
J. PERVASIVE COMPUT. & COMM., VOL. 1 NO. 4, DECEMBER 2005. c�TROUBADOR PUBLISHING LTD) 251

Peer-based Automatic Configuration of Pervasive
Applications

MARCUS HANDTE, CHRISTIAN BECKER AND KURT ROTHERMEL
Institute of Parallel and Distributed Systems, Universität Stuttgart,

Universitätsstr. 38, 70569 Stuttgart, Germany
Email: firstname.lastname@informatik.uni-stuttgart.de

Received: October 24 2005

Abstract—Pervasive computing envisions seamless support for
user tasks through cooperating devices that are present in
an environment. Fluctuating availability of devices, induced by
mobility and failures, requires mechanisms and algorithms that
allow applications to adapt to their ever-changing execution
environments without user intervention. To ease the development
of adaptive applications, Becker et al. [3] have proposed the
peer-based component system PCOM. This system provides
fundamental mechanisms to support the automated composition
of applications at runtime. In this article, we discuss the re-
quirements on algorithms that enable automatic configuration
of pervasive applications. Furthermore, we show how finding
a configuration can be interpreted as Distributed Constraint
Satisfaction Problem. Based on this, we present an algorithm
that is capable of finding an application configuration in the
presence of strictly limited resources. To show the feasibility of
this algorithm, we present an evaluation based on simulations
and real-world measurements and we compare the results with
a simple greedy approximation.

Index Terms—Pervasive Computing, Configuration, Compo-
nents, Resources, Constraint Satisfaction

I. INTRODUCTION

Pervasive Computing utilizes devices that cooperatively
execute distributed applications in order to provide distraction-
free support for complex user tasks. In essence, pervasive
applications can be seen as compositions of functionality
provided by devices in the physical environment of their users.
The interaction between applications and users is unobtrusive
since many devices become invisible through their integration
in everyday objects. The devices encountered in such envi-
ronments are heterogeneous, ranging from resource-limited
specialized systems up to powerful general purpose computers.
Due to wireless communication, many devices can be mobile.
Hence, the available functionality is continuously fluctuating.
Both, the heterogeneity and the dynamics of the environ-

ment increase the complexity that developers, administrators,
and users face when they are building, operating, or using
applications. While it is possible to shift the responsibilities
and thus, the arising complexities, between these parties, e.g.
administration requires more fine-tuning but usage becomes
simpler, a pure shift is not enough to cope with the complex-
ities.
In response, a number of research projects are focusing on

the development of abstractions that enable the automation

of various aspects of pervasive systems. One of these aspects
is the automatic composition of applications at runtime. This
automation is a major rationale behind many pervasive in-
frastructures, e.g. GAIA [17], AURA [9], and the component
system PCOM [3]. At the present time, automated application
composition is receiving attention in other research areas as
well, e.g. the multimedia [11] and the web services community
[16].
In PCOM, the configuration of a component-based appli-

cation, i.e. the composition of components that constitute
an application is automatically determined at runtime. If the
resources required by components are limited, finding a single
configuration that meets all requirements is an NP-complete
problem.
In this article, we derive the requirements on peer-based

algorithms that enable automatic configuration of pervasive ap-
plications. Furthermore, we propose an approach towards au-
tomatic configuration of PCOM applications based on existing
work in the field of Distributed Constraint Satisfaction [22].
In contrast to the previously introduced greedy heuristic [3],
the proposed approach is complete. Despite the exponential
runtime, our evaluation suggests that a) the approach can be
applied to many real-world problems and b) even with limited
runtime it can easily outperform the greedy heuristic.
The remainder of this article is structured as follows. The

next section introduces the underlying system model and
presents the relevant concepts of PCOM. Section III describes
the configuration process and derives the requirements for its
automation. The overall approach and the interpretation of
automatic configuration as Distributed Constraint Satisfaction
Problem is motivated and detailed in Section IV. Section
V provides an overview of the resulting algorithm that is
evaluated in Section VI. Finally, Section VII describes related
work and Section VIII concludes the article.

II. SYSTEM MODEL

As presented in [3] and [4], our work focuses on peer-
based pervasive systems. In such systems, devices within
communication range connect to each other on-the-fly using
wireless communication technology, e.g. Bluetooth or WLAN.
Devices offer their functionality and cooperate with other

252 J. PERVASIVE COMPUT. & COMM., VOL. 1 NO. 4, DECEMBER 2005. c�TROUBADOR PUBLISHING LTD)

devices in the vicinity in order to execute applications. As
a result, applications are composed of functionalities provided
by different devices. Due to user mobility, the availability of
functionalities is continuously fluctuating.
In contrast to smart environments like GAIA [17], AURA

[9] and iROS [15], peer-based systems do not rely on the
presence of a centralized coordinating entity. Thus, these
systems do not require any central infrastructure that provides
basic services which has the potential to broaden their appli-
cability. As an example consider a group of persons that is
cooperatively working with PDAs on a business trip. In this
scenario, relying on a central coordinating entity, e.g. a fixed
server, might prohibit cooperation. Another benefit of peer-
based systems is the fact that due to the lack of infrastructure,
deployment and maintenance is practically free.
To spontaneously form a peer-based system, each device

needs to be equipped with local representatives of all basic
services such as device discovery or naming services. These
services must then federate themselves seamlessly which
might have a negative impact on their overall efficiency. This
drawback, however, can be greatly reduced by applying ade-
quate protocols that automatically elect coordinating entities
whenever a group of devices stays within communication
range for a longer period of time [19].

A. PCOM

To ease the development of applications for peer-based
pervasive systems, Becker et al. have proposed the light-weight
component system PCOM. In the following, we sketch the
relevant concepts of this system. A more detailed description
can be found in [3].
In PCOM, applications are trees of component instances

that are typically distributed across a set of devices. Each
component is atomic with respect to distribution, i.e. it runs
exactly on one device. Each component instance that is part
of an application provides a certain functionality to its parent
instance. To do this, each instance relies on the functionalities
provided by its children and it may additionally require
resources provided by the executing device.
To enable automatic configuration, each component instance

explicitly declares its dependencies towards other components
and resources as well as its provided functionality within a
so-called contract. In [5], Beugnard et al. identify four levels
of component contracts: syntactic, behavioral, synchronization
and QoS contracts. At the present time, PCOM component
contracts model the syntactic level, i.e. interfaces, and they
can be enriched with parameters to model QoS attributes as
well. The communication between component instances is bi-
directional. A parent instance may invoke methods on its
children and a child may emit events to its parent instance.
As a result, the syntactic requirements and provisions are
expressed in terms of offered and required interfaces and
events. All elements and attributes of PCOM contracts allow
automated matching at runtime. Thus, the system can auto-
matically determine whether a certain dependency or resource
requirement can be fulfilled by a certain offer.
A component container that is running on each device is

responsible for managing the life-cycle of its local compo-

nents. Conceptionally, the life-cylce of each instance consists
of a started and a stopped state. The container guarantees
that as long as a component instance is in the started state,
its dependencies are resolved, i.e. the container has bound a
suitable instance to each declared dependency, and all required
resources are available. As a result, the life-cycle of the
root component instance, the so-called application anchor,
defines the overall life-cycle of an application. Whenever a
component is started, the component container must resolve
all dependencies recursively according to the corresponding
contracts. Whenever the instance is stopped, the correspond-
ing component instances will be stopped recursively by the
container.
Clearly, the process of starting an application would be very

resource intensive if the container would have to instantiate
components in order to determine whether a certain tree can
be started. Therefore, each component implementation addi-
tionally provides a so-called component factory. The factory
enables the container to create contracts that match a certain
requirement without actually instanciating the component.
This way, the component container can test whether a certain
tree can be started without actually starting it.
Conceptionally, the number of instances that can be created

from a component is is only limited by the available resources.
It is important to note that these resources can be strictly
limited, e.g. to model exclusive resources like input devices
or LEDs on some smart object. Together with the fact that
different components might have overlapping resource require-
ments, this strict limitation on resources leads to the problem
that although two subtrees of an application might be startable
independently, they might not be startable simultaneously.

