
Requirement Considerations for Ubiquitous
Integration of Cooperating Objects

Stamatis Karnouskos∗, Vladimir Villaseñor-Herrera†, Muhammad Haroon‡, Marcus Handte‡, Pedro José Marrón‡
∗SAP Research, Germany. Email: stamatis.karnouskos@sap.com

†Tampere University of Technology, Finland. Email: vladimir.villasenorherrera@tut.fi
‡Universität Duisburg-Essen, Germany. Email: {muhammad.haroon,marcus.handte,pjmarron}@uni-due.de

Abstract—Billions of devices are expected to be online by 2020.
These will not only provide information by monitoring the real-
world, but create complex collaborations in order to provide
sophisticated value-added services. Slowly, we are witnessing the
emergence of Cooperating Objects in the Internet of Things,
which will rapidly change the way we design, develop and
realize cyber-physical dependent applications. We investigate
which requirements this poses, and evaluate several middleware
systems which we have used in the past. Finally we prioritize
the requirements, and discuss on future directions that could be
followed.

I. COOPERATING OBJECTS

The core idea behind amalgamating the physical and virtual
(business) world is to seamlessly gather any useful information
about objects of the physical world and use the information in
various applications in order to provide some added value. As
we are moving towards the “Internet of Things”(IoT), millions
of devices will be interconnected and will cooperate, providing
and consuming information available on the network. Since
these devices need to interoperate, the service-oriented ap-
proach seems to be a promising solution for building systems;
i.e., each device should offer its functionality as one or
more services, while in parallel it is possible to discover
and invoke new functionality from other services on-demand.
Cooperating Objects are an integral part of the future IoT. The
latter is expected to enable unprecedented interconnection of
networked embedded devices and further blur the line between
the real and virtual world.

According to CONET [1], Cooperating Objects consist of
embedded computing devices equipped with communication,
as well as sensing or actuation capabilities that are able to co-
operate and organize themselves autonomously into networks
to achieve a common task. The vision of Cooperating Objects
is to tackle the emerging complexity by cooperation and
modularity. Towards this vision, the ability to communicate
and interact with other objects and/or the environment is
a major prerequisite. While in many cases cooperation is
application specific, cooperation among heterogeneous devices
can be supported by shared abstractions.

Achieving enhanced system intelligence by cooperation of
smart embedded devices pursuing common goals is relevant in
many types of perception and system environments. In general,
such devices with embedded intelligence and sensing/actuating

capabilities are heterogeneous, yet they need to interact seam-
lessly and intensively over wired and/or wireless networks.
More constrained devices may also cooperate with more pow-
erful (or less congested) neighbors to meet service requests,
opportunistically taking advantage of global resources and pro-
cessing power. Independently of the structuring level (weakly
structured or highly structured), process-driven applications
make use of different kinds of data resources and combine
them to achieve the application task.

Cooperation between objects can be understood in the
following context:

• Two (or more) objects (object-to-object and object-to-
business) will be able to engage into a conversation in
a loosely-coupled manner.

• They will have a common understanding of well-defined
communication patterns and protocols.

• They will be able to interchange data relevant to their
capabilities and needs.

• They will share computational resources when needed by
means of information migration or data mashups.

• They will be able to cluster in order to create distributed
data gathering/processing platforms.

Another interesting trend is the evolution towards global
service-based infrastructures. As such, new functionality is
introduced by combining services in a cross-layer form, i.e.
services relying on the enterprise system, on the network
itself and at device level can be combined in order to create
more sophisticated ones. New integration scenarios can be
applied by orchestrating the services in context-specific ways.
In addition, sophisticated services can be created at any layer
(even at device layer) taking into account and based only on
the provided functionality of other entities that can be exposed
as a service. In parallel, dynamic discovery and peer-to-peer
communication will allow to optimally exploit the function-
ality of a given device. It is clear that we move away from
isolated stand-alone hardware and software solutions towards
more cooperative models. However, in order to achieve that,
several challenges need to be tackled.

