
The NARF Architecture for Generic Personal
Context Recognition

Marcus Handte, Umer Iqbal, Wolfgang Apolinarski, Stephan Wagner and Pedro José Marrón
Networked Embedded Systems Group

University of Duisburg-Essen
Duisburg, Germany

Email: {firstname.lastname}@uni-due.de

Abstract—Ubiquitous computing envisions applications that
provide seamless and distraction-free support for everyday tasks.
To achieve this goal, applications must be able to adapt to
their environment and to the intents of their users. Thereby,
they need to automate adaptation decisions to minimize the
resulting distraction. As a consequence, it is necessary to acquire
an understanding of the user’s current situation to ensure that
the automation results in a desirable application behavior. The
wide-spread use of personal mobile devices provides a promising
technical basis to acquire this knowledge in a seamless manner.
However, in order to account for the resource limitations of
such devices, existing personal context recognition systems are
typically highly specialized and cannot be adapted easily to
different scenarios. In this paper, we motivate the need for an
generic personal context recognition system and we derive the
requirements on such systems. As an approach towards creating
such a system, we describe NARF - our ongoing effort to create
an adaptive context recognition framework. To assess the benefits
and limitations of the architecture, we discuss an application that
we have built using our current prototypical implementation of
this framework.

I. INTRODUCTION

Ubiquitous computing envisions applications that provide
seamless and distraction-free support for the everyday tasks
of their users. To achieve this goal, applications must be able
to provide task support in vastly different environments and
they must be able to consider different sets of user intents.
Intuitively, both – the environment and the intents – are often
not static. Instead, they are changing at runtime depending on
the user’s situation. To provide a truly seamless experience,
ubiquitous computing applications must be able to adapt to
such changes at runtime and this adaptation must be done
automatically in order to achieve the goal of being distraction-
free.

To ensure that automatic adaptation results in a desired
behavior, applications need to be able to perceive the relevant
parts of the user’s situation. From a technical perspective,
this requires applications to determine the set of available
devices which can then be used to determine viable modes
of execution. However, in cases where multiple modes are
possible, selecting the optimal one requires an understanding
of the non-technical features of the user’s situation. This set
of features is commonly referred to as the context. Examples
can be the current location, activity and future plans of a user.

The ubiquity of personal mobile devices provides a promis-
ing technical basis to determine the context of users in an
automated manner on a large scale. The reason for this is
threefold. First and foremost, a personal mobile device is
directly associated with a particular user. Since the user carries
the device continuously during the day, many features of
the device context can be used as a representation of the
user context without further ado. Secondly, more and more
devices are equipped with sensors. Examples of such sensors
are gyroscopes, accelerometers, cameras and microphones, to
name a few. At the same time, an increasing number of
devices is able to use wireless communication technology such
as GPRS or UMTS to access relevant on-line information
sources like calendars, task lists or maps at any point in time.
Together, this creates an unprecedented richness of physical
and virtual information sources that can be tapped to determine
the context of a user seamlessly. Last but not least, although
personal mobile devices are often considered resource-poor
when compared to traditional computers, the available re-
sources are usually underutilized in normal operation.

In the recent past, these factors have contributed to the
development of a number of context recognition systems for
personal mobile devices. Typically, these systems combine
the information provided by different physical sources to
recognize a particular feature of the user’s context. However,
in order to support resource-poor personal mobile devices,
the existing recognition systems are manually fine-tuned to a
narrow scenario and they cannot be adapted easily to changing
requirements. This, in turn, introduces a limitation on the
practical applicability of the systems since the features of
the context that are relevant and the way how they can
be recognized efficiently may be highly user- and scenario-
specific and they often change dynamically at runtime. As
a simple example consider that the activities performed by
different users depend partially on their job and even with
respect to a single user, the set of activities that may be
performed will usually change depending on the time of day.

To improve the practical applicability of personal context
recognition, the recognition itself must be generic. In this
paper, we derive the resulting high-level requirements on
personal context recognition systems and as a possible incarna-
tion, we discuss the architecture of NARF - our ongoing effort
to build an adaptive context recognition framework. To assess



the architecture, we discuss the benefits and limitations using
an application that we have built using our current prototype.