III. AUTOMATIC CONFIGURATION

Automatic configuration denotes the task of automatically
determining a composition of components that can be in-
stantiated simultaneously as application. Such a composition
is subject to two classes of constraints. The first class are
structural constraints. They describe what constitutes a valid
composition in terms of functionalities. The second class are
resource constraints. They are a result of the limited resources.
Structural constraints can be either specified in advance, e.g.

as an architectural model expressed in some description lan-
guage, or they can be individually associated with components,
e.g. as recursively specified dependencies contained in con-
tracts. If an architectural model is available, the configuration
must ensure the availability of a matching instance for each
modeled component. If structural constraints are specified per
component, the configuration must ensure that all recursively
required instances are available.
Resource constraints can be modeled in various ways. For

the sake of simplicity, this article relies on a simple but power-
ful model that is also used in [21]. Each instance specifies its
local resource requirements in advance as an integer vector
where each dimension denotes a specific resource and the
corresponding value denotes the required amount. The vector
might vary depending on the usage of the instance. Similarly,
the available resources on each device can be modeled as

HANDTE ET AL.: PEER-BASED CONFIGURATION OF PERVASIVE APPLICATIONS 253

a vector. Since the availability of resources can change, the
values might fluctuate at runtime. To satisfy the resource
constraints, the configuration has to ensure that at any time the
index-wise sum of all requirement vectors of local instances
is index-wise less than or equal to the vector that specifies the
locally available resources.
The complexity of automatic configuration arises from the

fact that both, resource and structural constraints must be
fulfilled simultaneously. Due to the recursive definition of
structural constraints in PCOM, it is not possible to calculate
the resource requirements of a certain subtree in advance
without determining all possible configurations of that subtree.
But even if it was possible, the strictly limited resource
availability might lead to exclusions between structurally pos-
sible configurations of arbitrary subtrees. Note that in general
finding all exclusions is as complex as finding a configuration.

A. Example

In the following, we briefly describe the process of au-
tomatic configuration based on PCOM using an exemplary
application. Figure 1 depicts an environment that consists of
three devices. Each device has a certain amount of resources.
The PDA has a single display (DSP), a certain amount of
memory (MEM) and CPU. Each device hosts some compo-
nents. The laptop hosts a component that enables a remote
system to access the file system (File System) and another one
that is capable of displaying a presentation (Remote PPT).
Each instance of this component requires CPU, memory and
access to the local presentation library (PLIB). Furthermore,
an instance of this component requires two displays.
If an instance of the application anchor (PPT Control) is

started, the container on the PDA must assign the resources
and it must resolve the dependencies (Input and Output). To
resolve the dependencies, it has to query the containers that are
currently available in the environment for components that are
capable of creating compatible provisions. Thereafter, it can
decide to use one of the possible components to satisfy the
dependency. To satisfy the resource requirements the container
must assign local resources that match the requirements of the
component. In this example, Input can be resolved using an
instance of the File System component on the laptop or on
the desktop. Output can be resolved by Remote PPT on the
laptop or Local PPT on the desktop. If the PDA uses the
Remote PPT, the laptop must assign the resources and resolve
the displays. In this environment, there are four structural
possibilities to configure the application depending on the
choice for Input and Output (see Fig. 2 and 3). Since the
Imager can only be started once due to the limitation of display
resources, there is no way of using Remote PPT component in
such a way that all constraints are met (see Fig. 3). The two
executable configurations use a File System on the desktop or
on the laptop and the Local PPT (see Fig. 2). This example
also demonstrates the interrelation of resource and structural
constraints. Choosing an instance that represents a locally valid
option can still lead to unsatisfiable requirements that can only
be discovered gradually.

PDA

CPU

MEM

DSP

Desktop

100

100

1

CPU

MEM

DSP

100

100

1

PLIB 1

FS 1

Laptop

CPU

MEM

DSP

100

100

1

PLIB 1

FS 1

PPT Control

(Anchor)

Input Output

CPU

MEM

DSP

5

10

1

CPU

MEM

DSP

5

10

1

File System

(Input)

CPU

MEM

FS

5

10

1

CPU

MEM

FS

5

10

1
File System

(Input)

CPU

MEM

FS

5

10

1

CPU

MEM

FS

5

10

1

Imager

(Display)

CPU

MEM

DSP

5

10

1

CPU

MEM

DSP

5

10

1
Remote PPT

(Output)

Local PPT

(Output)

CPU

MEM

5

10

PLIB

DSP

1

1

CPU

MEM

5

10

PLIB

DSP

1

1

CPU

MEM

PLIB

5

10

1

CPU

MEM

PLIB

5

10

1

Display Display

Fig. 1. Exemplary environment.

PPT Control

(PDA)

CPU

MEM

DSP

5

10

1

CPU

MEM

DSP

5

10

1

Local PPT

(Desktop)

CPU

MEM

5

10

PLIB

DSP

1

1

CPU

MEM

5

10

PLIB

DSP

1

1

File System

(Desk-/Laptop)

CPU

MEM

FS

5

10

1

CPU

MEM

FS

5

10

1

Fig. 2. Executable configurations.

PPT Control

(PDA)

CPU

MEM

DSP

5

10

1

CPU

MEM

DSP

5

10

1

File System

(Desk-/Laptop)

CPU

MEM

FS

5

10

1

CPU

MEM

FS

5

10

1

Remote PPT

(Laptop)

CPU

MEM

PLIB

5

10

1

CPU

MEM

PLIB

5

10

1

Imager

(Desktop)

CPU

MEM

DSP

5

10

1

CPU

MEM

DSP

5

10

1

Imager

(Desktop)

CPU

MEM

DSP

5

10

1

CPU

MEM

DSP

5

10

1

Unsatisfiable resource requirement

Fig. 3. Not executable configurations.

B. Requirements

The requirements towards peer-based automatic configura-
tion can be derived directly from the presented system model
and the overall vision of Pervasive Computing with respect to
the distraction-free support of user tasks:

� Completeness: If a valid configuration exists automatic
configuration should be able to determine one. Also, it
should be capable of detecting that a certain application
is currently not executable at all. Otherwise, users might
eventually become frustrated. However, since the problem
of finding a single configuration is NP-complete, achiev-
ing completeness for arbitrary problem instances is not
practicable. Thus, in practice we can only demand that
automatic configuration is capable of finding solutions
in a broad range of different environments. As we will
discuss in the evaluation section, a complete approach
whose runtime is limited is often preferable over a
heuristic that ”arbitrarily” ignores a number of possible
solutions.

� Efficiency: As the configuration delay of complete solu-
tions for automatic configuration will increase exponen-
tially with the size of the problem, efficiency becomes a
major requirement. Since long configuration delays might
lead to frustrated users, automatic configuration should
include as many optimizations as possible to enable
speed-ups without overloading resources or sacrificing
completeness.

254 J. PERVASIVE COMPUT. & COMM., VOL. 1 NO. 4, DECEMBER 2005. c�TROUBADOR PUBLISHING LTD)

� Optimism: Ideally, an algorithm for automatic configura-
tion should be fast in resource-poor as well as resource-
rich environments. Typically there is a trade-off between
optimizing worst- and best-case scenarios. Since users
would expect to achieve speedups by adding resources,
optimizations of the worst-case delays at the cost of
higher execution times in resource-rich environments are
not desirable. Therefore, automatic configuration should
be optimistic.

� Distribution: In peer-based systems the availability of a
powerful and reliable device cannot be guaranteed. As a
result, the scalability of a centralized approach will be
limited in environments that consist of a large number
of resource-poor devices. In order to utilize the inherent
parallelism and the resources of such environments, au-
tomatic configuration should be performed cooperatively
by the available devices.

� Resilience: The mobility of users and devices in pervasive
systems leads to continuous and possibly unpredictable
fluctuations regarding the availability of functionalities.
As a result, applications in such systems have to cope
with the resulting dynamics at runtime. Since an algo-
rithm for automatic configuration might be running a
couple of seconds, the algorithm itself should be capable
of dealing with fluctuations that can be detected during
its execution.

