
Supporting Environment Configuration with
Generic Role Assignment

Wolfgang Apolinarski, Marcus Handte, Pedro José Marrón

Networked Embedded Systems Group

University of Duisburg-Essen

Duisburg, Germany

{firstname.lastname}@uni-due.de

Abstract—Due to the fact that distant objects are often less
relevant to an application than objects in the proximity, middle-
ware systems for pervasive computing typically exploit locality
to improve efficiency. To do this, they configure the environment
by introducing logical boundaries that reduce the number of
interacting devices. Yet, in cases where applications require
the interaction with distant objects, the boundaries become
an artificial barrier that must be overcome by supplemental
mechanisms. In this paper, we show how this problem can
be avoided by using role assignment as a generic mechanism
for environment configuration. To do this, we first derive the
requirements for configuring a pervasive computing environment.
We discuss how these requirements can be met by means of role
assignment. To evaluate the approach, we present a prototypical
implementation which we use to quantify the resulting overheads.
The results indicate that role assignment enables a more flexible
definition of boundaries at a low cost.

Keywords-Role Assignment, Adaptation, Configuration

I. INTRODUCTION

Pervasive computing envisions seamless task support by

means of applications executed on devices integrated into

everyday objects. Thereby, pervasive applications try to mini-

mize the user distraction by supporting tasks in an unobtrusive

manner which requires a high degree of automation. Due to

their integration, the devices encountered in pervasive systems

are often resource-poor and specialized. Moreover, the devices

usually interact with each other through wireless commu-

nication technologies and they may exhibit mobility. As a

result, pervasive computing applications are usually distributed

because they need to combine the specific capabilities of a

number of devices. Furthermore, they must be adaptive to deal

with the dynamics of the underlying networks.

To ease application development, existing middleware sys-

tems for pervasive computing can provide a diverse set of

supportive mechanisms. At the lowest level, they can provide

basic networking functionality. Beyond networking, the mid-

dleware systems can provide distributed object, service ab-

stractions or component frameworks to simplify development,

deployment and maintenance of applications. On top of that,

they may provide intelligent automation, for example, to adapt

applications to user preferences or to the available devices.

Intuitively, the resource utilization of many of these mech-

anisms is tightly tied to the number of devices that must be

considered. As an example at the networking level, consider

a mediator-based discovery scheme in which a central device

collects all device information. Such a scheme may only work

effectively in scenarios with a limited number of devices. At

the automation level, the same holds true. For example, to

automatically adapt a distributed application, it is often nec-

essary to compute possible configurations. As the number of

possible configurations increases with the number of devices,

this kind of automation is hard to apply to large scale systems.

Since distant objects are often less relevant to an application

than objects in the proximity, middleware systems typically

exploit locality to improve performance. To do this, they

introduce logical boundaries on the environment that reduce

the number of devices. Although, the idea of exploiting locality

is suitable in many scenarios, there are several cases in which

applications may need to interact with distant devices. Some

examples are scenarios that require access to resources in a

remote smart environment or scenarios that require the remote

collaboration of users in two separate smart environments.

In this paper, we show how this problem can be avoided by

means of using role assignment for environment configuration.

To do this, we first derive the requirements on environment

configuration and thereafter, we describe how role assignment

can be used as its basis. In order to evaluate the approach,

we present a prototypical implementation which we use to

quantify the resulting overheads. The evaluation indicates that

role assignment enables a flexible definition of boundaries at

a reasonable cost without introducing artificial barriers.

The remainder is structured as follows. Next, we revisit

the problem of environment configuration and derive its re-

quirements. In Section III, we describe the application of role

assignment to environment configuration and in Section IV,

we present a prototypical implementation. In Section V, we

evaluate the approach and in Section VI, we describe related

work. Finally, in Section VII, we conclude the paper.

II. REQUIREMENTS

The main goal of environment configuration is to identify

the set of devices of a pervasive computing system that may

interact with each other. Intuitively, due to the dynamics of the

underlying systems, the identification of these devices must be

done continuously at runtime. From this goal, we can derive

the following requirements on solutions that identify the set.



• Configurability: In environment configuration, the maxi-

mal set of devices is usually defined technically by means

of connectivity. However, in order to maximize the per-

formance, environment configuration typically strives for

determining a minimum set. Yet, in many cases it is not

feasible to clearly define the minimal set without running

the risk of excluding devices that may be relevant for an

application. In addition, a suitable definition may often

be scenario-specific. As a consequence, a generic solution

for environment configuration should be configurable in

order to support the definition of effective boundaries in

a scenario-specific way.