The remainder of the paper is structured as follows. In
the next section, we briefly review the state of the art in
context recognition with mobile devices. Thereby, we motivate
the need for generic personal context recognition. In Section
III, we derive the resulting requirements. In Section IV,
we describe the architecture of NARF, our adaptive context
recognition system. In Section V, we assess the benefits and
limitations of the framework using an application that we built
with our current prototype. Finally, in Section VI, we conclude
the paper with brief summary and an outlook.

II. RELATED WORK

In the recent past, researchers have developed a number of
context recognition systems on the basis of personal mobile
devices. Some examples are [4], [5], [11], and [13]. Usually,
these systems fix the features that ought to be detected at
design time. The resulting systems are then manually tuned to
achieve an optimal recognition result in a particular scenario.
As a consequence, they cannot be adapted easily to different
scenarios without additional manual engineering which limits
their applicability.

Many existing systems such as [11], [12], [15], [10], [9],
[17], [3] use built-in sensors in mobile phones to recognize
the desired context features. For instance, CenceME [11] uses
built in microphone and accelerometer to detect different user
states. These user states are then injected into on-line social
forums. Nericell [12] uses accelerometers, microphones, and
GPS to detect uneven roads and traffic conditions. Vtrack
[15] is a traffic congestion monitoring systems which works
on a collective participation of road users. Users with their
mobile phones capture traffic situation and send it to a cen-
tralized server. The server sends up to date information to
other cars. SoundSense [10] uses microphone for recognizing
different sounds and employs supervised and unsupervised
learning technique for identifying different sound types. These
and other systems like [9], [17] and [3] provide satisfactory
performance in their respective scenarios but are unable to
adapt to new requirements.

A basic limiting factor of generic context recognition sys-
tems for personal mobile devices is the limited availability
of resources. Recently different approaches to minimize the
resource consumption during context recognition have been
developed. For example, [7] uses a bidirectional approach for
context monitoring. The main idea behind the approach is to
detect changes in the context at an early stage. For instance,
rather than waiting for the results from the classifier, the
system detects changes in sample values at the sensor level.
Thereafter, only those samples are further processed which
can lead in a context change. [16] suggests using hierarchical
sensor management strategy to detect user states and state
transitions. To do this, the system associates a set of sensors
with a particular state and it activates them only if the state
is detected. [2] presents a framework in which sensor state
detection is structured as decision tree classifier. The sensor

sampling rates are adjusted dynamically so that only necessary
data is collected at any given time. The energy efficiency is
achieved by structuring classification as a series of queries
for different stages of the classifier, each requiring a different
number of decisions.

Beyond these rather specialized tools, there are also a few
rapid prototyping tools for context recognition systems that
are geared towards generic support. As such, these systems
aid developers in creating context recognition systems ac-
cording to different requirements. For instance, [14] provides
a uniform abstraction for applications to access and use
context information. Thereby, the tool kit hides the actual
context sensing and its interpretations from the applications.
Similarly, [1] provides functionalities to develop distributed
context recognition systems. Thereby, it simplifies the de-
velopment process with its reusable components and a set
of parametrized algorithms, filters, and classifiers. However,
while [14] is primarily targeted at context recognition with pre-
deployed sensors, [1] is targeted towards motion recognition
with specialized wearable systems. In contrast to this, [8] is
a data gathering and processing open source platform which
is specifically targeted towards mobile phones with varying
hardware capabilities. Extensibility is achieved by means of
a minimal core that is extended via plug-ins. The system
relies on a black-board architecture that can be configured
during start up phase, however, at runtime the system cannot
be adapted.

As discussed above, there exists a number of context
recognition systems that has been tailored to the specifics of
mobile devices. These systems clearly indicate the viability
of personal context recognition in specific scenarios. Further-
more, there are a number of approaches that show possible
ways of reducing the resource consumption which improves
the viability. In addition there are also a few tool kits and
systems that strive for generic context recognition. Although
these systems are either not tailored towards personal mobile
devices or they only provide limited flexibility, they clearly
indicate the usefulness of genericity.