The domain of Cooperating Objects is still at its dawn;
however, its impact is estimated to be so broad and significant
that could change drastically the future applications and ser-
vices. Numerous market analyses also point out this direction.



It is important to understand that Cooperating Objects is a
huge domain with applications spawning several fields, and,
therefore, it is very difficult to set the limits and estimate its
total value. However, the issue of ubiquitous integration is
common to all domains and seen as a key challenge that must
be overcome to realize cooperation and collaboration.

II. REQUIREMENTS FOR COOPERATING OBJECTS

There are several requirements that have to be tackled at a
sufficient level in order to enable easy integration of Coop-
erating Objects. Basically we see two modes of cooperation:
(i) standalone, where devices discover and interact with each
other on a standalone mode without significantly depending on
the existence of third-parties, and (ii) infrastructure assisted,
where devices cooperate with each other and third-parties
by heavily depending on infrastructure services. Based on
our experiences coming from multiple industry and R&D
projects (an overview is depicted in Table I), we see several
requirements for the Ubiquitous Integration of Cooperating
Objects (UICO).

Adding cooperation in the context we analyzed, makes it
imperative to have a look from a different angle i.e. that of
integration with the goal of cooperation.

Req. 1 – Dynamic collaboration: Devices with embedded
intelligence and sensing/actuating capabilities should be able
to dynamically collaborate in the environment and provide
services to the user (e.g. a service, another device or an end-
user).

Req. 2 – Extensibility: Flexible support for extending the
capabilities of a device is needed. Cooperating Objects is a
rapidly developing domain and implementation should take
into consideration future growth. Since extensions can be made
through the addition of new functionality or modification of
existing one, change support should be there while minimizing
impact to existing system functions.

Req. 3 – Resource utilization: Optimal management of
resources at the local (device) as well as non-local (groups,
global view) level is needed. As most of the cooperating
devices are expected to be resource constrained, the resource
utilization should be considered and possibly captured in a
cooperation context. For instance, it should be possible that
resource-scarce devices exploit the capabilities of the devices
with more resources, and opportunistically take advantage of
the resources in the surroundings if it makes sense from the
strategy/performance viewpoint.

Req. 4 – Description of objects (interface): Implementation
independent description of the object that can be used by
both implementer and requester is needed. This will enable
decoupling of design and actual implementation, which will
enable cooperating concepts to be developed in a loosely
coupled way with respect to the actual software and hardware
available.

Req. 5 – Semantic description capabilities: Semantics and
ontologies should be used to enforce the dynamic interpre-
tation of things and used as input for reasoning systems. An
object should be able to not only understand that cooperation is

possible, but also to assess what impact the cooperation might
have e.g. on the resources, time, processor utilization, etc.
as well as describe constraints of capabilities of the specific
cooperation.

Req. 6 – Inheritance/polymorphism: It would make sense
to have a way to form new objects using objects that have
already been defined. This will enable easy programming as
code can be reused. At a later stage one can move towards
the Composite Reuse Principle which enables polymorphic
behavior and code reuse by containing other classes which
implement the desired functionality.

Req. 7 – Composition/orchestration: Generation and ex-
ecution of work-plans between objects, services and other
resources in order to promote their interaction should be
supported.

Req. 8 – Pluggability: Dynamic interaction with newly
plugged-in and previously unknown objects. This refers not
only to software but also to hardware; typical examples include
communication, computation, behavior, etc. and calls for a
component-based approach where things can be combined to
customize existing behavior or to deliver more complex ones.
Cooperating objects supporting pluggability will enable third-
party developers to create capabilities to extend them, easy
ways of adding new features, reduced size and independent
application development, etc.

Req. 9 – Service discovery: Cooperating Objects must sup-
port a mechanism for each node to make its services known to
the system and also to allow querying for services. Automatic
service discovery will allow us to access them in a dynamic
way without having explicit task knowledge and the need of a
priori binding. The last would also enable system scalability
and support the composable approach of services.