• Flexibility: Since distant objects are often less relevant

to an application than objects in the proximity, existing

middleware systems are exploiting locality to define the

boundaries. Thereby, they consider a single characteristic

of the context of a device such as a geographic location

or physical proximity. Although, this approach has been

proposed several times, it often does not result in minimal

sets. In many scenarios, characteristics such as the device

owner, for example, can be used more easily and result

in smaller sets. Thus, instead of being fixed to a sin-

gle context characteristic such as location, environment

configuration should support the flexible definition of

boundaries on various context characteristics.

• Composability: In order to avoid the introduction of arti-

ficial boundaries, environment configuration should sup-

port the on-demand extension of existing environments.

However, in order to avoid side-effects between different

applications and to allow the independent development

of various definitions for the execution environment,

the extension of the environment must be done in a

controlled manner. To do this, environment configuration

should support the composition of new environments by

composing them from existing ones.

• Efficiency: A primary goal of environment configuration

is to improve middleware and application performance by

minimizing the set of devices that they must consider. As

a consequence, environment configuration itself must be

light-weight. This is specifically true, since the dynamics

of pervasive systems require the continuous computation

of the set. Furthermore, in order to support resource-poor

devices, the mechanisms that are needed for configuration

should exhibit a small size.

III. APPROACH

To provide a solution to environment configuration that

fulfills the requirements described previously, we base our

solution on the idea of role assignment. As a consequence,

we first describe the overall idea of role assignment before we

discuss how it can be applied to the problem of environment

configuration.

A. Generic Role Assignment

As described in [1], the basis for generic role assignment

is a set of devices that can communicate with each other.

Fig. 1. Using Role Assignment for Environment Configuration.

We assume that each device has some a priori knowledge

about its context and that it is able to perceive parts of its

context at runtime. Given that a lot of context such as the

device type and owner for example are usually static and that

more dynamic context such as the device’s location can often

be acquired automatically by means of built-in sensors or by

retrieving sensor values from other devices, this assumption

can be fulfilled by most mobile devices today. Furthermore,

we assume that the context of a device is stored locally so that

it can be accessed when needed.

Based on these assumptions, generic role assignment uses

the device’s context to assign roles. A role is essentially a tag

that can be assigned to one or more devices. By definition, a

role is assigned to any device as long as there are no further

constraints that limit the assignment. To enable the automated

computation of an assignment that reflects a particular goal,

we introduce rules. Rules define contextual constraints on the

assignment of roles to devices.

In [1], we identified 4 different classes of rules to support a

broad range of configuration tasks. However, for environment

configuration, we only require two classes of rules, which

we call filter rule and reference rule. A filter rule simply

constraints the set of devices to a set of devices that exhibits

a particular context. An example for such a filter rule is

to demand that all devices should be at a certain location.

A reference rule references other role assignments. As an

example for such a reference consider a rule that demands

that a device must exhibit a particular role. Thus, by using

reference rules, it is possible to assign roles hierarchically.

The set of roles together with their corresponding rules form

a role specification. To express complex logic, a single role

may be constrained using several rules that are combined using

the logical AND and OR operators. The logical NOT operator

is not supported as this can easily lead to sets that require the



evaluation of all globally connected devices. In practice, we

did not find this to be problematic since it is usually possible

to avoid NOT operators by an explicit enumeration of filters.

Given that the necessary contextual information is known to

each device, we can automatically assign roles to the devices

whose context satisfies the constraints specified by their rules.

Alternatively, we may also empower a user to manually assign

roles to support cases where the necessary context is not

available or where automation is not desirable. However, in

this paper, we focus on the automatic assignment, exclusively.

It is worth noting that a similar concept has also been pro-

posed to configure sensor networks [2] and distributed robot

systems [3]. However, the role specification and algorithms

used in these works are specific to monitoring tasks and

distributed robot coordination. As a consequence, the overall

architecture and role specification language differ significantly.

For example, the approach taken in [2] focuses primarily on

network-related metrics whereas [3] applies utility functions

to achieve a targeted coverage.

B. Application to Environment Configuration

To apply generic role assignment to environment configura-

tion, we can use role specifications to define the boundaries.

The actual assignment of a single role can then be used to

define the set of devices. Thereby, we may reason about roles

from the perspective of the device, i.e. whether the device has

a certain role, or from the perspective of the overall system, i.e.

which set of devices has a certain role. Thus, we can identify

whether a particular device belongs to the environment and we

can identify the total set of devices that form the environment.