III. REQUIREMENTS

In the following, we discuss the requirements on personal
context recognition. These requirements can be derived di-
rectly from the technical characteristics of personal mobile
devices and the desire of supporting context recognition in a
generic manner.

• Uniformity: As indicated in the introduction, many ubiq-
uitous computing applications benefit from or require
personal context recognition. However, the features that
are relevant for these applications vary depending on their
purpose. For example, a navigation application might be
interested in the speed of the user to switch between
visual and audio mode whereas a calendar application
might be interested in the surroundings of the user to
determine whether and how an upcoming appointment
should be signalled. Thus, in order to be useful for a
broad range of applications, personal context recognition



should support the recognition of different features in a
uniform manner.

• Extensibility: Since there are numerous features that may
be needed by different applications, it is unrealistic to
assume that a single developer is able to provide all re-
quired recognition methods. As a consequence, a personal
context recognition system should be extensible and it
should enable the joint use of recognition methods that
have been developed in isolation. Furthermore, to ease
the development of new recognition methods, the system
should enable the reuse of parts of the existing methods
when appropriate.

• Configurability: As discussed previously, existing recog-
nition methods often propose a particular set of pa-
rameters to balance the trade-off between accuracy and
resource utilization, for example. Yet, this optimiza-
tion is usually scenario specific. In practice, different
parametrizations may be optimal for different scenarios.
Moreover, depending on the scenario there may be several
alternative methods for recognizing the same context
feature. As a simple example consider that location
can be detected using different technologies such as
GPS in outdoor scenarios or Wifi in indoor scenarios.
Consequently, a system for personal context recognition
should be highly configurable to be applicable in a broad
spectrum of scenarios.

• Efficiency: Due to the use of personal mobile devices as
technical basis, the resource usage for context recognition
must not hinder the primary function of the devices. As
a consequence, personal context recognition must make
efficient use of resources. Towards this end, the recogni-
tion system should not spend resources for recognizing
irrelevant features. In addition to that, it should perform
the recognition of the relevant features with minimal
effort.

IV. ARCHITECTURE

In the following, we introduce the architecture of NARF,
our ongoing effort to build an adaptive context recognition
framework. The goal of NARF is to provide a generic plat-
form for personal context recognition. Towards this end, the
framework aims to satisfy the requirements discussed in the
previous section. An overview of the architecture is shown in
Figure 1. As shown in this figure, the framework consists of
two main building blocks, namely a runtime system which is
deployed on a personal mobile device and an associated set of
development tools that is used off-line to create the necessary
configuration.

The task of the runtime system is twofold. During normal
operation, the runtime system performs the actual recognition
of the relevant features of the context and it enables appli-
cations to retrieve them and to be notified upon changes.
In addition to the normal operation that performs the actual
recognition, the runtime system can also be used to gather
traces in sampling mode. These traces can then be used as an
input for the development tools.

Fig. 1. NARF Architecture

To perform the recognition of context, the runtime system
must be configured. Performing this configuration is the main
task of the development tools. In addition to the configuration
of the runtime system, the development tools are also used
to enable the development of new recognition methods. To
simplify this, the development tools facilitate the reuse of
recognition logic that has been developed previously.

In the following, we describe both, the runtime system and
the development tools in greater detail and we discuss how
they interact in order to realize the requirements identified in
Section III.

A. Runtime System

As hinted in the previous section, the main task of the
runtime system is to perform the context recognition. To
do this, the framework introduces two different systems that
are stacked on top of each other. As shown in Figure 2,
a component system forms the lower level of the runtime
system. On top of the component system, NARF introduces a
work flow abstraction that is realized by a minimal work flow
engine.

