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ABSTRACT
Pervasive computing is based upon spontaneously networked
devices that are invisibly integrated into everyday objects.
Due to the integration and mobility of devices, pervasive sys-
tems can be highly heterogeneous and dynamic. To enable
cost-effective application development despite such harsh
conditions, we have developed the BASE middleware. In its
original implementation, BASE relied on monolithic plug-
ins to provide tailored support for different communication
abstractions, protocols and technologies. In this paper, we
describe and evaluate a major architectural redesign that
introduces modular plug-ins. The key benefits of the new
architecture are increased flexibility and code reuse due to
the efficient runtime composition of plug-ins.

1. INTRODUCTION
Pervasive computing envisions context-aware applications

that provide seamless and distraction-free support for user
tasks. To achieve this, pervasive applications leverage the
distinct capabilities of multiple devices that are invisibly in-
tegrated into all kinds of everyday objects. Due to their inte-
gration, devices are heterogeneous ranging from specialized
resource-poor embedded systems to powerful servers. In ad-
dition, due to device mobility and failures, pervasive systems
may exhibit a high degree of dynamics. As a result, enabling
cost-effective application development requires middleware
that takes care of the low-level issues of interaction.

In the past, researchers have developed a diverse set of
specialized middleware systems for different pervasive com-
puting scenarios. Due to the variety of system parame-
ters and application requirements, they can differ drasti-
cally with respect to the used communication abstractions
(e.g. events vs. RPC), protocols (e.g. encrypted vs. un-
encrypted) and technologies (e.g. Bluetooth vs. IP-based).
Usually, it is not possible to contrast and rate these middle-
ware systems as their suitability for an application depends
on the target scenario. As alternative to specialization, it
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is possible to opt for configurability as underlying middle-
ware design principle. So instead of supporting a fixed set
of abstractions, protocols and technologies, the middleware
provides a configurable and extensible set which improves
the overall applicability of the middleware core and API.

Configurability has been a key design rationale behind the
BASE [4] middleware ever since the development of the first
prototype in 2002. There, we started out with a minimal yet
extensible middleware core. To support communication, the
core can be configured with monolithic plug-ins. Although
being generic, a monolithic approach suffers two main draw-
backs. First, it requires the developer to implement a com-
plete communication stack in every single plug-in. As a
result, even the replacement of a part of the stack is a com-
plicated undertaking. Secondly, as each plug-in implements
a static stack, integrating optional orthogonal aspects such
as routing or compression causes an exponential increase in
the number of plug-ins to support all combinations.

In this paper, we present a major redesign of the BASE
plug-in architecture. As a solution to the aforementioned is-
sues, the redesign introduces plug-in layers that split mono-
lithic plug-ins in a way that facilitates composition. An au-
tomatic composition process assembles communication stacks
from fine-grained plug-ins. To control the process, plug-ins
and applications can specify composition requirements. The
evaluation results indicate that the overall approach is capa-
ble of providing the targeted benefits at an acceptable cost.

The remainder of this paper is structured as follows. Next,
we briefly describe the overall architecture of BASE. In Sec-
tion 3, we provide a detailed discussion of the redesigned
plug-in architecture. In Section 4, we present use-cases to
describe the benefits of the architecture. We discuss an ex-
perimental evaluation of the overheads and we identify and
quantify optimization potentials. In Section 5, we describe
related work and in Section 6, we conclude the paper.

2. BASE ARCHITECTURE
In this section, we describe the architecture of BASE. For

brevity, we introduce the main building blocks and outline
their interaction. A detailed description can be found in [4]
and [8]. Figure 1 depicts the building blocks and groups
them into the application, the micro-broker and the plug-in
layer.