Figure 1 shows an example for this. To specify the typical

boundaries of a smart space, a developer can create a role

specification that assigns Role A to all devices whose location

is known to be inside Home A. To do this, the developer

creates a filter rule for the location and attaches it to role

A. After the assignment, the devices within the home can

be identified by the role. Intuitively, in order to cope with

changes, the assignment process must be performed at regular

intervals. Similarly, in order to specify the boundaries on the

basis of device ownership, a developer can specify a filter rule

that constraints the set of devices to a particular person (Role

B). In order to combine these sets of devices, two reference

rules can be used to reference the roles A and B. Using

Boolean operators it is possible to further restrict the set of

devices, e.g. to only select mobile ones. As we discuss later on,

the resulting role assignments can then be used independently

from their definition to optimize middleware functions.

IV. IMPLEMENTATION

To evaluate the approach, we have implemented a prototyp-

ical role assignment system. In the following, we first describe

the architectural components. Thereafter, we describe how they

interact. Finally, we describe some example mechanisms that

use an assignment for optimization.

Fig. 2. Generic Role Assignment System Architecture.

A. Architecture

The individual layers and the high-level building blocks of

our generic role assignment system are depicted in Figure

2. Conceptually, the four main layers are communication,

context management, role assignment and services that use

the assignment as environment definition.

To enable communication between devices, we rely on

BASE [4], an existing communication middleware for perva-

sive systems. BASE provides the basic communication func-

tionality such as support for device discovery and interaction.

On top of that, BASE provides a basic service model that we

use to implement the remaining layers of the role assignment

system. Thereby, every building block is implemented as a

well-known service that can be accessed locally and remotely.

To automate role assignment, the system needs to be able to

automatically capture context information. Due to the differ-

ences in sensor APIs for various devices, the acquisition must

usually be done in a device-dependent manner. Additionally,

the context management layer is responsible for abstracting

from the details of gathering context information by providing

a uniform query interface. To represent context information,

we are using RDF [5] which enables data modeling and

reasoning on the basis of standard ontology languages such

as OWL. In order to query the RDF data, we use SPARQL

[6] basic graph matching patterns which we extend with non-

standard geo-spatial extensions for range and nearest-neighbor

queries. This allows us to express location-based queries which

are often useful for environment configuration. Consequently,

filter rules are formulated as SPARQL queries whose suc-

cessful evaluation determines whether a device matches the

filter. In order to support context provisioning on resource-poor

devices, we have implemented two alternative context services

for different classes of devices. On resource-rich devices, we

use JENA and ARQ to store context and to evaluate queries.

On resource-poor devices, such as mobile phones or Sun

SPOTs, we use a custom implementation that stores all context

information in-memory and implements a large subset of the

SPARQL language with limited reasoning capabilities over a

set of statically compiled ontologies.



On top, the generic role assignment layer provides the

functionality to define role specifications using roles and rules.

Once a role specification is passed to the role assignment layer,

it can automatically perform the assignment using context

information. To do this, the layer provides an assignment

service that computes an assignment. Once the assignment has

been computed, the roles need to be distributed to the devices.

This enables them to determine whether they exhibit a certain

role. To perform this distribution in an application-independent

manner, the role assignment layer includes a notification

service which is notified by the assignment service whenever

a local assignment changes. Note that the assignment service

is not needed by each device. Instead, it is only necessary

on those devices that are actually computing an assignment.

Thus, to minimize the resource consumption, it is possible to

deploy only the notification service.

At the service layer, other services and applications may use

the role assignments to optimize their mechanisms. Thereby,

they can use the local notification service to react to changes

of roles. Alternatively, they can query the assignment service

in order to retrieve the current assignment. The former reflects

the per device view, the latter reflects the system view.

B. Interaction

To clarify the architecture, we describe the runtime in-

teraction of its components in the following. As explained

earlier, each device is equipped with an instance of BASE and

the additional services that form the generic role assignment

system. To configure an environment or an application, a

middleware service may start a role specification by sending

it to a device equipped with an assignment service.

Since multiple role specifications may use the same role

identifiers, the role assignment service first creates a globally

unique id for the specification. This enables the unique iden-

tification of individual roles which is required to reference

a particular role. To do this, the role assignment service

concatenates the BASE device id with a locally unique id.

Once the id has been assigned, the assignment service analy-

ses the specification to determine whether the role specification

references some other role specification by means of reference

rules. If the role specification does not contain reference rules,

the assignment service creates a list of all SPARQL queries

that represent the filter rules. Thereafter, it sends a single batch

query to all connected devices. Once the list of responses is

returned, the role assignment service evaluates the Boolean

expression over the rules and computes the assignment.