IV. APPROACH

In general, finding a single executable configuration in
the presence of strictly limited resources is an NP-complete
problem. This can be shown, for instance by interpreting a
conjunctive normal form that is known to be NP-complete for
more than three literals [6] as components with specifically
constructed resource constraints. As a result, approaches for
automatic configuration can apply NP-complete formalisms.
As we will show in the following, automatic configuration

can be mapped to a Constraint Satisfaction Problem. Infor-
mally, Constraint Satisfaction Problems can be described as
follows: Given a set of variables with finite domains and
a set of constraints between variables, find a valid variable
assignment such that all constraints between the variables are
met.
Due to the specifics of the peer-based system model, cen-

tralized approaches towards solving Constraint Satisfaction
Problems cannot fulfill the requirement regarding distribu-
tion. The foundations for distributed algorithms have been
developed in the field of Distributed Artificial Intelligence.
In this field, the notion of Distributed Constraint Satisfaction
Problems has been formalized [22]. There, the set of variables
and constraints is distributed across a number of agents. Each
agent is responsible for assigning its variables and evaluating
its constraints. An overview and a classification of distributed
algorithms for solving such problems can be found in [23].
From this set of algorithms, we show how Asynchronous

Backtracking [22] can be extended to fulfill all requirements
towards peer-based automatic configuration. Asynchronous
Backtracking is a sound and complete dependency-directed

backtracking algorithm. It enables agents to concurrently as-
sign values to their variables and thus has the potential to
use the available parallelism. As we will show later on, it is
possible to construct a mapping that enables the algorithm to
start processing without any further distribution of knowledge.
In the best case, it simply assigns all variables the right value
and terminates. In contrast to consistency algorithms that first
try to eliminate some illegal options before they assign values
to variables, this algorithm fulfils the requirement towards
optimism. Apart from that, the dependency-direction of the
algorithm reduces the search within irrelevant possibilities
(thrashing) by only considering options during backtracking
that have the potential to resolve the conflict. This has the
potential to greatly increase the efficiency of automatic con-
figuration in many environments. Finally, as we will discuss
later on, an extension to achieve resilience can be added in a
straight-forward manor.

A. Configuration as Constraint Satisfaction

To use existing techniques for solving Constraint Satsi-
faction Problems as basis for automatic configuration, the
functionalities present in an environment as well as structural
and resource constraints must be represented as variables,
domains and constraints between variables. To model PCOM
applications, we map dependencies to variables, components
used to satisfy a certain dependency to their domains, and the
application structure with resource requirements to constraints.
To model structural constraints, each component instance

is represented as a multi-dimensional variable where each
dimension denotes one of its dependency. The domain of
each dimension is given by the available options for the
corresponding dependency. For the PPT Control (see Fig. 1)
that has two dependencies Input and Output, we create a two
dimensional variable. If there are two possibilities to satisfy
the dependency Output (Remote PPT and Local PPT) and
one for the dependency Input (File System), the domain of
the variable will be ��� ��� ���. Note that the domain solely
contains direct possibilities. Due to the recursive nature of
dependencies, there might be many possibilities to configure
each of the assignments, e.g. if there were multiple Imagers,
there would be multiple ways to configure a Remote PPT.
A fundamental difference between constraint satisfaction

and automatic configuration is the fact that constraint satis-
faction determines an assignment for all variables. Automatic
configuration only needs to determine a partial solution that
satisfies the constraints, i.e. if an instance is not used within
the configuration, the dependencies of this instance must not
be resolved. To model this, the domain of each dimension is
extended with the pseudo value ��. Thus, the domain for the
previous example would be ���� �� ��� ���� ��. One can think
of the dependencies whose component has not been discovered
and used as set to ��. This effectively transforms the search
for a partial solution in a search for a complete solution.
Now that the variables and domains are defined, the map-

ping must ensure that only structurally valid configurations
are generated. This can be achieved by two constraints. Both
can be motivated by looking at the Output dependency of

HANDTE ET AL.: PEER-BASED CONFIGURATION OF PERVASIVE APPLICATIONS 255

the previously introduced example. There are two possible
instances (Remote PPT and Local PPT) that can be selected
to fulfill this dependency. Since the configuration requires
only one at a time, we can add the constraints that Remote
PPT needs to be considered iff its parent instance assigns
values that contain � in the first dimension. Similarly, Local
PPT needs to be considered iff � is assigned to the first
dimension of the variable (see Equation 1). Furthermore,
another constraint is required that ensures that the pseudo
value is used iff the component instance is not used by its
parent (see Equation 2). Apart from these recursively defined
constraints, one additional constraint must be used to ensure
that the anchor is always instantiated. Otherwise, the trivial
configuration that contains only a non-instantiated anchor also
fulfils all structural requirements (see Equation 3). Finally, the
configuration must consider the resource constraints on each
container. Thus, we add a constraint to ensure that the resource
consumption of all instances that are executed on the container
must not exceed its available resources (see Equation 4).
More formally, we can model these constraints using the

following definitions and equations. Let ������ �� be defined
as the current assignment for the variable dimension � of
component instance �. Each non-anchor instance � with �

dependencies that is referenced by dependency � under the
value assignment � of its parent instance � is subject to:

If ������ �� � � � �� � ��� � � � ��� ������ �� �� �� (1)

If ������ �� �� � � �� � ��� � � � ��� ������ �� � �� (2)

Each anchor instance � with � dependencies is subject to:

�� � ��� � � � ��� � ������ �� �� �� (3)

Each container that has the resources 	�� � � � � 	� and hosts the
instances ��� � � � � �� that require the resources 	����� � � � � 	����
is subject to:

�
� �

� � �

	�

�
� �

��
���

�
� ����

� � �

	����

�
� (4)

B. Asynchronous Backtracking

Before we discuss further considerations that are specific
for Asynchronous Backtracking, we will briefly outline the
basic algorithm. For the sake of brevity, we will only provide
the general idea. A detailed description including pseudo code
and examples can be found in [22].
The basic version of Asynchronous Backtracking assumes

that each agent is responsible for exactly one variable of
the CSP. Furthermore, in order to guarantee termination, it
requires a total priority ordering between variables. Each pair
of variables that shares an initial contraint is connected via
a directed link from the agent with the higher priority to the
agent with the lower priority. The agents with higher priority
variables send their current assignment to linked agents with
lower priority variables. The lower priority agents, in turn,
evaluate the constraints that they share with higher priority
agents. Whenever an agent receives an assignment it choses
its own value in such a way that it does not conflict with its

constraints and then it sends its own assignment to all linked
agents.
If an agent detects that it cannot assign a value to its variable

in such a way that does not conflict with a constraint, it
creates a new constraint. This constraint contains the set of
assignments from higher priority agents that cause the conflict.
The agents picks the assignment with the lowest priority and
sends the conflict to the agent that created this assignment. If
this agent receives the conflict it checks whether the conflict is
still valid (by checking whether the assignments contained in
the new constraint correspond to its own personal knowledge
of assignments in CSP). If it is not valid (if it knows that
some agent contained in the constraint has already changed its
assignment to a different value) it simply ignores the constraint
and sends its current assignment to its linked agents. If it is
valid, it establishes new links from all agents to itself that
participate in the constraint and that have not been linked so
far. Then it records the constraint as new constraint and it tries
to assign a new value to its variable that adheres to all locally
known constraints.
Note that since the agent that detects a new constraint will

send this constraint to the agent with the lowest priority, new
links will always be created from higher priority agents to
lower priority agents. This, together with the fact that the inital
links also pointed from higher priority agents to lower priority
agents, ensures that there will be no cycles.
The algorithm starts in parallel by letting each agent assign

some value to its variable in such a way that it does not
conflict with its known constraints. The algorithm terminates
unsuccessfully when some agent cannot assign a valid value
to its variable and there are no more higher priority agents that
could change their assignments in order to resolve the conflict.
If a valid assignment is found, the algorithm will simply stop
creating new messages.

C. Extensions for Asynchronous Backtracking

To guarantee termination, Asynchronous Backtracking re-
quires a total priority ordering between variables to create
a cycle-free constraint network. Note that this ordering also
defines the strategy for resolving conflicts during backtracking.
A partial ordering is introduced by the structural constraints of
applications, i.e. each child instance must have a lower priority
than its parent. The remaining degree of freedom can be filled
by some arbitrary ordering scheme. However, in order to be
usable, Asynchronous Backtracking must be able to create the
scheme gradually. Otherwise the search space would have to
be unfolded upfront which conflicts with the requirement of
optimism.
To demonstrate this, consider the search space shown in Fig.