2.1 Micro-broker Layer
The core of the system is formed by the micro-broker.

In the style of micro-kernel based operating systems, the



Figure 1: BASE Architecture

micro-broker implements a minimal and generic middleware
core. This core consists of the invocation broker, the de-
vice registry and the object registry. The invocation broker
is responsible for dispatching so-called invocation objects or
simply invocations. Invocations represent an interaction be-
tween application objects such as a local or remote method
invocation. To decouple the application from invocation
processing, the broker implements different synchronization
alternatives. Furthermore, it assigns globally unique invo-
cation identifiers, allowing the parallel mediation. Finally,
it keeps a table of ongoing invocations to support different
execution semantics.

If an invocation should be dispatched to a local applica-
tion object, the invocation broker retrieves the object’s in-
vocation handler from the object registry and forwards the
invocation. When a handler is registered at the object reg-
istry, the registry associates a locally unique object identi-
fier (OID) with the handler and stores the mapping for later
retrieval. The range of OIDs is statically divided into gener-
ated and well-known OIDs which can be used to implement
bootstrap services.

Remote invocations are forwarded to the plug-in manager
which takes care of communication. To determine the appro-
priate plug-ins for transmission, the manager must compute
a compatible set of plug-ins. This requires knowledge about
the plug-ins available on the local and the remote system.
This knowledge is maintained in the device registry in the
form of plug-in descriptions and it is updated as part of the
device discovery. In addition, the device registry stores a
device description for each device which consists of a log-
ical device identifier and a list of the well-known services
registered at the corresponding device. Thus, applications
and services can query the device registry for objects with
well-known OIDs.

2.2 Application Layer
At the application layer, application objects and mid-

dleware services are interacting with each other using the
micro-broker. In order to write an object that can receive
an invocation, a programmer must implement an invocation
handler that accepts invocations from the broker. The han-
dler must then be registered at the object registry. Other
objects that know the OID can then interact with it by man-
ually creating invocations and passing them to the broker.
However, BASE provides stub generators to ease this task.

In addition, BASE includes a number of optional services.
One such service is the BASE service registry [4], which
allows searching for services by name or type. Another ex-
ample is the PCOM component container [3] which realizes
a component system to support adaptive applications.

3. BASE PLUG-IN ARCHITECTURE
The two functions provided by the plug-in layer are device

discovery and remote communication. The implementation
of these functions is not only dependent on the targeted
communication technology, but also on the targeted proto-
cols and abstractions. Thereby, it is important to note that
the communication technologies are usually determined by
the hardware capabilities of a device. The suitability of a
communication abstraction and protocol, however, is usually
dependent on the interaction patterns of the application.

The BASE plug-in layer encapsulates these functionali-
ties in plug-ins so that the middleware can be configured for
a particular device with a set of applications. To configure
BASE, a developer registers the desired plug-ins at the plug-
in manager. The plug-in manager forms the generic core of
the plug-in layer and it mediates the interaction with and be-
tween plug-ins. As a consequence, the redesign of the plug-
in architecture primarily affects the plug-in manager. To
motivate the design, we first discuss the goals. Thereafter,
we present the redesigned plug-in manager and we organize
plug-ins into layers. Finally, we show how the manager com-
poses plug-ins and discuss how multi-layer plug-ins support
improvements.

3.1 Design Goals
The design goals are easily derived from the functional

goal of supporting composable communication and the con-
straints introduced by pervasive computing. Note that the
design goals are not orthogonal, so we must strike an ac-
ceptable balance.

• Flexibility : Our main reason for the redesign is to mod-
ularize plug-ins so that their individual functionality
can be composed dynamically at runtime. This elimi-
nates the need to compose a communication stack stat-
ically which, in turn, enables the reuse of plug-ins in
different stacks. To maximize this benefit, a key goal is
support for a high degree of compositional flexibility.

• Simplicity : The architecture should be simple to use
for both, application and plug-in developers. This
avoids high learning effort and reduces programming
failures. From the application developer’s perspective,
it should be possible to specify communication require-
ments with different levels of detail. From the plug-in
developer’s perspective, it should be possible to de-
velop a plug-in without reasoning about others.