If the role specification contains reference rules, the assign-

ment service forwards the specification to the assignment ser-

vice that is executing the referenced role specification. If a role

contains multiple references, the specification is forwarded to

each referenced assignment service. The assignment service

that receives the specification will then execute it locally.

Thereby, it considers only those reference rules that refer-

ence local assignments. The other rules are simply ignored.

After the assignment has been computed at the referenced

assignment service, a list of candidate assignments is returned

Fig. 3. Generic Role Assignment Example

to the original assignment component. There, the candidate

assignments are transformed into final assignments. To do this,

the assignment component may have to intersect or unify the

candidate sets in order to compute the result in cases where

multiple references are concatenated using a conjunction or a

disjunction.

Once the final role assignment has been determined, the role

assignment service calls the notification service on each device

that receives at least one role. Thereby, the service transmits

all assigned roles. Applications may register local listeners at

their notification service to receive changes to assignments.

An example for this process is depicted in Figure 3. The

figure shows 7 devices that execute two role specifications.

The first role specification defines two environments using the

roles A and B. Both roles solely rely on filter rules in order to

define the sets of devices. In order to keep the figure simple,

we refrain from using SPARQL syntax, instead we simply

assume that role A requires context A and role B requires

context B. Once the role specification is started at device 6, the

device assigns a unique id, i.e. <6><id-1>. Thus, the roles

can be identified by concatenating the role specification id with

the role name, i.e. <6><id-1><A> or <6><id-1><B>.

Since there are only filter rules, the assignment component

queries the context of the connected devices and computes

the assignment according to the rules. Finally, the assignment

component notifies all devices that received a particular role.

The second role specification in the example refers to the

first specification to define an environment using role C that

consists of all devices that have role A or B. When the

role specification is started at device 7, the unique id is

generated and the role specification is analyzed. Since the role

specification contains reference rules, the role specification is

forwarded to the devices that are managing the referenced

specification. In this example, this is done by device 6. To

determine the managing device, the device 7 can simply use

the BASE id that is embedded in the reference. Device 6 then

computes the candidate set consisting of devices with role A

and role B and returns it to device 7 which performs the final

assignment. In this example, the candidate set and the final

set are identical. However, if several specifications on multiple

devices are referenced, it may be impossible to determine the



Fig. 4. Role-based Communication

set locally on the referenced devices. Once the set has been

computed, device 7 notifies all relevant devices.

C. Integration

To validate the architecture of the role assignment system

with respect to its interfaces, we modified the BASE service

registry so that it benefits from the environment configuration.

In addition, we have implemented a BASE communication

plug-in that provides environment-based communication. In

the following, we briefly outline the implementation.

To enable the spontaneous interaction of devices, BASE

not only supports device discovery and interaction but it also

provides a simple service abstraction. In order to find local and

remote services, BASE provides a service registry. To support

the dynamics of pervasive systems, the BASE service registry

uses a reactive federation scheme. Each BASE-enabled device

is equipped with a local registry that can be accessed locally as

well as remotely. In order to export a service, an application

simply calls an export function on the local registry which

stores the associated service information. To search for avail-

able services, an application can call a search function locally.

Internally, the search is then automatically distributed across

all devices in order to return the complete set of services.

To improve the efficiency of the federation scheme, we have

extended the registry to support the search within a particular

environment. To do this, an application developer can define an

environment using a role specification. Later on, the developer

can search within the environment by sending a query and an

associated globally unique role identifier to the local registry.

Internally, the registry will then first contact the assignment

service to retrieve the devices that exhibit the role and later

on, it will only forward the queries to these devices. Thus, we

speed up the search by minimizing the set of devices.

In addition to this, we have implemented a BASE com-

munication plug-in that provides environment-based commu-

nication. Similar to the service registry, the communication

plug-in restricts the distribution of a particular message to an

environment that is defined by a role assignment. To distribute

the load of message forwarding, the plug-in uses the hierarchy

that is created by reference rules for distribution. When a

device receives a role, it may use the role to join a group

communication channel using the BASE plug-in. If a message

must be transmitted, the plug-in simply forwards the message

to the device that performs the assignment. This device then

forwards it to other devices, either directly - if it has performed

the assignment - or indirectly - if it uses another device to

compute candidate sets.

An example for this is depicted in Figure 4. If device 2 sends

a message using the channel defined by role C, it forwards

the message to device 1, since this device is responsible for

performing the assignment. Device 1, in turn, uses device 5

to compute parts of the assignment and thus, it forwards the

message to this device. Furthermore, device 1 distributes the

message to all devices with the role A, since it has performed

the assignment for this role. If the message arrives at device

5, the device distributes the message to all devices with role

B, since it is responsible for assigning this role.