4(a) that consists of components A-F, with the dependencies 1-
4, and containers C1 and C2 where A, B, E reside on container
C1 and C, D, F reside on container C2. The dashed lines
indicate resource constraints and the solid lines indicate struc-
tural constraints. Note that the structural exclusion constraint
between C and D is implicit since A will only assign one value
at a time for its dependency 2. Also note that the dependencies
and the corresponding component instances can be thought of
as variables and domains of the CSP.

256 J. PERVASIVE COMPUT. & COMM., VOL. 1 NO. 4, DECEMBER 2005. c�TROUBADOR PUBLISHING LTD)

A

1 2

C

3 4

B D

E F

C1 C2

(a) Environment

1

1 2

1

1 2

1 2

1 1

C1 C2

(b) Numbering

Fig. 4. Numbering Scheme.

Since A is the only component that is known a priori and the
others must be discoverable in parallel, we can only introduce
a local ordering as shown in Fig. 4(b) by assigning locally
unique ids to dependencies and their possible options. From
these local ids, we can create a global id by concatenating the
ids along the path (e.g. �� �� �� ��� for E or �� �� � for D). On
these ids, we can now define comparison operators to establish
a total ordering. In order to adhere to the partial ordering
introduced by the structural constraints, we must ensure that
all ids that are totally included as a prefix in another id have
higher priority, e.g. �� �� �� �� �
 �� �� �. Apart from that we
can for instance either decide that the length of an identifier
is first compared and the longer the identifier, the lower the
priority and for identifiers with equal length, we use their
values for comparison. Another possible option would be to
compare the values first before comparing the length.
That way an ordering can be established that would lead

to a backtracking strategy where lower levels would be re-
configured before higher levels are. Alternatively one could
define an ordering where backtracking would take place in
one subtree before it moves to the conflicting component of
another subtree.
Figure 5 shows such orderings. Note that in order for this

ordering to work, every component needs to know its place
within the tree, i.e., the concatenated id. Thus upon its first
usage, each component needs to be supplied with the identifier
that its parent assigns for it. The parent can easily create this
id locally by concatenating its local id with a unique id for
the dependency and the value of that dimension under which
the specific child component is selected.
For our implementation we have chosen the strategy that

reconfigures components on lower levels first. The idea is
that lower level components have less recursively required
instances that must be notified if their parent changes and
thus, reduces the communication overhead. However, this is
a heuristic and there are cases where this leads to higher
overhead.

Backtracking Direction

exclusion exclusion

Fig. 5. Traversal Strategies.

As stated in Section III-B, automatic configuration must
be capable of dealing with fluctuations that occur during
its execution. Such fluctuations might be the result of the
unavailability of local resources or remote devices. In perva-
sive systems, these fluctuations are typically hard to predict.
Consider for instance a user that removes a USB device from
a laptop or a traveling user that carries a number of devices.
Fortunately, failure-handling for both types of fluctuations can
be added in a relatively straight-forward way. Whenever the
unavailability of a device is detected, the algorithm on every
remaining device simply removes all assignments that have
been created by this device and creates an additional constraint
for every instance that has been used on the unavailable
device. These new constraints state that these instances can
never be used. Since Asynchronous Backtracking does not
impose any timing constraints on the reception of constraints,
they can be added without further precautions. Similarly, if
a required resource becomes unavailable, the corresponding
constraints must be added. The new constraints will eventually
lead to a reconfiguration or an unsuccessful termination of the
algorithm.
Asynchronous Backtracking terminates unsuccessfully if an

empty constraint set is generated during the execution, i.e. if
there is no further choice that can be reconsidered in order
to resolve an unsatisfied constraint. Due to the tree structure
of our application model, such an empty set can only be
generated by the anchor. All other component instances can
always ask their parents to reconfigure themselves in such a
way that they are no longer used. Thus, an unsuccessful run
will be recognized by the anchor. The successful termination
of the algorithm is achieved if all participating devices stopped
generating new messages and all messages have been delivered
and processed. Therefore, detecting the successful termination
is an instance of a Distributed Termination Problem.
As the termination protocol must be resilient to mobility, a

simple protocol as described in [8] is not enough. To solve this
problem, our current implementation uses a sligthly extended
version of the credit-based termination protocol described
in [13]. To deal with lost credits, we stop and restart the
configuration process whenever a device is no longer available.
However, as we do not want to lose the (possibly expensive)
intermediate results that have been computed by the Asyn-
chronous Backtracking algorithm so far, we only unset the
current assignments of all components and we do not remove
the constraints between them that have been discovered so far.

HANDTE ET AL.: PEER-BASED CONFIGURATION OF PERVASIVE APPLICATIONS 257

To reset the configuration process, the termination protocol
attaches an epoch value to all messages that is incremented
whenever a device is removed. The configuration algorithm
then ensures that only those messages with the current epoch
value are processed.
Clearly, due to the unpredictable nature of pervasive sys-

tems, no termination protocol can guarantee that a successful
termination of the algorithm will allow a successful application
start up. If a resource becomes unavailable at exactly the same
instant of time when the successful termination is detected,
there is nothing that can be done. At the present time, the
only approach that we can propose is to start the configuration
process all over again if such a situation occurs. Another
possibility is to start the partial configuration and determine
possible adaptations. This, however, is subject of our current
research and a discussion lies beyond the scope of this article.

V. ALGORITHM

In the following, we provide an overview of the resulting
algorithm and we describe some interesting details of our
implementation. For the sake of clarity, we begin with a
simplified description that omits the distributed termination
protocol and our extensions to achieve resilience as these
aspects are orthogonal to the basic algorithm. Thereafter, we
provide an example to clarify the overall process. Finally, we
outline our current approach used to detect termination and
our extensions for resilience.

A. Simplified Description

In this article, the algorithm is modeled as a reactive process
that responds to incoming messages (receive * procedures)
and the pseudo code of this simplified version (see Fig. 6,
7) does not consider different applications. It should be clear
that multiple applications can be supported by transfering an
additional identifier as part of each message that is used to
map the message to a certain application. Also, the code
does not contain all optimizations, e.g. only sending messages
to containers that require it. The layout borrows from the
description of Asynchronous Backtracking [22]. Note that we
need to extend the algorithm with the capability of hosting
multiple instances and the resource validation procedure (see
Fig. 7). Furthermore, in order to support the dynamic discovery
of components, we add a method that performs discovery and
initializes the variables on demand.
As in the original version of Asynchronous Backtracking,

the algorithm uses 3 message types namely update messages,
backtrack messages and link messages. Update messages send
the value assignment of a parent component to a child com-
ponent or to another component with a lower priority that has
created a link in response to a conflict. Backtrack messages
report a conflict from a component with a lower priority to the
component with the lowest priority in the conflict set. Finally,
link messages inform some component that it must send future
value assignments to the component that requested the link.
The receive method for the link message is not shown in Fig.
6 as it solely adds the link information to the corresponding
component.

receive_update(identifier, component, value)

// config denotes the local knowledge about an instance

config = getConfig(identifier)

// this happens if the instance is selected for the first time

if (! config exists)

// here the variables and their domains are determined

config = createConfig(identifier,component)

// this adds the variable assignment to the local knowledge

config.add(value)

// finally, all consistency checks are performed

check_constraints(config)

receive_backtrack(identifier, conflicts)

// determine whether the conflicts are still conflicting

if (! conflicts outdated)

// retrieve the addressed conflict

config = getConfig(identifier)

// add the conflicts as a new constraint

config.addConstraint(conflicts)

for each id in conflicts

if (! connected id)

// create links to keep informed about changed values

create link between parent of id and config

// add the value of the conflict to the local knowledge

config.add(identifier)

// temporarily copy the currently selected components

copy = config.getAssignment()

// perform the consistency checks

check_constraints(config)

if (copy == config.getAssignment())

// if the values have been consistent also send updates

send_update(identifier, copy) across links

check_constraints(config)

// if there are unmatched constraints

if (! config.isConsistent())

// determine whether a valid assignment can be found

if (! config.assignConsistent())

// if not, start or continue backtracking

backtrack(config)

else if (reserve_resources(config))

// else determine whether local resource constraints are met

assignment = config.getAssignment()

// if they are met, send the updated assignment

send_update(identifier, assignment) across links

backtrack(config)

if (config.isAnchor())

terminate unsuccessfully

else

// determine conflicting instances sets

conflict_sets = minimum conflict sets

for each conflicts in conflict_sets

// send a backtrack message to the lowest instance

id = minimum identifier in conflicts

// this message could be remote or local

send_backtrack(id, conflicts)

// remove the conflicting assignment

config.remove(id)

check_constraints(config)

Fig. 6. Basic message handling (without termination detection).