• Efficiency : To be applicable to a broad range of scenar-
ios, the design should also be efficient. To resolve the
resulting conflict with the other goals, we rely on con-
figurability. To avoid a pre-defined and static balance
of trade-offs, we enable developers to balance them
during plug-in development and device configuration.

3.2 Plug-in Manager
The generic core of the plug-in architecture is formed by

the plug-in manager. As depicted in Figure 2, the plug-in
manager mediates the interaction between the device reg-
istry and the invocation broker, and the plug-ins. From a
high-level perspective the plug-ins can be classified in dis-
covery and communication plug-ins. The plug-in manager
provides methods to install and remove plug-ins at runtime
and it keeps references to the installed plug-ins. When a



Figure 2: BASE Plug-in Manager

new plug-in is installed, the plug-in manager exposes a part
of its functionality to the plug-in. To do so, it passes one
or more references to its interfaces to the plug-in. The in-
terfaces that are exposed depend on the type of the plug-in.
After the references have been set, the plug-in manager calls
a method on the plug-in to signal that it may start its op-
eration. Thereby, a plug-in will typically allocate resources
such as buffers in memory or sockets. After initialization,
the plug-in manager retrieves the plug-in description. This
description contains a type identifier to differentiate plug-
ins and it may contain several key-value pairs that can be
updated at runtime. The key-value pairs describe the char-
acteristics that are required by other plug-ins of the same
type. Examples are the address and the port of an IP plug-in
or the public key of an encryption plug-in. After retrieving
it, the plug-in manager registers the description at the de-
vice registry. When the plug-in is removed, the manager
removes the description, stops the plugin and releases all
references so that it can be collected as garbage.

At runtime, a discovery plug-in uses the plug-in manager
to retrieve the local device and plug-in descriptions. Fur-
thermore, it may retrieve the plug-ins that can be used to
distribute the descriptions. Using these plug-ins, a discovery
plug-in may implement an arbitrary distribution strategy.
For example, it may distribute the descriptions proactively
using flooding.

To enable remote communication, the plug-in manager
mediates the interaction between the broker and the plug-
ins. If an invocation shall be transmitted, the broker for-
wards the invocation to the plug-in manager. The plug-in
manager then uses the plug-ins to perform the transmission.
Alternatively, if the plug-ins cannot be used, e.g. because
the plug-ins cannot perform the transmission, it informs the
invocation broker. If an invocation is received by the plug-
ins, they may forward it to the plug-in manager, which in
turn delivers it to the invocation broker. The invocation
broker may then dispatch the invocation which may result
in further invocations, for example, to return the result of a
remote method invocation.

3.3 Plug-in Layers
The previous discussion follows the original architecture

of BASE. Yet, to support the runtime composition of com-
munication stacks, we need to separate the stack into blocks.
To do this, we can isolate communication technologies, pro-
tocols and abstractions as depicted in Figure 3.

Underneath the middleware, the operating system man-
ages the available network interfaces and provides an API

Figure 3: BASE Plug-in Layers

which may be specific for a certain technology that must be
unified. The key problem here is to identify an interface that
is lean enough to be implemented easily but still efficient.
Due to the fact that discovery plug-ins need to distribute de-
vice and plug-in descriptions among all available devices and
since many communication abstractions need to transmit
larger amounts of data reliably, we decided to use a socket-
style interface that supports unreliable packet-oriented com-
munication with local broadcast semantic for discovery and
connection-oriented communication for the transmission of
invocations.

As a result, the protocols above need to operate on the
byte-streams of the connection. Since BASE is built on top
of an object-oriented programming language (Java), we can
classify the protocols in ones that solely modify the byte-
stream and ones that (de-) serialize objects. A simple ex-
ample for the first is data compression that performs run-
length encoding on chunks of input data. An example for
the later would be an CDR based serializer. Obviously, it is
possible to stack the protocols that solely manipulate byte-
streams in an arbitrary order. However, there can only be
one serializer protocol per stack. Above the technology and
protocols, the communication abstraction determines how
an invocation should be distributed. Thereby, it is inap-
propriate to associate the abstraction with a particular con-
nection since abstractions such as publish-subscribe may re-
quire several. Consequently, developers of communication
abstractions must be able to manage the connection estab-
lishment. So in contrast to protocols which are passively
stacked on top of a technology, abstractions actively request
the initialization of a stack.