The main task of the component system is to perform the
recognition of a set of features in an efficient manner. To
do this for arbitrary features, the component system abstracts
form the specific recognition method by introducing three dif-
ferent abstractions, namely components, parametrizations, and
wirings. In the following, we briefly describe their structure
and purpose:

• Components: In NARF, components are the (reusable)
building blocks of the recognition methods. Conceptually,
a component consists of an implementation that exposes
typed input and output ports that may be wired to
the ports of other components. Thus, the ports enable
components to interact with each other in a controlled
manner. To do this, a component may post a value to an
output port or it may read a value from an input port.



Fig. 2. NARF Runtime System

• Wiring: In order to be reusable, components are iso-
lated from each other by means of ports. However, the
recognition of a feature often requires the combination of
multiple components in a specific way. Wirings express
such combinations by determining how the input and
output ports of a set of components shall be wired.

• Parametrization: In addition to ports, a component may
expose parameters that can be used to adapt its internal
behavior. However, the parameters are not exposed to
other components but, they can be accessed and manip-
ulated by the component system itself. Developers may
define different parametrizations for a particular usage of
a component.

In general, it is possible to categorize the components
according to their function into three different levels. As shown
in Figure 2, at the sampling level a component may provide
access to a physical or virtual data source that can be used to
sample data. Components at the preprocessing level perform
generic tasks such as noise-reduction or feature-extraction
on the raw data provided by the sampling level. On top of
the preprocessing level, classification components combine
multiple features to recognize the target feature of the context.

Except for the most basic methods, most feature recognition
methods have to combine a number of components at all
of the levels. Thus, it is possible to represent the basic
configuration for a recognition method by means of a wiring.
For example, recognizing a noisy environment will require
a sampling component to capture audio from a microphone,
a preprocessor component to extract the power level and a
classifier component to decide whether the environment is
rather noisy or calm.

However, most of the components usually exhibit parame-
ters that can be used to control their behavior. Thus, in order to
describe the complete configuration for a feature recognition
method, it is necessary to provide the parametrization for each
component of the wiring. For the previous example, such a
parametrization might define the sampling rate and frame size
for the sampling component or the threshold for the power
level used by classifier component.

In order to recognize multiple features simultaneously, the
component system is able to execute multiple wirings with
their associated parametrizations. In cases where the recog-
nition methods share similar parts of the configuration, the
component system tries to merge the wirings intelligently to
avoid duplicate computation. This ensures that the recognition
is performed efficiently even in cases where the recognition
methods have been developed independently. An example for
this is shown in Figure 2. Since the depicted recognition
configurations share the sampling component S2 and the
preprocessor P2, the component system only executes them
once. In addition, it changes the wirings to use the output of
the same preprocessor P2 in both configurations.

Intuitively, the automated merging requires a runtime anal-
ysis of the configurations to detect overlapping graphs. In
addition, it is necessary to determine whether there are dif-
ferences in the parametrization. Our current implementation
only supports automated merging of identical parametriza-
tions, however, in many cases it is possible to introduce
transformation components into the graphs to merge different
parametrizations as well. For example, in order to bridge
between different sampling rates, a transformation component
could skip some of the samples.

Using the outlined component model and the associated
merging mechanism, the component system is able to support
the development and execution of arbitrary recognition meth-
ods in an efficient manner. Thereby, the component system
executes the configured recognition continuously. However,
depending on the state of the environment, an application may
only be interested in a subset of the features at a time. In such
cases, the continuous execution of all recognition methods
would be inefficient.

To avoid this, the framework enables applications to specify
the desired recognition methods in a context dependent man-
ner. Instead of specifying a static set of recognition methods,
an application specifies a work flow consisting of states to
model requirements on the recognition and transitions to
model the possible ways of switching between the states.
Although this may seem complicated at first, it enables the
application developer to apply fine-grained control over the
recognition. If this fine-grained control is not needed, it is
possible to specify a static set of requirements by introducing
a single state without transitions. In the following, we briefly
describe the purpose and structure of the flows used by NARF.

• State: Work flows in NARF consist of a set of states. Each
state is associated a particular requirement regarding the
recognition methods that shall be executed by the compo-
nent system. To do this, each state may be associated with



a set of wirings and parametrizations for the component
system. One of the states is marked as initial state and this
state is active when the flow is added. Conceptually, the
states model different situations that require the detection
of a distinct set of context features.