For each component that has been used during the configu-
ration process, the container maintains a configuration object
that represents the local knowledge about this component.
This object stores the value assignments that have been
received from other components through update messages.
Furthermore, it stores the conflicts that have been received
through backtrack messages. Finally, it stores and manages
the variables of the component. This includes the information
about links that have been created dynamically during the
execution of the algorithm. As discussed in Section IV-A,
the variables represent the dependencies of the component.

258 J. PERVASIVE COMPUT. & COMM., VOL. 1 NO. 4, DECEMBER 2005. c�TROUBADOR PUBLISHING LTD)

reserve_resources(config)

// if the instance is selected by its parent

if (config.isInstantiated())

// and the resources are not reserved

if (! config.isReserved())

// try to reserve the required resources

if (reserve resources for config)

config.setReserved(true)

// if the reservation succeeds, continue

return true

else

// if the reservation fails determine conflict sets

conflict_sets = minimum conflict sets

// a flag that indicates whether the conflict has been r esolved

reservable = true

for each conflicts in conflict_sets

// pick the instance with the lowest identifier

id = minimum identifier in conflicts

// backtrack to the parent of the lowest instance

send backtrack to parent of id with conflicts

// deactivate the instance that caused backtracking

c = getConfig(id)

c.remove(id)

check_constraints(c)

// determine whether the current instance is a conflic t cause

if (config.getIdentifier() == id)

// if it is, it will be uninstanciated after the backtracking

reservable = false

if (reservable)

// the cause of all conflicts has been removed

reserve resources for config

config.setReserved(true)

return true

else

// the instance has already been deactivated

return false

else

// if the instance is not used by the parent

if (config.isReserved())

// remove the resource reservation

remove reservation for config

config.setReserved(false)

return true

Fig. 7. Resource reservation and conflict detection.

Their corresponding dimensions are determined at runtime by
querying the containers of the environment for components
that can be used to satisfy the dependency.
Clearly, in an actual implementation the configuration object

also has to store information about the devices that host the
components and factories that provide them. Furthermore,
the update messages that are used to initalize a variable
must contain additional information, i.e. the contract of the
component and the device that uses the component. Similarly,
the backtracking messages must contain the device identifiers
of the variable assignments contained in the conflict set as the
device that receives the message might not know on which
device the corresponding variable resides.
Since each container can host multiple component instances,

the algorithm must be capable of uniquely identifying them.
To globally identify an instance and its position within the ap-
plication, our implementation uses the generated ID discussed
in Section IV-C. The application anchor has the ID ��, the first
instance for the first dependency of the anchor is identified by
��������. The second instance for this dependency is identified
by ��������. Thus, IDs are arbitrarily long sequences of pairs,
where the first index of a pair denotes the dependency and
the second index denotes the instance used to satisfy this
dependency.
Whenever a container receives an update message, it must

first retrieve the corresponding configuration object. There-
after, it performs basically the same steps as in the origi-
nal version of Asynchronous Backtracking. However, as the
configuration process must take care of structural as well as
resource constraints, the container must ensure that apart from
the built-in structural constraints (see Equation 1, 2, and 3 in
Section IV-A) all resource constraints are met (see Equation 4
in Section IV-A). To do this, it uses the resource reservation
procedure shown in Fig. 7. This procedure reserves or releases
the local resources that are required for a certain component
depending on the value assignment of its parent. If the parent
of the component assigns a different value than the value that
corresponds to the component, the component is not selected
and thus, its resources must be released. Otherwise, i.e. if the
componet is selected by its parent, the corresponding resources
must be reserved. If the resource reservation fails, the container
must create and issue a corresponding backtracking message
that contains the conflicting set of components.
The steps that need to be taken whenever a backtrack mes-

sage is received are identical to Asynchronous Backtracking
(see Section IV-B). If at some point a backtrack message
would contain an empty conflict set, the algorithm would
simply terminate unsuccessfully. Note that due to the tree-
structure of PCOM applications this can only happen at the
application anchor as other components can always add the
value assignment of their parent under which they are selected
to the conflict set.
Since this algorithm is essentially an instance of Asyn-

chronous Backtracking, the proof of correctness follows the
argumentation provided in [22]. The algorithm will not stop
sending messages until a valid configuration has been found
or an empty conflict set has been created. Due to the total
ordering of variables and the invariant that the dynamically
created links will not introduce cycles, the algorithm will
terminate eventually.

B. Examplary Configuration

To describe the configuration process performed by the
algorithm in a more dynamic manner, we will use the pre-
sentation application example introduced earlier (see Fig. 8).
When the user starts the application, the container calls the
receive update procedure with the ID ��, an identifier that
locally identifies the PPT Control component and the value
��. This signals that an anchor should be started (a). Since
this is the first time that the configuration algorithm sees
an update for ��, it creates a configuration object for this
instance. Using the contract of the instance, it determines
that PPT Control has two dependencies, thus it creates a
two-dimensional variable ������,������. To determine the
domain of the variable, i.e. possible options to satisfy the
dependencies, the container performs local and remote lookups
(b). Thereby, the algorithm discovers the following options:
File System (desktop) ��������, File System (laptop) ��������,
Remote PPT (laptop) �������� and Local PPT (desktop)
��������. Thus, the domain is ���� �� ��,���� �� ��. For the new
variable, the initial assignment is ����,����.
The algorithm continues to add the value �� to the local

knowledge which states that the instance bound to the configu-

HANDTE ET AL.: PEER-BASED CONFIGURATION OF PERVASIVE APPLICATIONS 259

Remote PPT

Laptop: {(1)[0]}

Imager

Desktop: {(1)0[0]}

PPT Control

PDA: {}

Local PPT

Desktop: {(1)[1]}

File System

Desktop: {(0)[0]}

File System

Laptop: {(0)[1]}

PPT Control

PDA: {}

update

({}, PPT Control, {})

Variable: [-1] [-1]

Domain: ?

Reserved: false

Local/remote lookup

PPT Control

PDA: {}

Variable: [0] [0]

Domain: [-1, 0, 1] [-1, 0, 1]

Reserved: true

update

({(0)[0]}, File System, {(0)[0]})
update

({(1)[0]}, Remote PPT, {(1)[0]})

Remote PPT

Laptop: {(1)[0]}

Local PPT

Desktop: {(1)[1]}

File System

Desktop: {(0)[0]}

File System

Laptop: {(0)[1]}

PPT Control

PDA: {}

Variable: [0] [0]

Domain: [-1, 0, 1] [-1, 0, 1]

Reserved: true

Variable: -

Domain: -

Reserved: true

Variable: [-1] [-1]

Domain: ?

Reserved: false

Remote PPT

Laptop: {(1)[0]}

Local PPT

Desktop: {(1)[1]}

File System

Desktop: {(0)[0]}

File System

Laptop: {(0)[1]}

Variable: -

Domain: -

Reserved: true

Variable: [0] [0]

Domain: [-1, 0] [-1, 0]

Reserved: true

Local/remote lookup

Imager

Desktop: {(1)0[1]}

Variable: -

Domain: -

Reserved: true

Variable: -

Domain: -

Reserved: false

backtrack

({(1)[0]}, {(1)0[0]} & {(1)[0](1)[0]})

(a) (b)

(c)

(d)

(e)

backtrack

({}, {(1)[0]})

Remote PPT

Laptop: {(1)[0]}

Variable: [-1] [-1]

Domain: [-1, 0] [-1, 0]

Constraints: Not [0][0]

Reserved: false

update

({(1)0[0]}, Imager, {(1)0[-1]})

update

({(1)[0](1)[0]}, Imager, {(1)[0](1)[-1]})

(f)

PPT Control

PDA: {}

Variable: [0] [1]

Domain: [-1, 0, 1] [-1, 0, 1]

Constraints: Not [][0]

Reserved: true

update

({(1)[1]}, Local PPT, {(1)[1]})

PPT Control

PDA: {}

File System

Desktop: {(0)[0]}

Local PPT

Desktop: {(1)[1]}

start

startstart

(g) (h)

Fig. 8. Configuration Process.

ration object is instantiated. Thereafter, the algorithm calls the
check constraints procedure and determines that the current
assignment ����,���� is not valid, since the instance is used
according to the local knowledge. Note that this is a result of
the built-in constraints presented in Section IV-A. Next, the
algorithm determines a valid assignment ���,��� and reserves
the resources using the reserve resources procedure. The reser-
vation finishes successfully and the algorithm continues to
send parallel update messages to the File System �������� and
the Remote PPT �������� (c).