V. EVALUATION

In this section, we evaluate the approach. To do this, we

first discuss the requirements on configurability, flexibility and

composability before we determine efficiency experimentally.

A. Discussion

As discussed in Section II, approaches that support envi-

ronment configuration should be configurable, flexible and

composable to be applicable to a broad range of scenarios.

In the following, we briefly discuss why and how generic role

assignment fulfills these requirements.

• Configurability: By design, environment configuration

that is implemented using generic role assignment can be

flexibly configured to meet the needs of the applications.

To do this, an application developer may specify arbitrary

filter and reference rules that can be evaluated automat-

ically at runtime. Thereby, the developer may start and

stop a number of role specifications on-demand in order

to enable the definition of sets that result in an optimal

middleware and application performance.

• Flexibility: Environment configuration with generic role

assignment is not primarily based on location. Instead, it

enables developers to define boundaries using properties

of the device context. Clearly, in order to use a property

in a role specification, it must be available on the relevant

devices. However, when looking at the increasing number

of sensors that are deployed in current smart devices, it is

conceivable that many devices will be able to perceive a

large part of their context. As a result, role assignment in-

creases the flexibility of environment configuration when

contrasted with the locality-based approaches.

• Composability: Generic role assignment is not limited

to a single role specification. Instead, multiple specifi-

cations may be developed independently and executed

simultaneously. The support for reference rules within

role specifications enables the hierarchical composition of

environments. By supporting the hierarchical composabil-

ity, generic role assignment can be used to dynamically

extend existing environments in a controlled fashion.



Fig. 5. Latency with Varying Number of Queries

B. Experiments

In the following, we take a look at efficiency. To validate

that the system can be used on resource-poor devices, we

measured the binary size of the additional Java code. Using

our minimal context service implementation that does not use

JENA and ARQ, the services require an additional memory

space of 140KB. However, this space can be reduced to 85KB

if a system does not have to perform role assignment. Thus,

the role assignment system supports a broad range of devices

including phones or embedded devices such as Sun SPOTs.

Furthermore, we performed a number of experiments using

the previously presented implementation. For all experiments,

we have used the following hard- and software configuration

consistently. We use an off-the-shelf Asus EEE PC T91 (Intel

Atom Z520 1.33 GHz CPU, 1 GB RAM) running Windows

XP and Sun JRE1.6 to perform assignments and we connect

it to a varying number of devices. For this, we use HTC

Tattoos (Qualcomm MSM7225 528 MHz CPU, 256MB RAM)

running Android 1.6. To connect the devices, we use an IEEE

802.11g wireless network hosted by a Netgear WNR3500L

access point which is used exclusively for the experiments.

The performance of role assignment depends on the contents

of the role specification. The two primary influential factors are

thereby the number of queries in filter rules and the number of

roles that shall be distributed. In order to measure the impact

of these factors, we performed two experiments which vary

them systematically. In both experiments, we execute the role

specifications 200 times with one HTC Tattoo and we measure

the delay experienced for performing a single assignment.

Figure 5 shows the results of the first experiment for which

we create a role specification consisting of one role that

contains a varying number of queries for one RDF triple (1-

50). Figure 5 indicates a linear growth of the average latency

for role assignment starting from approximately 25 ms when

one query is attached up to approximately 90 ms when 50

queries are present. Due to the batch processing for query

execution, this increase can be explained by the increased

effort for serialization, transmission and remote execution.

To evaluate the effects of an increasing number of roles,

we use the same setup with one device but we change the

role specification to contain a varying number of roles (1-

25). Thereby, each role queries one triple. Similar to Figure 5,

we can observe a linear increase in latency for performing the

Fig. 6. Latency with Varying Number of Roles

role assignment as depicted in Figure 6. However, the increase

is approximately twice as steep with a absolute latency of

approximately 90 ms when distributing 25 roles. Similar to

the experiment that varies queries, we can attribute this to the

increased effort for serialization, transmission and execution.

The reason for the higher increase results from the fact that

each role also contains one query.

In summary, we conclude from these two experiments that

increasing the number of roles or the number of queries result

both in a linear increase of the latency experienced in role

assignment. Thereby, the absolute values of less than 100

ms clearly indicate the suitability for comparatively resource-

poor devices. In order to measure the effects of an increas-

ing number of devices, we have performed two additional

experiments. In the first one, we measure the overhead for

evaluating filter rules. In the second one, we measure the

overhead for hierarchical assignment using reference rules.