Req. 10 – (Web) service direct device access: Enterprise
applications must be able not only to discover but, in many
cases, also to communicate directly with devices, and consume
the services they offer. The need to bypass intermediates
and directly acquire specific data from the device may offer
business benefits and rapid development, deployment, and
change management. Additional support, e.g. the capability of
event notifications from the device side to which other services
can subscribe, may provide optimization advantages.

Req. 11 – (Web) service indirect device access (gateway):
Gateways might glue to the Cooperating Objects infrastructure
devices by hiding heterogeneity and resource scarceness. Fur-
ther more, most efforts in the research domain today focus on
how to open the device functionality to the enterprise systems;
however, the opposite i.e. open enterprise systems to the
devices might also be beneficial. For instance, devices should
be able to subscribe to events and use enterprise services;
this can be achieved by creating “virtual devices” that proxy
an enterprise service. Having achieved that, business logic
executing locally on devices can now take decisions not only
based on its local information, but also on information from
enterprise systems.

Req. 12 – Brokered access to events: Events are a fundamen-
tal pillar of a service based infrastructure. Therefore access to



these has to be eased. As many devices are expected to be
mobile, and their on-line status often changes (including the
services they host), buffered service invocation should be in-
place to guarantee that any started process will continue when
the device becomes available again (opportunistic networking).

Req. 13 – Service life-cycle management: In future infras-
tructures, various services are expected to be installed, up-
dated, deleted, started, and stopped. Therefore, the requirement
is to provide basic support on-device/in-infrastructure that can
offer an open way of handling these issues.

Req. 14 – Legacy device integration: Devices of older
generations should be also part of the new infrastructure. Al-
though their role will be mostly providing (and not consuming)
information, we have to make sure that this information can
be acquired and transformed to fit in the new service-enabled
infrastructure. The latter is expected to be achieved via the
wrapping of them, e.g. with Web Services.

Req. 15 – Historian: In an information-rich infrastructure,
logging of data, events, and the history of devices is needed.
The historian is needed to offer logging of information to
services, especially when an analysis of up-to-now behavior
of devices and their services is needed.

Req. 16 – Device management: Service-enabled devices will
contain both, static and dynamic data. This data can now
be better and more reliably integrated, e.g. into enterprise
systems. However, in order to manage large infrastructures, a
common way of applying basic management tasks is needed.
The device management requirement makes sure that at least
on the middleware there is a way to hide heterogeneity and
provide uniform access to device’s and infrastructure’s life
cycle.

Req. 17 – Security and privacy: Security and privacy mech-
anisms should be considered. Access to the devices and their
services will depend on the deployed security context and,
therefore, basic functions should be supported. Similarly, the
privacy should be preserved especially for devices operating
in sensitive user areas, e.g. hospitals, households, etc.

Req. 18 – Service monitoring: As we anticipate a service
based infrastructure, it should be possible to monitor the
services and determine their status. Based on the continuous
monitoring, key performance indicators can be acquired, e.g.
responsiveness, reliability, performance, quality, etc.

III. EVALUATION AND DISCUSSION

Several approaches exist, some of which focus only in
enhancing networked embedded devices with on-device soft-
ware, enabling the direct device-to-device collaboration; while
others focus on partially device-agnostic approaches, making
the infrastructure smarter in order to extract information and
feed it to the appropriate applications. Our view is that
an amalgamation of both approaches might bring significant
benefits to all future IoT players. Therefore, we have focused
on approaches where we had hands-on experiences developing
them in the last years, and attempted to investigate com-
monalities such as design directions, requirement coverage,
implementation methods, etc.

Table I shows an overview of the middleware systems
that have been developed by the members of the CONET
consortium, and a comparison based on the requirements
that have been jointly defined (as described in section II).
Thereby, we identify gaps and possible migration paths in
order to provide true support for the ubiquitous integration
of cooperating objects. The following middleware systems are
included for comparison in Table I: Peer-to-Peer Pervasive
Computing (3PC) [2]; SOCRADES Integration Architecture
(SIA) [3]; Global Sensor Network (GSN) [4]; Wireless Sensor
Network Center with Gateway Abstraction Layer (WSN-C)
[5]; Orchestration Engine with Petri Nets - Continuum (SE1)
[6] and Simulation Framework using smart devices (SE2);
as well as the SOCRADES Orchestration Tools (SOT) [7].
Finally Table I also depicts our view on the significance of
the requirements and whether these must, should, or could be
present in the future cooperative IoT.

