,
with 90% of the matches within 6m. The error distribu-
tion is also lower overall for all the different percentiles
of the distribution function. After recalibration is per-
formed, the performance increases again to an average
error distance of 3.0m, with 90% of the matches within
5m. This is very close to the optimum achievable lo-
calization performance in the D3 configuration, with a

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty
 (%

)

Error Distance (m)

B(1) vs B(2) B(1) vs D3(1) R3 vs D3(1) D3(1) vs D3(2)

(a) One Access Point Dampened

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty
 (%

)

Error Distance (m)

B(1) vs B(2) B(1) vs D3_D4(1) R3_R4 vs D3_D4(1) D3_D4(1) vs D3_D4(2)

(b) Two Access Points Dampened

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty
 (%

)

Error Distance (m)

B(1) vs B(2) B(1) vs D3_D4_D5(1)
R3_R4_R5 vs D3_D4_D5(1) D3_D4_D5(1) vs D3_D4_D5(2)

(c) Three Access Points Dampened

Fig. 8. Localization Error Distribution With Affected Fingerprints



Ngewi Fet et al. / Autonomous Adaptation of Indoor Localization Systems in Smart Environments 13

Table 3
Localization average error distance (m) - affected fingerprints only

Config B(1) vs B(2) B(1) vs D(1) R vs D(1) D(1) vs D(2)

D3 2.6 3.7 3.0 2.8
D3_D4 2.7 4.9 3.5 3.0
D3_D4_D5 2.7 4.7 3.3 2.9

difference of only 0.2m of the average error distance
compared to manual recalibration. The autonomous re-
calibration approach is thereby within 93% of the op-
timum achievable localization performance.

To further explore the effect of the dampening
and recalibration on localization system performance
when only affected signals are considered, consider
the scenario with two dampened access points. The
two access points dampened represent the configura-
tion D3_D4 where the access points A3 and A4 are
dampened, and the corresponding recalibrated config-
uration is R3_R4. Similar to the previous experiment,
the optimum achievable localization performance after
dampening drops to an average error distance of 3.0m,
with 90% of the matches within 5m. It can be seen
from the plot of the cumulative error probability dis-
tribution function for the error distance in Figure 8(b),
that the impact of dampening two access points is even
stronger than for just one, as expected. The average
error distance increases from 2.7m for the base perfor-
mance to 4.9m for the dampened radio map, and then
again back down to 3.5m after recalibration. This rep-
resents a difference in average error distance of only
0.5m from the optimum performance achievable with
manual recalibration of the system. The proposed re-
calibration approach thereby achieves up to 83.4% of
the optimum system performance in this configuration.

The experiment is repeated for the third configu-
ration D3_D4_D5 and a similar pattern to the pre-
vious two discussed cases is observed, as illustrated
in Figure 8(c). Here, the proposed recalibration ap-
proach achieves an average localization accuracy of up
to 86.3% of the optimum achievable localization per-
formance in the dampened state. The average error dis-
tance of the approach shows a difference of only 0.4m
to the case of a manual recalibration of the system (op-
timum performance). Table 3 summarizes the local-
ization average error performance results obtained for
the different configuration combinations taking into
account only fingerprints containing signals that have
changed.

It is noted that the localization performance for the
recalibrated radio map does not quite get back as high
the performance of the manually recalibrated radio

map. This can be attributed to the fact that the sig-
nal propagation path loss (with the accompanying mul-
tipath effects) cannot be fully replicated by the re-
calibration using a constant delta within the different
Voronoi partitions. However, the gains from the appli-
cation of the recalibration are close to the optimum
performance achievable through manual configuration.
This means that the recalibration algorithm is able to
capture and compensate the most significant impacts
on the signal propagation and is therefore worthwhile
to apply regularly to a system deployment.

Furthermore, given that the recalibration procedure
uses a majority voting to determine which access
points have changed, the algorithm becomes inappli-
cable when greater than half of the access points in the
deployment experience a sudden change in the signal
characteristics. In many practical cases, this scenario
can be avoided by simply increasing the frequency of
recalibration of the system which will ensure that any
changes to a particular access point are promptly de-
tected and fixed. In other words, the proposed recali-
bration approach is applicable in areas where there is
constant but periodic change in the environment which
seriously affects the localization signal. The localiza-
tion system can be configured to recalibrate the train-
ing radio map to match the environmental signal char-
acteristics and thereby significantly limit the decay of
the localization performance. In cases where the ma-
jority of the access points’ signal characteristics do not
all change at the same time, the system would easily
quickly detect those that change and recalibrate them.

It is observed that the average error distance is lower
when fingerprints from the whole indoor area are con-
sidered than when only fingerprints containing sig-
nals from the dampened access points are considered.
This is due to the fact that when looking at all finger-
prints, the average localization accuracy directly de-
pends on the ratio between the number of affected
and unaffected fingerprints. For configurations where
only one access point is affected, only measurements
in its vicinity (i.e. surrounding the dampened access
point) can lead to increased the localization errors.
Consequently, when looking at the localization accu-
racy of the whole area, the impact seems somewhat
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limited. However, this hides the fact that in the af-
fected area there is a significant performance degrada-
tion. By dampening more access points, the affected
area (and thus, the fraction of affected fingerprints) in-
creases and as a result, the performance degradation
becomes much more noticeable across the whole area.

5. Conclusion

This paper has presented an approach to autonomous
recalibration of a fingerprint-based indoor localization
system. The approach is software-based using off-the-
shelf hardware components, making it cost-effective to
deploy and relatively easy to retrofit to existing system
deployments. The results of the experimental evalua-
tion indicate the following:

– The approach detects and properly handles the
changes in signal characteristics. The resulting re-
calibrated radio map is more representative of the
actual signal characteristics which should lead to
performance improvements for any fingerprint-
based localization algorithm.

– When quantifying the impact with a particu-
lar algorithm that performs well in one deploy-
ment (average error 2.7m with 93.9% of matches
within 5m), the recalibrated radio map is able to
achieve a localization performance of up to 93%
of the optimum (achievable through manual re-
calibration).

– Not handling changes such as the movement of
furniture can have a significant negative impact
on system performance. The presented approach
can significantly lessen this impact in a fully au-
tomated fashion.

In the future, the plan is to extend this work to detect
and handle other types of changes which can occur in
the environment. Specifically, it is helpful to investi-
gate how to detect and handle the movement of access
points from one location to another. If such changes
can occur in a deployment, the infrastructure measure-
ments must be augmented with measurements of mo-
bile devices using the system in order to reliably cate-
gorize the change and perform a suitable recalibration.
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