In each experiment, we measure 200 role assignments and

compute the average role assignment latency.

Figure 7 shows the effects on latency when increasing the

number of devices in an assignment that uses filter rules.

The role specification in this experiment consists of one role

with one filter rule that queries a single context property. As

indicated in Figure 7, increasing the number of devices also

increases the latency. However, when comparing the absolute

values it becomes apparent that an increase in the number

of devices only causes a comparatively marginal increase in

the overall latency. For example, the role assignment with 2

devices is less than twice more expensive than with 1 device.

The reason for this can be attributed to the fact that the filter

rules contained in the role specification can be executed on

the devices in parallel. However, in practice the achievable

gain from this parallelism also depends on the amount of data

that is transferred. Thus, for an increasing number of devices,

the increase in latency would eventually approximate direct

proportionality due to network saturation.

As show in Figure 8, such effects are not present when a

specification contains only reference rules. In the experiment

depicted in this figure, we evaluate the latency for assigning a

role to a varying number of devices on the basis of an existing

role. The reference rules used in this experiment reference two

role specifications that are running in the system. In order

to show the actual effort for evaluating the reference rule,



Fig. 7. Latency for Filter Rules with Varying Number of Devices

we do not measure the delay for device notification. Due to

the fact that the computation of the assignment can be done

completely locally on the assigning device, the overall time for

assignment stays well below 10 ms for all experiments. This

clearly indicates the usefulness of reference rules and it also

demonstrates the effectiveness of hierarchical composition,

especially when forming a group from existing groups.

In most settings, however, we would expect to see a com-

bination of reference and filter rules which would prevent a

purely local evaluation. Yet, in these cases, our implementation

restricts the number of devices that must evaluate the filter

rules to those that already posses the desired set of roles. Thus,

instead of contacting all nearby devices, the device performing

the role assignment only has to contact a subset. Given the low

effort of reference rules, this approach is often beneficial.

Note that we can simply compute the overall effort for such

more realistic settings from the synthetic measurements. Since

the delays shown in Figure 8 do not contain the delay caused

by notifications, we can directly sum up the efforts for hierar-

chical assignment shown in Figure 8 with the effort shown in

Figure 7. As a concrete example consider the following. In the

PECES [7] European research project, role assignment is used

as a basic abstraction to form a smart space by dynamically

distributing three roles for member, gateway and coordinator
devices. The coordinator devices are responsible for providing

centralized services such as role-based group communication

and service discovery. Gateway devices are responsible for

connecting the devices of a smart space with other smart

spaces and member devices may provide and use services

present in the smart space. Within the scenarios considered by

PECES the number of devices contained within a single space

typically ranges between 3 devices (for a simple in-car smart

space) up to 10 devices (for an in-house smart space) which

often triples once different smart spaces begin to interact.

In a medium-sized smart space that consists of 6 devices

where roles are distributed using one filter rule each, the total

overhead introduced by role assignment can be estimated as

follows: The total time to set up the environment is computed

from the execution of the three queries (26 ms), the distribution

of 8 roles (6 member, 1 gateway and 1 coordinator, 52 ms)

and the role assignment latency for 6 devices (74 ms). This

adds up to 152 ms for each setup. To detect changes, the role

assignment is performed at regular intervals of 30 seconds.

Fig. 8. Latency for Reference Rules with Varying Number of Devices

Thus, the overhead introduced by role assignment in this case

is well below 1 percent. We therefore conclude that the role

assignment approach also fulfills the efficiency requirement.

VI. RELATED WORK

Most existing middleware systems for pervasive computing

exploit locality to improve their performance. To do this, they

configure the execution environment by introducing logical

boundaries that reduce the number of interacting devices.

Usually, these boundaries are defined on the basis of proximity

or location depending on the underlying system model.

Middleware systems that support smart spaces such as IROS

[8], Gaia [9], Easy Living [10], Aura [11] or Oxygen [12] are

usually bound to a specific geographic location. This location

may represent a building such as a home or a work place

[10], [12] or a single room such as a meeting room or an

office [9], [8], [11], [13]. Within this area, a coordinating

server is responsible for providing additional services such as

shared persistent storage, context management or application

configuration, for example. Thereby, the server is responsible

for dynamically handling the mobile devices that enter or

leave the area. However, without additional mechanisms, these

systems cannot cross the boundaries of the area.