• Transition: In addition to states, the work flows may
exhibit transitions between states. The transition can be
associated with conditions over the context features that
are currently detected. Intuitively, this reduces the set of
features to the ones specified in the source states of the
transition. A transition is taken if the source states are
active and the specified context features are detected.

The runtime system introduces a simple work flow engine
to execute the flows. The main task of the work flow engine
is to compute the active states of the flow and to trigger state
changes when a transition is fired. To trigger these changes,
the work flow engine relies on the component system to
detect the context features specified in transitions. Once a state
becomes active or inactive due to a transition, the work flow
engine automatically stops the wirings and parametrizations
defined by the inactive state and it starts the wirings and
parametrizations of the active state.

In order to start the recognition, an application may inject
a work flow in the engine at runtime. Once the work flow is
executed, an application may receive changes to the features
that are detected by recognition methods that are executed by
the component system. In addition to that, an application may
also monitor the state transitions in the work flow engine.
Thus, an application can use the states in the work flow to
summarize a particular set of changes to context features.

B. Development Tools

To fully utilize the flexibility of the runtime system, the
framework encompasses a set of associated development tools.
Due to the modularity of the runtime system, there are three
tools that target different aspects. These tools are depicted in
Figure 3 and they target component development, wiring and
parametrization as well as work flow specification.

A component interface generator simplifies the development
of components by generating the necessary stub code using
a graphical component wizard. This interface code can then
be implemented using a standard editor. To generate the stub
code, the developer defines its interface by selecting the type
of component, i.e. sampling, preprocessor, classifier, the type
and number of ports as well as the component parameters.

Beyond the component generation, a wiring and
parametrization tool is used to derive a wiring with an
appropriate parametrization as well as a classifier. To do
this, the tool requires tagged traces. The untagged traces
can be generated by capturing the raw samples of sampling
components deployed in the runtime system. In order to
capture traces, the runtime system supports a tracing mode
that stores the samples on local storage. After retrieval from
the device, the traces need to be manually tagged with the
features that shall be detected. Once tagged, the wiring and

Fig. 3. NARF Development Tools

parametrization tool uses the trace to determine a suitable
wiring and parametrization.

To automatically compute this, the tool runs differ-
ent wirings of preprocessors with different parametrizations
against the trace. Thereby, it tries to create a classifier that
results in the associated tags. Without manual help from the
developer, this requires the testing of all possible preprocessors
with all possible parametrizations. Thus, depending on the
number of preprocessors and the size of their parameter
spaces, this can be a computationally intensive task. Mini-
mizing the resulting search space is one of our future research
efforts. A key idea to do this is to leverage monotonic behavior
in the parameter domains.

Once the wiring and parametrization has been generated
either manually or through the help of the development tools,
it can be used within a work flow specification. To simplify
the specification of work flows, a graphical tool can be used to
specify the states and the transitions. Thereby, each state must
be associated with a particular set of wirings with parametriza-
tions that shall be executed. Similarly, the transitions must be
configured with a condition that must hold true for it to be
triggered. The resulting work flow can then be injected into
the work flow engine to start the corresponding detections.

V. ASSESSMENT

In order to assess the architecture, we have started to
implement the individual parts and we have built a simple
example application. Our current implementation of NARF has
been written in Java and it is targeted towards the Android
platform. At the present time, the implementation encom-
passes a simplified version of the runtime system which we
are currently refining by implementing additional recognition



Fig. 4. Example Application

methods for different context features. The next step is to
implement the front ends for the development tools which
should drastically simplify the use of the runtime system.

In the following, we first describe a simple example applica-
tion that we have built using our current version of the runtime
system. Thereby, we show how the component system and the
work flow engine can be put to use in practice. Thereafter, we
revisit the requirements set out in Section III and we discuss
why and how they are fulfilled by the architecture.