When the update message for the File System arrives, the
algorithm creates the configuration object, adds the value to

the local knowledge, performs the resource reservation, and
stops without sending further messages (d). In response to
the update for the Remote PPT, the algorithm sends two
updates to the Imager (�������������� and ��������������). The
first update message creates a new configuration object and
finishes successfully. The second update fails due to a lack of
resources. Thus, the reserve resources procedure determines
that the minimum conflicting sets consist of exactly one set
of component instances that contains both instances of the
Imager component (e).
Note that although the File System is also running on the

desktop, its identifier will not be added to the conflict set since
it has nothing to do with the shortage on displays. Furthermore,
the algorithm does not need to add the complete path to the
anchor to the constraint as it can be gradually generated when-
ever a conflict is escalated. Following the traversal strategy,
�������������� is picked as the smallest identifier and a back-
track message is sent to is parent. Additionally, the instance is
deactivated and all potentially reserved resources and required
instances are released by calling check constraints.
When the backtracking message arrives at the Remote PPT,

the component will determine whether it has to create any
new links. Since both identifiers contained in the conflict set
are local variables, no new link must be created. Therefore,
the algorithm continues to add a mutual exclusion constraint
between �������������� and �������������� to the local knowl-
edge. In cases where added conflicts are not conflicts between
linked instances, the addition of new links between the as-
signing instance and the instance that recorded the constraint
are necessary to ensure that the constraint evaluation always
considers all relevant variable assignments of the present
situation.
Since the Remote PPT cannot create a valid assignment, it

creates a backtracking message that contains its own identifier
and sends it to its parent. Thereafter, the Remote PPT is
deactivated and its constraints are checked again. Thereby, the
algorithm releases all resources, assigns ����,���� and creates
updates that will eventually release previously bound instances
(f). When the PPT Control receives the backtracking message,
it adds the constraint that the Remote PPT can never be started
and assigns another value for the Output dependency. It selects
the Local PPT �������� and it creates an update (g). When
the update arrives, the Local PPT will be reserved and the
algorithm stops.
When the algorithm succeeds, the application must still

be started. Therefore, an asynchronous traversal of the tree-
structure starting from the application anchor is sufficient. This
will not result in conflicts, since each configuration object has
already reserved the resources for the chosen bindings (h).
After the application has been started, all configuration objects
that have been created can be removed.

C. Termination and Resilience

To detect the fact that the configuration process has finished
successfully, a distributed termination detection protocol is
required. Such a protocol can be added by wrapping the
receive * procedures and the send statements. The necessary

260 J. PERVASIVE COMPUT. & COMM., VOL. 1 NO. 4, DECEMBER 2005. c�TROUBADOR PUBLISHING LTD)

steps that need to be performed depend on the chosen protocol
(see [8], [12], or [13] for details).

For our current implementation, we are using an extended
version of the credit-based protocol described in [13]. As this
protocol is not resilient by itself, we restart the termination
detection process whenever a device becomes unavailable. To
do this, we identify the current termination detection phase by
an epoch counter that is monotonically increased upon failures.

At the beginning of the configuration process the device that
hosts the application anchor determines the set of available
devices and sets its current epoch to zero. Thereafter, it sends
the set of devices and the epoch to all devices contained in
the set. Whenever a container sends a message, it piggybacks
a credit and its current epoch. If a container receives and
processes a message, it uses the received credit to derive
new credits for messages that are generated by processing
the original message. If a container determines that it has
terminated locally, i.e. if it has processed all messages, it sends
the remaining credits to the container that hosts the anchor.
If the anchor detects that it has received all credits for the
current epoch, the whole configuration process has terminated
successfully.

Whenever a device becomes unavailable during the process,
some container will detect this, for instance by receiving an
exception when it tries to transfer some message. At that point,
the container sends a message to the container of the anchor.
This message contains the device that is no longer available.
Upon receiving this message, the anchor container determines
whether the removed device is part of the set of devices. If it
is part, it removes the device and increases the epoch counter
and transfers a message to all remaining devices that contains
the new epoch and the device has been removed. If the device
is not part of the set of devices, it has been removed already
and thus, the message can be ignored.

When the other containers receive the removal message,
they drop all messages that are not part of the contained
epoch and add additional constraints. If a component has
some dependency that can be fulfilled by a component that
is hosted by the removed device, they add a contraint that
contains solely the identifier of this component. Thereafter,
they remove all links that point to the removed device and
set all variable assignments to ��. Thereby, they release all
resource reservations and remove all assignments that they
have received so far. This will bring the containers into a
consistent state. This state is identical to the initial state with
the exception that the constraints that have been discovered so
far will not be lost.

After all containers have adjusted their states the anchor
starts the configuraton process again by recomputing its as-
signments and sending the assignments to all linked containers.
Thereby, the anchor will add credits to the messages that have
been created from a new inital credit and it will add the new,
increased epoch. All agents will keep dropping all messages
that they receive from other agents that contain an epoch with
a lower value than their own.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Conflicting Components (k)

#
P

o
s
s
ib

il
it

ie
s

n = 8 Components

n = 12 Components

n = 17 Components

Fig. 9. Average number of structural possibilities.

VI. EVALUATION

As discussed in Section IV, Asynchronous Backtracking
fulfills the requirements regarding completeness, optimism and
distribution. Furthermore, it can be extended to fulfill the
requirements with respect to resilience. In this section, we
discuss efficiency as the last remaining requirement. To do
this, we first discuss parameters that have an impact on the
configuration delay. Thereafter, we describe the setup for our
experiments and we present and discuss the results of a number
of simulations and real-world measurements.

A. Discussion

Asynchronous Backtracking resolves unrelated conflicts si-
multaneously and it reconsiders only those instances that have
the potential to resolve a conflict. Thus, the configuration
complexity depends on the induced width, i.e. the size of
sub problems that can be solved independently, and not the
total width of the search space [2]. The induced width of
automatic configuration depends on the number of structurally
valid configurations and the locality of resource conflicts, i.e.
the number of instances that have conflicting requirements
towards the same resources.
In many pervasive systems, resource conflicts can be as-

sumed to be relatively local. To justify this, consider that
the worst-case runtime occurs, if many instances are executed
on one device and a widely used resource (e.g. memory or
CPU) is not available. However, the integration of devices into
everyday objects leads to environments where the majority of
devices are specialized embedded systems. Just like everyday
objects, they will be tailored towards a small number of
specific functionalities, which will increase the locality.
The number of structurally valid configurations depends on

the number of available components that can be used within
the application and thus, it heavily depends on the capabilities
of the environment.

B. Experimental Setup

To analyze the effects of different degrees of conflict locality
and various application and environment sizes, we constructed
sample environments using the following procedure:
We create an application that consists of n instances by

adding n components to a binary tree from left to right, top to
bottom. Then we create one container and place the anchor on

HANDTE ET AL.: PEER-BASED CONFIGURATION OF PERVASIVE APPLICATIONS 261

it. For the remaining (n-1) components we create m containers
and place them on the containers round-robin. Thereby, we set
the resource requirements of each component to one unit of
one resource that is used by all components on the container.
Furthermore, we set the available amount of the resource to
the number of components that are hosted on this container.
Then we randomly pick k components and replicate them on
randomly selected containers. Hereby, we set their resource
requirements for the commonly used resource on that container
to two without increasing the resources on this container.
As a result, increasing k will lead to a higher potential for

conflicting selections during automatic configuration and de-
creasing the number of containers m will decrease the locality
of the resulting conflicts. Note that there will always be exactly
one configuration that can be started which consists solely of
instances provided by the initially placed components.
Figure 9 shows the average number of structural possi-

bilities that result from 100 randomly created scenarios for
applications with n = 8, 12, and 17 components and k =
0 to 20 duplicated components. The exponential growth in
the number of structural possibilities can be attributed to the
way conflicting components are introduced, i.e. by replicating
existing components. If a component is duplicated and added,
it can use all existing combinations of child components that
the existing copies were already able to use.