Middleware systems that support smart peers such as BASE

[4] and PCOM [14] or MundoCore [15], for instance, are

usually relying on different proximity metrics. With these

metrics the define the boundaries around each device, for

example, as the set of devices in n-hop neighbourhood [16].

Similarly, concepts such as abstract regions [17] and scenes

[18] use location as reference point to form dynamic environ-

ments around it. For defining the boundaries, these approaches

are limited to topological or geographical regions. Logical

neighbourhood [19] and hood [20] are two approaches that

restrict the scope to the physical (i.e. 1-hop) neighbourhood.

To allow programmers addressing the specific regions in

a network, SpatialView [21] provides a programmable ab-

straction over different properties of the underlying network.

Similarly, in Regiment [22], the programmer views the com-

plete network as geographical or topological streams and he

can manipulate these streams to address a region. The above

approaches are useful in defining the pervasive environment in

immediate vicinity. EnviroTrack [23], targets towards applica-

tion tracking, goes beyond physical closeness and focuses on



data centric communication between entities with similar con-

text. However, these approaches do not support composition.

From the perspective of composability, the presented work

is close to UbicKids [24] and Superspace [25]. UbicKids

provides mechanisms for enabling cross pervasive environment

communication by exposing services to the existing UbicKids

pervasive environments. Superspaces utilize active spaces [9]

that are by themselves based on geographic locations. Thus,

they are an additional mechanism that has been applied to

extend the boundaries of the underlying smart space.

Environment configuration that is based on generic role

assignment, as described in this paper, can naturally support

these cases without additional mechanisms. In addition, it can

support other notions of context-dependent environments that

cannot be supported by existing approaches and systems.

VII. CONCLUSION

Since distant objects are often less relevant than objects

in the proximity, pervasive computing middleware systems

typically exploit locality to improve efficiency. Thereby, they

introduce artificial boundaries that may become a hindrance.

In this paper, we have shown how generic role assign-

ment can be used as basis for environment configuration.

Furthermore, we have presented a prototypical role assignment

system. The overhead induced by our implementation indicates

that role assignment can be used effectively to exploit locality.

At the same time, generic role assignment allows the expan-

sion of the boundaries in a hierarchically structured way which

prevents the introduction of artificial barriers at a low cost.

In the PECES research project, we are extending the role

assignment system to support other types of configuration.

Currently, we are focusing on support for the configuration

of access rights. For this, we are adding security primitives on

top of our pervasive authentication framework [26].

ACKNOWLEDGMENTS

This work has been partially supported by CONET (Coop-

erating Objects Network of Excellence) and PECES (PErva-

sive Computing in Embedded Systems), both funded by the

European Commission under FP7 with contract numbers FP7-

2007-2-224053 and FP7-224342-ICT-2007-2.

REFERENCES

[1] M. Haroon, M. Handte, and P. J. Marron, “Generic role assignment: A
uniform middleware abstraction for configuration of pervasive systems,”
PerWare Workshop at the 7th Annual IEEE International Conference on
Pervasive Computing and Communications, 2009.

[2] C. Frank and K. Römer, “Algorithms for generic role assignment in
wireless sensor networks,” in SenSys ’05: 3rd international conference
on Embedded networked sensor systems. NY, USA: ACM, 2005, pp.
230–242.

[3] L. Iocchi, D. Nardi, M. Piaggio, and A. Sgorbissa, “Distributed coor-
dination in heterogeneous multi-robot systems,” Auton. Robots, vol. 15,
pp. 155–168, September 2003.

[4] M. Handte, C. Becker, and G. Schiele, “Experiences - extensibility and
minimalism in BASE,” in Workshop on System Support for Ubiquitous
Computing (UbiSys) at Ubicomp, 2003.

[5] W. W. W. Consortium, “Resource description framework.” [Online].
Available: http://www.w3.org/standards/techs/rdf

[6] World Wide Web Consortium, “Sparql query language for rdf.”
[Online]. Available: http://www.w3.org/TR/rdf-sparql-query/

[7] P. Consortium, “Peces european research project website,” 2010.
[Online]. Available: http://www.ict-peces.eu

[8] S. R. Ponnekanti, B. Johanson, E. Kiciman, and A. Fox, “Portability,
extensibility and robustness in iros,” in PERCOM ’03: 1st IEEE In-
ternational Conference on Pervasive Computing and Communications.
Washington, DC, USA: IEEE Computer Society, 2003, p. 11.

[9] M. Román, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, and
K. Nahrstedt, “Gaia: a middleware platform for active spaces,” Mobile
Comput. Commun. Rev., vol. 6, no. 4, pp. 65–67, 2002.