In summary, this results in four different plug-in layers
shown in Figure 3. At the lowest level, transceivers provide
packet-oriented discovery and connection-oriented commu-
nication. Above the transceiver, an arbitrary number of
modifiers implement protocols that modify the byte-streams.
Above these protocols, a serializer is responsible for the seri-
alization and deserialization of objects. Finally, at the high-
est layer, the semantic requests connections that are created
by stacking transceivers, modifiers and serializers on top of
each other.

3.4 Plug-in Composition
To achieve flexibility and usability simultaneously, it is

necessary to automate the composition of plug-ins while al-
lowing manual control whenever necessary. To allow varying
degrees of control, we extend invocations with a configura-
tion object. This object specifies the requirements on the
communication stack that shall be composed. To avoid un-
necessary restrictions on the flexibility of compositions, the
internal structure of the configuration object corresponds to



Figure 4: BASE Plug-in Negotiation

a list of requirements that is ordered according to the stack.
This means that the head of the list specifies requirements
on the semantic whereas the tail usually specifies require-
ments on the transceiver. The configuration object ensures
that requirements are added according to the restrictions
setup by the layers, e.g., it ensures that requirements on
modifiers are not added above the serializer. In addition,
the list structure also enables the developer to refrain from
specifying requirements on a certain layer. However, as a
minimum, the developer must specify the requirements on
the semantic since they define the meaning of the invocation.

The requirements can be specified at various levels of de-
tails ranging from explicit requests for a particular type of
plug-in to abstract requests for an implementation-specific
characteristic. As a simple example for such a character-
istic consider the bit-length of the encryption key. As the
plug-in manager is supposed to be generic, it cannot under-
stand the intrinsic meanings of all plug-in implementations.
Furthermore, since the correctness of a plug-in may rely on
the presence of plug-ins with certain characteristics at lower
layers, BASE enables plug-ins to refine the requirements on
plug-ins at lower layers.

To deal with these two issues, we separate the composi-
tion into a negotiation phase during which a set of plug-ins
is computed and a connection phase during which a negoti-
ated set of plug-ins is connected. Since we want to enable
plug-ins to refine the requirements on lower layers, the ne-
gotiation phase must be performed top-down as depicted on
the right side of Figure 4. The connection phase, on the con-
trary, should be performed in a bottom-up fashion as shown
in Figure 5 to simplify the plug-in interface. In the follow-
ing, we describe the details of these phases. For simplicity,
we assume that the invocation represents a remote method
invocation that returns a result. Other abstractions work
analogously.

When an invocation must be transmitted, the micro-broker
forwards it to the plug-in manger as shown in step (1) of
Figure 4. Thereby, each invocation specifies its require-
ments on the stack by means of an attached configuration
object. Using the invocation, the plug-in manager computes
the candidate set of semantic plug-ins (2). If the require-
ments attached to the invocation are explicitly specifying
a particular plug-in, the plug-in manager selects the plug-
in. If the requirements are solely specifying implementation-
specific characteristics, the plug-in manager selects all se-
mantic plug-ins as targets. Then the plug-in manager asks
each target plug-in whether it can fulfill the requirements
specified by the configuration object (3). If the call fails,
the next plug-in is selected. Otherwise, the plug-in manager
aborts the process and forwards the invocation to the plug-

in that acknowledged the requirements (4). If no semantic
plug-in can be found, the plug-in manager signals this to the
invocation broker which informs the application. After the
semantic plug-in has received the invocation, it will trans-
mit it to the remote system and after receiving the result,
it forwards an invocation that represents the result to the
plug-in manager (5). The plug-in manager in turn will for-
ward the invocation to the broker (6) which will deliver the
result, e.g. by releasing a blocked application thread.