Dynamic collaboration: The functionality is partially cov-
ered by all approaches. However, we still feel it is necessary to
specify until which extent an embedded device is “intelligent”;
as well as to define the meaning of “collaboration” among
objects and types of collaborations. In our opinion this is
a “must” for any approach that will deal with the dynamic
Cooperating Objects infrastructure.

Extensibility: This is partially covered mainly due to the
fact that some approaches are very task or domain specific.
Extensibility is a “must” and should cover not only communi-
cation protocols (the main focus of today’s approaches) but be
embedded on the architecture based on open standards. This
implies standard interaction interfaces, and a modular structure
with no hard bindings.

Resource utilization: We can see that this high-impact and
important requirement is not covered by existing approaches.
This is also attributable to the lack of common methods as well
as the difficulty of assessing the resource impact during exe-
cution. This feature “must” be supported to enable resource-
driven approaches in a resource-constrained infrastructure.

Description of objects (interface): This feature is quite well
covered; however, still within specific implementations and is
not open in standardized way. An intermediate mechanism for
designing and deploying general types of descriptions widely
understandable is still missing. We consider this a “must”
feature because only implementation independent descriptions
can allow the interaction between objects without the need of
constant reconfiguration or re-programming.

Semantic description capabilities: There is partial support
for semantics in our middlewares; however, the majority of
embedded devices are not yet capable of embedding complete
semantic descriptions about their capabilities. We consider this
as a “should” feature as it will improve the dynamic knowledge
based collaboration and enhance the cooperation capabilities
of the objects.

Inheritance/polymorphism: Although partially supported,
the focus is mostly on the inheritance in implementation
rather than polymorphism. Cooperating Objects should inherit
features from other objects, both physically and logically. We



Table I
OVERVIEW OF REQUIREMENTS COVERAGE BY UICO MIDDLEWARES

Middleware Approaches UICO
ID UICO Requirement 3PC SIA GSN WSN-C SE1 SE2 SOT Recommendation

1 Dynamic collaboration G# G# G# G# G# G# G# 4
2 Extensibility   #  G# # # 4
3 Resource utilization # # # # G# # # 4
4 Description of objects (interface)  G# G#     4
5 Semantic description capabilities # # G# # # #  2�
6 Inheritance/Polymorphism G# G# G# G# G# G# G# 2�
7 Composition/Orchestration   G# #  G#  4
8 Pluggability G#  #  G# #  2�
9 Service discovery   G#     4

10 (Web) service direct devices access G#  # G#    2�
11 (Web) service indirect devices access (gateway) #  # #  #  2�
12 Brokered access to events G#  G# G# G#  G# 2�
13 Service life-cycle management G# G# # # G# G# G# 2�
14 Legacy device integration G#  G# G# G#   4
15 Historian # G# G#  # # # 2
16 Device management # G# G# G# G# # # 2�
17 Security and privacy # # # # # # # 4
18 Service monitoring #  G# G# G# #  4

 Covered 4 Must be included
G# Partially covered 2� Should be included
# Not covered 2 Could be included

consider this as a “should” since its existence would facilitate
the automatic creation of new objects and the code reuse. In
conjunction with semantics it would give us new capabilities
for knowledge extraction.

Composition/orchestration: This is supported by the ma-
jority of middlewares as most of them assume service-based
infrastructures where composition and orchestration are com-
mon. Dynamic workflows are not embeddable, so it is neces-
sary to have a mechanism for representing complex workflows
in embedded devices. Additionally, embedded devices do not
associate automatically or engage in collaboration without
a broker guiding the interactions; therefore, it is necessary
to define standard ad-hoc communication patterns that two
unknown embedded devices can follow in order to determine if
it is possible to become associated in some manner. However,
resource-constrained devices can also identify their own asso-
ciation capabilities by requesting support from infrastructure
services. We consider this as a “must” as collaborations will
be defined possibly as dynamic workflow interactions among
objects.