C. Simulations

To analyze the effects of an increasing number of possi-
bilities we ran a number of simulations with a discrete event
simulator. Within one time step, the simulator processes all
messages that have been sent and creates all new messages
before it moves on to the next time step.
Figures 10, 11 and 12 depict simulation results in cases

where the locality of conflicts is high, i.e. m = (n-1) / 2, for
different application sizes (n = 8, 12, 17) and a different num-
ber of conflicting components (k = 0 to 20). Each measurement
shows the average, respectively the maximum, of 100 runs.
The simulations show that the number of messages required

to determine configurations grows exponentially (see Figs.
10 and 11). For k � 17 the maximum number of messages
exceeds 400. This is a result of the exponential increase of
structural possibilities. Note that the number of messages
does not necessarily lead to a high configuration delay as the
solution is found in less than 90 time steps (see Fig. 12).
In a real system, the exact amount of messages as well as
the overall configuration delay might vary depending on the
message delay. For instance, if a device requires a long time to
detect or propagate a local conflict, the number of messages
as well as the required duration might increase or decrease
depending on the scenario.
One might argue that the worst-case message overhead

prohibits the application of the algorithm. Therefore, we
have compared the achievable completeness if the number
of messages is limited to 100, 200, 300 and 400 with the
completeness that can be gained from a greedy heuristic
that selects sub trees recursively without ever reconsidering
a choice as proposed in [3]. Figures 13 and 14 show the

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Conflicting Components (k)

#
M

e
s
s
a
g

e
s

n = 8 Components

n = 12 Components

n = 17 Components

Fig. 10. Average number of messages with high locality (m = (n-1) / 2).

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Conflicting Components (k)

#
M

e
s
s
a
g

e
s

n = 8 Components

n = 12 Components

n = 17 Components

Fig. 11. Maximum number of messages with high locality (m = (n-1) / 2).

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Conflicting Components (k)

T
im

e
S

te
p

s

n = 8 Components

n = 12 Components

n = 17 Components

Fig. 12. Maximum duration with high locality (m = (n-1) / 2).

success rates for an application with 12 instances. In average,
the heuristic produced 23-100 messages, but for k = 15, it can
only find the configuration in 8 cases whereas backtracking
finds 59 with 100 and all with 400 messages. Thus, even if
the complete algorithm would have been manually aborted,
the success rate would have been higher.
If we construct a scenario where there is no valid con-

figuration by increasing the resource requirements of one
initially placed component by one, the number of transferred
messages increases by approximately a factor of two. This can
be attributed to the min-conflict value ordering heuristic that is
used to select instances. However, in over-constrained search
spaces aborting the process does not affect completeness.
Finally, Figs. 15 and 16 show the success rate in a case

where the locality assumption of conflicts does not hold.

262 J. PERVASIVE COMPUT. & COMM., VOL. 1 NO. 4, DECEMBER 2005. c�TROUBADOR PUBLISHING LTD)

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Conflicting Components (k)

#
S

u
c
c
e
s
s
fu

l
C

o
n

fi
g

u
ra

ti
o

n
s

n = 7 Components

n = 12 Components

n = 17 Components

Fig. 13. Greedy completeness with high locality (m = (n-1) / 2).

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Conflicting Components (k)

#
S

u
c
c
e
s
s
fu

l
C

o
n

fi
g

u
ra

ti
o

n
s

< 100 Messages

< 200 Messages

< 300 Messages

< 400 Messages

Fig. 14. Backtracking completeness with high locality (m = (n-1) / 2).

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Conflicting Components (k)

#
S

u
c
c
e
s
s
fu

l
C

o
n

fi
g

u
ra

ti
o

n
s

n = 8 Components

n = 10 Components

n = 12 Components

Fig. 15. Greedy completeness with low locality (m = 4).

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Conflicting Components (k)

#
S

u
c
c
e
s
s
fu

l
C

o
n

fi
g

u
ra

ti
o

n
s

< 100 Messages

< 200 Messages

< 300 Messages

< 400 Messages

Fig. 16. Backtracking completeness with low locality (m = 4).

Instead of increasing the number of containers as the size
of the application grows, we fix the number to 4. Despite
the increasing message overhead, the complete algorithm is
still able to outperform the greedy heuristic in terms of
completeness.

D. Experiments

To determine the configuration delays in a real system, we
have implemented a prototypical version of the algorithm as
part of PCOM. To provide values for small devices, we placed
an application with 7 components on two Pocket PCs (XScale
400MHz / 10 MBit WLAN) using the procedure described
in Section VI-B. Since all components were using the same
resource on each of the Pocket PCs, this experiment reflects
a situation where the locality of conflicts is low.
We ran 7 scenarios with 0, 2, 4, 6, 8, 10 and 12 randomly

created conflicting components. For each number of conflict-
ing components we performed 10 randomly created runs.
Figures 17, 18, and 19 show the results of these measurements
with respect to configuration delay, average and maximum
number of messages as well as the achievable completeness
within bounded delays. The delay as well as the number
of messages additionally include the overhead introduced by
the distributed termination detection protocol and application
startup.
Our measurements show that the completeness of the back-

tracking algorithm that can be achieved with bounded delay
is always higher, even if the delay is limited to 10 seconds.
Note that this is only slightly higher than the average runtime
of the greedy algorithm which lies between 8 and 9 seconds.

VII. RELATED WORK

As most projects in Pervasive Computing deal with dis-
tributed functionalities, they have to address the management
of compositions. The degree of automation varies heavily de-
pending on the focused system model. The GAIA project [17]
for instance separates the implementation of functionalities
from the composition of applications using two externalized
mappings. Since GAIA assumes a partially static environment,
it is not necessary to automate these mappings. The AURA
project [9] uses a task abstraction that is mapped onto func-
tionalities available in a certain environment. The mapping is
done by a centralized environment manager that coordinates
the functionalities of its environment. In contrast to PCOM and
GAIA, functionalities in AURA are self-contained entities that
solely interact implicitly through users. The iROS [15] system
provides a generic mechanism that enables interaction between
functionalities. Since iROS does not impose constraints on
the available components, the management of the composi-
tion must be performed manually. Similarly, one.world [10]
does not support the automated management of compositions.
Instead, the system shifts this responsibility to the developer.
The Pebbles project [18] uses an abstraction called goal

to model an application and it uses a planning engine that
automates the creation of valid configurations at runtime.
To the best of our knowledge Pebbles uses a centralized
planning engine. Another system that uses centralized planning

HANDTE ET AL.: PEER-BASED CONFIGURATION OF PERVASIVE APPLICATIONS 263

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12

Conflicting Components (k)

#
M

e
s

s
a

g
e

s

Average

Maximum

Fig. 17. Number of messages for two devices without locality (n=7).

0

10000

20000

30000

40000

50000

60000

70000

80000

0 2 4 6 8 10 12 14

Conflicting Components (k)

D
e

la
y

(m
s

)

Backtracking

Greedy

Fig. 18. Total delay for two devices without locality (n=7).