A. Example

To validate the architecture of the runtime system, we
have implemented a simple example application. The example
application recognizes the location of the user using a personal
device that is running NARF. It then visualizes the user’s
location in a moving map. Although, the application itself is
not complicated, it uses many features of the framework.

Intuitively, there may be multiple alternative ways of re-
trieving the location information. In outdoor scenarios, the
localization by means of GPS is a natural choice due to its
wide availability and simplicity. However, in indoor scenarios
GPS cannot be used. Thus, in order to provide location
information in a seamless manner, it is necessary to use an
alternative recognition method. Due to its wide availability,
a rather common approach is to use 802.11 technology for
indoor localization and there are several possible ways of
doing this. For the example, we decided to use fingerprinting

due to its simplicity. The bottom of Figure 4 shows the stacks
resulting from the usage of these recognition methods.

The stack for the outdoor localization, depicted on the
left side of Figure 4, solely consists of a single component
at the sampling layer. The reason for this is that the GPS
hardware is already performing the necessary preprocessing
and classification internally. Thus, the GPS component can
simply retrieve the current coordinates from the GPS receiver
which can then be made available to the application.

The stack for the indoor localization, depicted on the right
side of Figure 4, is more complicated. At the sampling layer, it
consists of a WLAN component and a MAP component. The
WLAN component is responsible for generating fingerprints
by scanning the available 802.11 networks to determine their
signal strengths. In order to derive the current user location
from the fingerprint, the MAP component provides access to
a list of fingerprints with associated locations. To do this, the
MAP component uses BASE [6], our middleware for spon-
taneously networked devices which enables the component to
retrieve the list from a local server. At the preprocessing layer,
a filter component is responsible for improving the fingerprint
by removing irrelevant access points. The resulting fingerprint
is then used by the CLASSIFIER to determine the location
using the list provided by the MAP.

Since a user can either be located indoors or outdoors at
any point in time, running both recognition methods simul-
taneously results in unnecessary resource usage. To minimize
the resource usage, the application specifies its requirements
with a work flow that models the fact that the recognition
methods should not be executed simultaneously. This can be
done by introducing a flow with one state for each method
and appropriate transitions.

Intuitively, the transitions need to be refined with conditions
that define when to switch between the states. As explained in
Section 2, a key limitation is thereby that the conditions may
only refer to context features that are detected in the source
state of the transition. Otherwise, the work flow engine would
not be able to detect the feature by means of the component
system. Thus, for this example, we define the conditions in
such a way that they are triggered when the localization is
no longer successful, i.e. if the GPS component does no
longer receive coordinates or if the map component does no
longer provide a list of fingerprints. Clearly, this may result in
oscillations in cases where both, the indoor and the outdoor
location, cannot be performed. However, in such cases the
interleaved scanning is a desirable behavior.

In order to use the recognized features, the application may
access the location provided by the component system as well
as the current state of the work flow engine. Our example
application uses both. The state of the work flow engine is
used to adapt the way how the application tries to retrieve a
map. If the outdoor recognition is used, the application can
simply retrieve a map through a web service such as Google
maps. If the indoor recognition is used, the application uses
BASE in order to download an indoor map from a server that
is deployed locally in the current environment. The location



provided by the component system is then used to mark the
current user position in the map.

B. Discussion

In the following, we discuss how the architecture addresses
the requirements identified in Section III. To clarify the
individual points, we revisit the example application described
previously.

• Uniformity: As discussed previously, the NARF archi-
tecture is independent from the context features that
shall be recognized. It enables uniform access to the
recognized features by means of supporting arbitrary
access to all types of data that are generated within a
recognition stack. The example application solely uses the
information that is generated at the top most component
of each stack. However, other applications might benefit
from information that is generated by the intermediate
components. As an example consider that it might be
useful to visualize the list of available fingerprints to
indicate the granularity of the localization.
In addition, the framework enables applications to adapt
the recognition using a work flow model. Although the
primary use case for this restriction is to minimize the
resource usage, exposing the current state of the work
flow engine can provide valuable information. In the
example application, the state of the work flow engine
is used to switch between map providers. In general, it
can be used for grouping the access to a set of context
features.