Pluggability: Partially supported by existing approaches, we
consider this as a “should” for future infrastructures. We can
not fully envision future capabilities of devices, however, it
should be possible to add modules (both in software and
hardware) to enhance or provide new functionality needed to
realize a cooperation scenario.

Service discovery: This is one of the key requirements
(therefore a “must”) as devices will need to discover each
other and their capabilities before initiating collaborations. As
we see almost all of the existing middlewares tackle this. Focus

should be on approaches that provide discovery in a global
way (and not only on local networks).

(Web) service direct device access: Most of the middlewares
assume direct access to the devices and their functionalities. As
we mentioned, this is of benefit to specific enterprise scenarios
and, therefore, it is a “should” for the future infrastructures.
However, we have to point out that the target here is mostly
resource-rich devices, or devices that provide very lightweight
methods of accessing their itineraries such as REST.

(Web) service indirect device access (gateway): This re-
quirement is partially supported by existing middlewares. A
significant majority of devices (especially due to the minia-
turization trend) is and will remain resource-constrained, in-
capable of accommodating direct access (or it does not make
sense to realize that functionality). Gateways hiding the het-
erogeneity of hardware, software, communication protocols,
etc. will mediate access to their features and enable easy
integration. We consider this a “should” as it will allow us
to integrate any kind of device to the global infrastructure.

Brokered access to events: An event-based cooperating
objects infrastructure seems to be eminent in most of the
middlewares. Event notifications are partly handled by the
middlewares; however, the successful delivery of events is not
guaranteed at the moment, unless it is explicitly stated. This is
especially the case for constrained devices, which might not
request any kind of acknowledgement for the events that are
sent to subscribers in order to save resources. In this case, it
would be necessary for such kind of devices to have access to
a broker service supported by the infrastructure, which could
take care of the guaranteed delivery. The broker service will



be preferably distributed and/or federated. We consider this a
“should” as it would enable the realization of the event-based
infrastructure without depending too much on the device.

Service life-cycle management: Cooperating Objects are
expected to provide a variety of services which could be
modified dynamically. In this sense, some middlewares offer
basic service life-cycle management capabilities which are
not available on a general level, and which are application
specific. We consider this as a “should” and see that it is
necessary to establish a minimal set of standardized service
management operations that would be available by default on
all Cooperating Objects and the support infrastructure.

Legacy device integration: Today’s devices are the legacy
devices of tomorrow. All middlewares partially tackle this
requirement. However, the main issue is that all the approaches
solve the integration problem only with a reduced set of
specific legacy devices known a priori. In reality, Cooperating
Objects are expected to interact with a very large diversity of
legacy devices currently deployed. A solution to this problem
could be to provide the legacy devices with a sufficiently
abstract interface that could allow them to expose their services
in a more generic way. We consider this requirement a “must”
as it will heavily dictate the success of Cooperating Objects,
especially in long-living setups such as the industrial domain.

Historian: This is partially tackled by some middlewares,
especially the ones that provide infrastructure services. Se-
lected key data produced by the objects should be automati-
cally logged by the infrastructure services. This would enable
historic views and statistics in order to evaluate an approach.
We consider this a “could” as it is of low priority in a
collaboration.

Device management: Currently there are no unified methods
to handle the life-cycle of heterogeneous devices especially in
large-scale heterogeneous infrastructures. Although partially
tackled by existing middlewares, more effort will be needed
once large-scale systems become operational. We consider
that this is a “should” and would enhance the collaboration
capabilities.

Security and privacy: It seems that security and privacy
issues are underestimated, since most approaches try to “put
a workable” framework. We consider this as a “must” as
in some contexts sensitive information can be interchanged
between the objects, and the objects should be prepared for
this. For instance, security has a significant importance in non-
isolated environments and privacy plays a key role in user-
centric environments, e.g. hospitals, homes, etc.