0

2

4

6

8

10

12

0 2 4 6 8 10 12

Conflicting Components (k)

#
S

u
c

c
e

s
s

fu
l
C

o
n

fi
g

u
ra

ti
o

n
s

Greedy

< 10000 ms

< 20000 ms

< 40000 ms

Fig. 19. Completeness for two devices without locality (n=7).

to configure component-based applications is Planit [1]. Planit
uses temporal refinement planning to adapt and configure
applications at runtime. In contrast to the proposed approach,
centralized approaches require a global view of the compo-
nents and resources of the environment.
Automatic configuration as discussed in this article can be

seen as instance of a distributed resource allocation problem.
In the past, research has been applied to distinct domains, e.g.
job scheduling [20] or patient scheduling [7]. However, these
domains are different from automatic configuration since they
try to allocate a set of tasks that is known in advance. In
the discussed approach the set of components is discovered at
runtime. This requires that the set of variables and domains
can be gradually created from the discovered components.
More recently, researchers developed the notion of Dynamic

Distributed Constraint Satisfaction Problems, e.g. to perform
distributed monitoring in sensor networks [14]. To deal with
the dynamics of the environment, constraints need to be added
or removed depending on a predicate. This is similar to the
proposed extension for resilience as all constraints depend on a
predicate that continuously evaluates the availability of devices

and resources. However, the approach presented in [14] does
not deal with discovery.

VIII. CONCLUSION

In this article, we have discussed the requirements on
automatic configuration in peer-based pervasive systems. Fur-
thermore, we have presented a mapping that enables the
automatic configuration of component-based applications in
PCOM using Distributed Constraint Satisfaction techniques.
The feasibility of this approach has been evaluated using
simulation and a prototypical implementation of the algorithm.
The results indicate that the presented complete approach is
preferable over the greedy heuristic. Although it is possible to
construct scenarios in which the complete algorithm will have
an unacceptable delay, we are confident that many real-world
problems will exhibit the locality to keep the delay within
acceptable bounds.
In the near future, we will extend the presented work

towards runtime adaptation where the cost for reconfiguring
an executed partial application must be taken into account.
Also, we are planning to investigate hybrid systems that might
contain coordinating entities at certain times. In such systems,
a fragment of the state of the environment could be collected
at each of the available coordinators which in turn could
thereafter cooperatively configure applications.

ACKNOWLEDGMENTS

This work is funded by the German Research Foundation
(DFG) as part of the Priority Programme 1140 - Middleware
for Self-organizing Infrastructures in Networked Mobile Sys-
tems.

REFERENCES

[1] Naveed Arshad, Dennis Heimbigner and Alexander L. Wolf. Deploy-
ment and dynamic reconfiguration planning for distributed software
systems. ICTAI ’03: 15th IEEE International Conference on Tools with
Artificial Intelligence, pp. 39–46, 2003.

[2] A. R. Baker. Intelligent Backtracking on Constraint Satisfaction Prob-
lems: Experimental and Theoretical Results. PhD thesis, University of
Oregon, 1995.

[3] Christian Becker, Marcus Handte, Gregor Schiele and Kurt Rothermel.
Pcom - a component system for pervasive computing. PERCOM ’04:
Proceedings of the Second IEEE International Conference on Pervasive
Computing and Communications, pp. 67–76, 2004.

[4] Christian Becker, Gregor Schiele, Holger Gubbels and Kurt Rothermel.
Base - a micro-broker-based middleware for pervasive computing.
PERCOM ’03: Proceedings of the First IEEE International Conference
on Pervasive Computing and Communications, pp. 443–451, 2003.

[5] Antoine Beugnard, Jean-Marc Jezequel, Noel Plouzeau and Damien
Watkins. Making components contract aware. IEEE Computer,
32(7):38–45, 1999.

[6] Stephen A. Cook. The complexity of theorem-provingprocedures. STOC
’71: Proceedings of the third annual ACM symposium on Theory of
computing, pp. 151–158, New York, NY, 1971. ACM Press.

[7] K. Decker and J. Li. Coordinated hospital patient scheduling. In ICMAS
’98: Proceedings of the 3rd International Conference on Multi Agent
Systems, p. 104, Washington, DC, 1998. IEEE Computer Society.

[8] Edsger W. Dijkstra and C. S. Scholten. Termination detection for
diffusing computations. Information Processing Letters, 11(1):1–4,
1980.

[9] David Garlan, Daniel P. Siewiorek, Asim Smailagic and Peter Steenkiste.
Project aura: Towards distraction-free pervasive computing. IEEE
Pervasive Computing, 1(2):22–31, 2002.

[10] Robert Grimm. One.world: Experiences with a pervasive computing
architecture. IEEE Pervasive Computing, 3(3):22–30, 2004.

264 J. PERVASIVE COMPUT. & COMM., VOL. 1 NO. 4, DECEMBER 2005. c�TROUBADOR PUBLISHING LTD)

[11] Xiaohui Gu, Klara Nahrstedt, Rong N. Chang and Christopher Ward.
Qos-assured service composition in managed service overlay networks.
ICDCS ’03: Proceedings of the 23rd International Conference on
Distributed Computing Systems, pp. 194, Washington, DC, 2003. IEEE
Computer Society.

[12] Ten-Hwang Lai and Li-Fen Wu. An (n -1)-resilient algorithm for dis-
tributed termination detection. IEEE Transactions Parallel Distributed
Systems, 6(1):63–78, 1995.

[13] F. Mattern. Global quiescence detection based on credit distribution and
recovery. Information Processing Letters, 30(4):195–200, 1989.

[14] P. J. Modi, H. Jung, M. Tambe, W.-M. Shen and S. Kulkarni. A dynamic
distributed constraint satisfaction approach to resource allocation. CP
’01: Proceedings of the 7th International Conference on Principles
and Practice of Constraint Programming, pp. 685–700. Springer-Verlag,
2001.

[15] S. R. Ponnekanti, B. Johanson, E. Kiciman and A. Fox. Portability,
extensibility and robustness in iros. PERCOM ’03: Proceedings of
the First IEEE International Conference on Pervasive Computing and
Communications, pages 11–20. IEEE Computer Society, 2003.

[16] B. Raman and R. Katz. An architecture for highly available wide-area
service composition. Computer Communication Journal, 26(15):1727–
1740, 2003.

[17] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell
and K. Nahrstedt. A middleware infrastructure for active spaces. IEEE
Pervasive Computing, 1(4):74–83, 2002.

[18] U. Saif, H. Pham, J. M. Paluska, J. Waterman, C. Terman and S. Ward. A
case for goal-oriented programming semantics. UBISYS ’03: Workshop
on System Support for Ubiquitous Computing at UBICOMP ’03, pp.
1–8, 2003.

[19] G. Schiele, C. Becker and K. Rothermel. Energy-efficient cluster-based
service discovery. 11th ACM SIGOPS European Workshop, pp. 20–22,
2004.

[20] K. Sycara and J. S. Liu. Multiagent coordination in tightly coupled
task scheduling. 1996 International Conference on Multi-Agent Systems,
1996.

[21] D. Xu, K. Nahrstedt and D. Wichadakul. Qos and contention-aware
multi-resource reservation. Cluster Computing, 4(2):95–107, 2001.

[22] M. Yokoo, E. H. Durfee, T. Ishida and K. Kuwabara. The distributed
constraint satisfaction problem: Formalization and algorithms. IEEE
Transactions on Knowledge and Data Engineering, 10(5):673–685,
1998.

[23] M. Yokoo and K. Hirayama. Algorithms for distributed constraint
satisfaction: A review. Autonomous Agents and Multi-Agent Systems,
3(2):185–207, 2000.

Marcus Handte is a researcher of the Distributed
Systems Research Group at the Institute of Parallel
and Distributed Systems at the Universität Stuttgart.
He received a MSc degree in computer science from
the Georgia Institute of Technology in 2002 and a
Diplom in computer science from the Universität
Stuttgart in 2003. Currently, he is pursuing his PhD
with a focus on the area of system support for
pervasive applications. He is a member of the ACM
and the GI.

Christian Becker received his Diplom in computer
science from the Universität Kaiserslautern in 1996
and his PhD from the Universität Frankfurt in 2001.
Since 2001 he is working as senior researcher and
lecturer at the Institute for Parallel and Distributed
Systems at the Universität Stuttgart. His research in-
terests are middleware platforms and context-aware
computing.

Kurt Rothermel is a professor in the Distributed
Systems Research Group at the Institute of Parallel
and Distributed Systems at the Universität Stuttgart.
His research interests include performance evalua-
tion of distributed systems, context aware and adap-
tive systems, and sensor networks. He received a
PhD in computer science from the University of
Stuttgart. He is a member of the ACM and the GI.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