• Extensibility: The NARF architecture supports extensibil-
ity at several levels. At the component level, additional
components can be implemented to provide access to
physical data sources, such as a 802.11 interface, virtual
data sources, such as a local map server, preprocessing
algorithms and classifiers. Above the component level,
developers can extend the framework by providing dif-
ferent wirings and parametrizations to recognize a context
feature. Thereby, it is possible to develop the recognition
methods independently since the runtime system can
execute multiple methods simultaneously.

• Configurability: In order to adapt the recognition to a
particular scenario, the NARF architecture introduces
work flows. The work flows describe which recognition
methods should be used at a time. By defining different
parametrizations, it is also possible to use the same
recognition method with different trade-offs in a single
application. To simplify the development of alternative
parametrizations, the runtime system can be extended
with additional development tools. Thereby, it is possible
to use the lower levels of the runtime system to simplify
the generation of traces.

• Efficiency: To support resource efficient recognition, the
runtime system of NARF provides several manual tuning
knobs and automatic mechanisms. Using work flows, it is
possible to manually define the set of recognition methods
that is relevant in a particular context. By determining

the current state of the flow, the runtime system can
then automatically start and stop the recognition methods.
Similarly, by enabling developers to provide different
wirings and parametrizations, they can define different
configurations to balance the trade-off between accuracy
and resource usage. These can then be used as part of the
work flow definition.
Besides from reducing the resource utilization by op-
timizing the set of recognized features, the component
system also minimizes the resource overhead resulting
from the isolated development of recognition methods.
To do this, the component system automatically merges
the recognition graphs of several features, in cases where
they share the same components. This enables the system
to execute arbitrary combinations of recognition graphs
in an efficient manner.

VI. CONCLUSION

To provide seamless and distraction-free support to their
users, ubiquitous computing applications need to adapt to
dynamic environments and changing user intents. To do this,
applications need to be able to determine the technical as well
as the non-technical features of their context. Personal mobile
devices are a promising technical basis to acquire the non-
technical features in an automated manner. However, doing
this in a large scale requires novel personal context recognition
systems that can be adapted to different user requirements and
scenarios.

The architecture of NARF is specifically geared towards
generic yet efficient support for context recognition. Thereby,
the framework combines off-line configuration by means of
development tools with runtime adaptation by combining a
component system with a work flow engine. By using work
flows to model relevant sets of features, the component system
can minimize the resource consumption of context recognition.

At the present time, we are refining the prototypical im-
plementation of the runtime system and we are implementing
the development tools. Simultaneously, we are developing a
set of standard components that minimize the manual imple-
mentation needed for the development of further recognition
methods.

ACKNOWLEDGMENT

This work has been partially supported by CONET (Cooper-
ating Objects Network of Excellence) funded by the European
Commission under FP7 with contract number FP7-2007-2-
224053.

REFERENCES

[1] David Bannach, Oliver Amft, and Paul Lukowicz. Rapid prototyping of
activity recognition applications. IEEE Pervasive Computing, 7:22–31,
2008.

[2] Ari Y. Benbasat and Joseph A. Paradiso. A framework for the automated
generation of power-efficient classifiers for embedded sensor nodes.
In SenSys ’07: Proceedings of the 5th international conference on
Embedded networked sensor systems, pages 219–232, New York, NY,
USA, 2007. ACM.



[3] S. B. Eisenman, E. Miluzzo, N. D. Lane, R. A. Peterson, G-S. Ahn,
and A. T. Campbell. The bikenet mobile sensing system for cyclist
experience mapping. In SenSys ’07: Proceedings of the 5th international
conference on Embedded networked sensor systems, pages 87–101, New
York, NY, USA, 2007. ACM.

[4] Jon Froehlich, Mike Y. Chen, Sunny Consolvo, Beverly Harrison,
and James A. Landay. Myexperience: a system for in situ tracing
and capturing of user feedback on mobile phones. In MobiSys ’07:
Proceedings of the 5th international conference on Mobile systems,
applications and services, pages 57–70, New York, NY, USA, 2007.
ACM.