3.4.1 Plug-in Negotiation
To transmit the invocation, the semantic plug-in can es-

tablish a connection. To do this, it must first negotiate a
stack. This negotiation is shown on the right side of Figure
4. To start the negotiation (7), it passes three references
to plug-in manager. The references encompass the system
identifier of the target system, the configuration object and a
reference to the requesting semantic plug-in. After receiving
the negotiation request, the plug-in manager will compute a
set of plug-ins that is available to both, the local and the tar-
get system. To do this, it queries the device registry for the
plug-in descriptions of the remote device and it intersects
the set with the plug-in descriptions of local plug-ins (8).
Thereafter, the plug-in manager validates that the request-
ing semantic is also available on the remote device. If this is
not the case, the negotiation fails immediately. Otherwise,
the manager creates a session object for the request.

Similar to the requirements contained in a configuration
object, session objects can be linked together as a list that
represents a particular stack. However, a session object does
not store abstract requirements but it stores a concrete plug-
in identifier. Consequently, a list of session objects can be
used to describe a stack for a particular system. In addi-
tion, the session objects can also store a set of plug-in spe-
cific parameters that are required to establish a connection.
This set of parameters is divided into local parameters re-
quired on the client-side and remote parameters needed on
the server-side. A simple example of a parameter is the end-
point information of a transceiver. As explained later, the
session object is transferred to the remote system and the
parameters are automatically passed to the right plug-ins
during connection initialization.

Once the session object has been created, the negotiation
continues below the semantic layer. Using the list of require-
ments received from the semantic plug-in, the plug-in man-
ager determines whether it is necessary to add a serializer
to the stack. If a serializer is required, the plug-in manager
will use the set of plug-ins that is available on both systems
to determine target serializers. Similar to the selection of se-
mantic plug-ins, the plug-in manager simply prunes the list
in cases where a particular serializer is required. Thereafter,
it goes through the list of target serializers and asks them
whether they fulfill the requirements (9). While doing this,
the plug-in manager does not simply pass the requirements
to the serializer. Instead, it first creates a new session object
with the identifier of the serializer and it copies the config-
uration object. Thereafter, it passes the new session object,
the copy of the configuration object as well as the plug-in
description of the same plug-in on the remote device to the
target plug-in. The serializer plug-in can use the plug-in
description to determine whether it can communicate with
the remote plug-in and it may store relevant parameters in
the session object. Furthermore, it may refine the require-



Figure 5: BASE Plug-in Connection

ments specified in the configuration object in cases where
it depends on certain plug-ins at lower layers. If the serial-
izer responds positive to the negotiation request, the plug-in
manager stores the session object and the negotiation con-
tinues with the refined requirements at a lower layer. If it
responds negative, the negotiation continues with the next
serializer from the target set using the original requirements
and a new session object. Again, if a serializer is required
but no serializer can fulfill the requirements, the complete
negotiation fails.

Once a serializer has been determined successfully, the
negation continues. Depending on the requirements, it may
continue with a modifier or a transceiver. If a modifier is
required, the procedure of determining an appropriate plug-
in is simply replicated with modifiers (10) and transceivers
(11). If the configuration fails at some point, the last suc-
cessfully negotiated plug-in is invalidated. To do this, the
session object is simply removed from the list and the nego-
tiation continues.

Thus, this composition algorithm essentially resembles back-
tracking. The backtracking ensures that all possible compo-
sitions are systematically tested. However, it can also lead
to an exponential runtime overhead. Yet, thrashing can only
occur if devices are equipped with similar plug-ins at higher
layers that require lower layer plug-ins which cannot be used.
So far, we did not find this to be problematic in practice.