Service monitoring: Most middlewares do not monitor or
provide very limited support for this requirement. However we
consider it as a “must”, especially in a service-based infras-
tructure where complex composable services will exist. Since
cooperating objects might co-exist in a distributed fashion
and might interact asynchronously, it is important to define
a general event-based model that could be used to monitor
any kind of service offered by the objects.

As we can see there are several considerations to be tackled
for realizing a cooperating objects infrastructure. It is clear that

we need to investigate more how to satisfy these requirements
efficiently, what their impact would be in specific application
domains, and what is the risk associated with the respective
degree of requirement fulfillment.

IV. CONCLUSION

It is clear that the field of Cooperating Objects [1], is a very
dynamic one that has the potential of drastically changing the
way people interact with the physical world as well as how
business systems integrate it in their processes. We are still
at the dawn of an era, where a new breed of applications and
services, strongly coupled with our everyday environment will
revolutionize our lives even in a deeper way than the Internet
has done in these past years.

Seamless cooperation and collaboration is necessary to
realize an environment where the user services are provided
in a distraction free manner. Traditional models support the
cooperation either by providing peer-to-peer communication
between devices or by utilizing an infrastructure. We believe
that combining both of these approaches provides several
advantages. We have investigated based on our hands-on
experiences the requirements that should be tackled in order
to achieve collaboration both standalone and infrastructure-
assisted modus.

ACKNOWLEDGMENT

The authors would like to thank the partners of European
Commission funded project Cooperating Objects Network of
Excellence (CONET - www.cooperating-objects.eu). Espe-
cially we would like to thank for the fruitful discussions: Fabio
Bellifemine, Sami Bhiri, Armando Walter Colombo, Umer
Iqbal, José Martı́nez Lastra, Paulo Leitao, Filipe Pacheco, Na-
taliya Popova, Paulo Gandra de Sousa, and Enrico Vinciarelli.

REFERENCES

[1] P. J. Marrón, S. Karnouskos, and D. Minder, Eds., Research Roadmap
on Cooperating Objects. European Commission, Office for Official
Publications of the European Communities, July 2009, no. ISBN: 978-
92-79-12046-6.

[2] C. Becker, M. Handte, G. Schiele, and K. Rothermel, “PCOM - A Compo-
nent System for Pervasive Computing,” in PERCOM ’04: Proceedings of
the Second IEEE International Conference on Pervasive Computing and
Communications (PerCom’04). Washington, DC, USA: IEEE Computer
Society, 2004, p. 67.

[3] P. Spiess, S. Karnouskos, D. Guinard, D. Savio, O. Baecker, L. M. S. d.
Souza, and V. Trifa, “SOA-Based Integration of the Internet of Things in
Enterprise Services,” in IEEE International Conference on Web Services,
ICWS 2009 , Los Angeles, CA, USA, Jul. 6–10, 2009, pp. 968–975.

[4] K. Aberer, M. Hauswirth, and A. Salehi, “A middleware for fast and
flexible sensor network deployment,” in VLDB ’06: Proceedings of
the 32nd international conference on Very large data bases. VLDB
Endowment, 2006, pp. 1199–1202.

[5] S. Guerra, G. P. Fici, and C. Borean, “Wireless Sensor Network Center: a
ZigBee Network Management System,” in ZigBee European Developers
Conference, Munich, Germany, 27-28 April 2010, Apr. 2010.

[6] J. M. Mendes, A. Bepperling, J. Pinto, P. Leitao, F. Restivo, and A. W.
Colombo, “Software Methodologies for the Engineering of Service-
Oriented Industrial Automation: The Continuum Project,” Computer
Software and Applications Conference, Annual International, vol. 1, pp.
452–459, 2009.

[7] J. Puttonen, A. Lobov, M. Cavia Soto, and J. L. Martı́nez Lastra, “A
semantic web services-based approach for production systems control,”
Advanced Engineering Informatics, vol. 24, no. 3, pp. 285–299, Aug.
2010.