[10] B. B. Brian, B. Meyers, J. Krumm, A. Kern, and S. Shafer, “Easyliving:
Technologies for intelligent environments.” Springer-Verlag, 2000, pp.
12–29.

[11] D. Garlan, D. P. Siewiorek, and P. Steenkiste, “Project aura: To-
ward distraction-free pervasive computing,” IEEE Pervasive Computing,
vol. 1, pp. 22–31, 2002.

[12] L. Rudolph, “Project oxygen: Pervasive, human-centric computing - an
initial experience,” in CAiSE ’01: 13th International Conference on
Advanced Information Systems Engineering. London, UK: Springer-
Verlag, 2001, pp. 1–12.

[13] S. S. Yau, S. K. S. Gupta, E. K. S. Gupta, F. Karim, S. I. Ahamed,
Y. Wang, and B. Wang, “Smart classroom: Enhancing collaborative
learning using pervasive computing technology,” in In ASEE 2003
Annual Conference and Exposition, 2003, pp. 13 633–13 642.

[14] C. Becker, M. Handte, G. Schiele, and K. Rothermel, “Pcom - a
component system for pervasive computing,” in 2nd IEEE International
Conference on Pervasive Computing and Communications (PerCom’04).
Washington, DC, USA: IEEE Computer Society, 2004, p. 67.

[15] E. Aitenbichler, J. Kangasharju, and M. Mühlhäuser, “Mundocore: A
light-weight infrastructure for pervasive computing,” Pervasive Mob.
Comput., vol. 3, no. 4, pp. 332–361, 2007.

[16] G.-C. Roman, C. Julien, and Q. Huang, “Network abstractions for
context-aware mobile computing,” in ICSE ’02: 24th International
Conference on Software Engineering, NY, USA, 2002, pp. 363–373.

[17] M. Welsh and G. Mainland, “Programming sensor networks using
abstract regions,” in NSDI’04: Proceedings of the 1st conference on
Symposium on Networked Systems Design and Implementation, Berke-
ley, CA, USA, 2004, pp. 3–3.

[18] S. Kabadayi and C. Julien, “A local data abstraction and communication
paradigm for pervasive computing,” in 5th IEEE International Confer-
ence on Pervasive Computing and Communications (PerCom’07), 2007,
pp. 57–68.

[19] L. Mottola and G. P. Picco, “Using logical neighborhoods to enable
scoping in wireless sensor networks,” in MDS ’06: 3rd international
Middleware doctoral symposium. NY, USA: ACM, 2006, p. 6.

[20] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler, “Hood: a neighbor-
hood abstraction for sensor networks,” in MobiSys ’04: 2nd international
conference on Mobile systems, applications, and services. NY, USA:
ACM, 2004, pp. 99–110.

[21] Y. Ni, U. Kremer, and L. Iftode, “Spatial views: Space-aware pro-
gramming for networks of embedded systems,” in 16th International
Workshop on Languages and Compilers for Parallel Computing (LCPC
2003, 2003.

[22] R. Newton and M. Welsh, “Region streams: functional macroprogram-
ming for sensor networks,” in DMSN ’04: 1st international workshop
on Data management for sensor networks, NY, USA, 2004, pp. 78–87.

[23] T. Abdelzaher, B. Blum, Q. Cao, Y. Chen, D. Evans, J. George,
S. George, L. Gu, T. He, S. Krishnamurthy, L. Luo, S. Son, J. Stankovic,
R. Stoleru, and A. Wood, “Envirotrack: Towards an environmental com-
puting paradigm for distributed sensor networks,” in ICDCS ’04: 24th
International Conference on Distributed Computing Systems. Wash-
ington, DC, USA: IEEE Computer Society, 2004, pp. 582–589.

[24] J. Ma, L. T. Yang, B. O. Apduhan, R. Huang, L. Barolli, M. Takizawa,
and T. K. Shih, “A walkthrough from smart spaces to smart hyperspaces
towards a smart world with ubiquitous intelligence,” in ICPADS ’05:
11th International Conference on Parallel and Distributed Systems.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 370–376.

[25] J. Al-muhtadi, S. Chetan, and R. Campbell, “Super spaces: A mid-
dleware for large-scale pervasive computing environments, perware
04,” in IEEE International Workshop on Pervasive Computing and
Communications, 2004, pp. 198–202.

[26] W. Apolinarski, M. Handte, and P. J. Marrón, “A secure context
distribution framework for peer-based pervasive systems,” in PerWare
Workshop at the 8th Annual IEEE International Conference on Pervasive
Computing and Communications, March 2010.