[5] Hans W. Gellersen, Albercht Schmidt, and Michael Beigl. Multi-sensor
context-awareness in mobile devices and smart artifacts. Mob. Netw.
Appl., 7(5):341–351, 2002.

[6] Marcus Handte, Christian Becker, and Gregor Schiele. Experiences -
extensibility and minimalism in BASE. In Proceedings of the Workshop
on System Support for Ubiquitous Computing (UbiSys) at Ubicomp,
2003.

[7] Seungwoo Kang, Jinwon Lee, Hyukjae Jang, Hyonik Lee, Youngki Lee,
Souneil Park, Taiwoo Park, and Junehwa Song. Seemon: scalable and
energy-efficient context monitoring framework for sensor-rich mobile
environments. In MobiSys ’08: Proceeding of the 6th international
conference on Mobile systems, applications, and services, pages 267–
280, New York, NY, USA, 2008. ACM.

[8] Joonas Kukkonen, Eemil Lagerspetz, Petteri Nurmi, and Mikael Ander-
sson. Betelgeuse: A platform for gathering and processing situational
data. IEEE Pervasive Computing, 8(2):49–56, April-June 2009.

[9] Michael Lawo, Otthein Herzog, Paul Lukowicz, and Hendrik Witt. Using
wearable computing solutions in real-world applications. In CHI ’08:
CHI ’08 extended abstracts on Human factors in computing systems,
pages 3687–3692, New York, NY, USA, 2008. ACM.

[10] Hong Lu, Wei Pan, Nicholas D. Lane, Tanzeem Choudhury, and An-
drew T. Campbell. Soundsense: Scalable sound sensing for people-
centric applications on mobile phones. In MobiSys ’09: Proceedings of
the 7th International Conference on Mobile Systems, Applications, and
Services, pages 165–178, New York, NY, USA, 2009. ACM.

[11] Emiliano Miluzzo, Nicholas D. Lane, Shane B. Eisenman, and An-
drew T. Campbell. Cenceme - injecting sensing presence into social
networking applications. In EuroSSC, pages 1–28, 2007.

[12] Prashanth Mohan, Venkata N. Padmanabhan, and Ramachandran Ram-
jee. Nericell: rich monitoring of road and traffic conditions using mobile
smartphones. In SenSys ’08: Proceedings of the 6th ACM conference
on Embedded network sensor systems, pages 323–336, New York, NY,
USA, 2008. ACM.

[13] Petteri Nurmi, Joonas Kukkonen, Eemil Lagerspetz, Jukka Suomela, and
Patrik Floréen. Betelgeuse: a tool for bluetooth data gathering. In
BodyNets ’07: Proceedings of the ICST 2nd international conference
on Body area networks, pages 1–8, ICST, Brussels, Belgium, Belgium,
2007. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering).

[14] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The context
toolkit: aiding the development of context-enabled applications. In
CHI ’99: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 434–441, New York, NY, USA, 1999. ACM.

[15] Arvind Thiagarajan, Lenin Ravindranath, Katrina LaCurts, Samuel Mad-
den, Hari Balakrishnan, Sivan Toledo, and Jakob Eriksson. Vtrack: ac-
curate, energy-aware road traffic delay estimation using mobile phones.
In SenSys ’09: Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems, pages 85–98, New York, NY, USA, 2009.
ACM.

[16] Yi Wang, Jialiu Lin, Murali Annavaram, Quinn A. Jacobson, Jason
Hong, Bhaskar Krishnamachari, and Norman Sadeh. A framework of
energy efficient mobile sensing for automatic user state recognition.
In MobiSys ’09: Proceedings of the 7th international conference on
Mobile systems, applications, and services, pages 179–192, New York,
NY, USA, 2009. ACM.

[17] Jamie Ward, Paul Lukowicz, Gerhard Troster, and Thad Starner. Ac-
tivity recognition of assembly tasks using body-worn microphones and
accelerometers. IEEE Trans. Pattern Anal. Mach. Intell., 28(10):1553–
1567, 2006.