The negotiation phase ends when the transceiver plug-in
has been selected which means that all requirements are ful-
filled. The result of the negotiation is a linked list of session
objects, i.e. (7’), (9’), (10’), (11’). This list stores the plug-
in identifiers and the parameters needed during connection
establishment for all layers below the semantic. By return-
ing the top-most session object as the result of step (7), the
semantic plug-in can finalize the composition by adding its
own parameters.

3.4.2 Plug-in Connection
After the negotiation, the semantic can request the con-

nection establishment using the session objects. To do this,
it simply passes the session objects to the plug-in manager as
depicted in step (1) on the left side of Figure 5. The plug-in
manager uses the objects to connect the plug-ins in bottom-
up fashion. It first calls the transceiver with the correspond-
ing session object to establish the connection at the lowest
layer (2). If the establishment succeeds, the transceiver re-
turns a so-called connector that holds references to the in-
put and output streams. The connector is comparable to a
socket and it also provides a close operation.

Figure 6: BASE Multi-Layer Plug-ins

When the transceiver on the client-side contacts an end-
point, it uniquely identifies a transceiver on the server-side,
e.g. via IP address and ports. As a consequence, the server-
side knows the plug-in at the lowest layer. Since there may
be arbitrary plug-ins stacked on top of this layer, it is nec-
essary to transmit the composition. To do this, the plug-in
manager on the client-side transmits the session objects to-
gether (3) before continuing at higher layers. This enables
the server-side to perform the connection establishment in
parallel and it ensures that each plug-in can immediately
contact its counterpart.

Once the session objects have been transmitted, the plug-
in manager on the client-side initializes the remaining plug-
ins. When a plug-in must be added the manager requests a
connector from the plug-in. To do this, it passes the corre-
sponding session object together with the connector of the
transceiver (4). If the request succeeds, the modifier returns
a new connector. This connector typically wraps the con-
nector of the transceiver and provides new input and out-
put streams using the underlying streams. The connector
returned by the modifier may then be used to initialize the
serializer and so on (5). As a last step, the manager passes
the connector to the semantic plug-in as a response to the
initial request (1).

At the server-side this process is mirrored. Since the server
is passive, the connection establishment is started in re-
sponse to the connection attempt of the client. Once the
client-side has established a connection, the transceiver sig-
nals the new connection by passing a connector to the plug-
in manager as depicted in step (1’). Using this connector,
the plug-in manager receives the session objects from the
client (2’). Thereafter, it initializes the modifier (3’) and
serializer (4’). As a last step, the plug-in manager forwards
the connector to the semantic plug-in (5’) which takes care
of the actual data reception and interpretation. If this pro-
cess fails at any point in time, the plug-ins may signal this
through an exception and the plug-in manager takes care
of closing the opened connection. The disconnection even-
tually causes a remote failure and the plug-in manager can
perform the clean up.

3.5 Multi-Layer Plug-ins
Clearly, the plug-in negotiation and connection process

imposes an overhead onto communication as it shifts the
composition from development time to runtime. To reduce
this overhead, the architecture enables plug-in developers to
create multi-layer plug-ins. As depicted in Figure 6, multi-
layer plug-ins can be used to increase efficiency or flexibility.

To increase the efficiency, a plug-in developer may de-
cide to implement a complete stack that covers all aspects
of communication within a single monolithic plug-in (1). In



Figure 7: BASE Multi-hop Example

order to do this, the plug-in solely implements the interfaces
of the semantic layer and it refrains from establishing con-
nections. This essentially resembles the original architecture
and thus, it is equally efficient but it suffers from the same
deficiencies. Alternatively, a plug-in developer may also de-
cide to implement a plug-in that covers all aspects of the
connection. Thereby, a developer may decide to solely im-
plement the highest entry layer (2) or in cases where the
plug-in may be used at different layers, it can also support
all of them (3). The same approach can be used for proto-
cols that cover several aspects (4) and if they are optional,
multiple entry-points can be supported (5).

To increase the flexibility, a developer may also decide
to implement a multi-layer plug-in that traverses the lay-
ers multiple times. The primary use-case for such a plug-
in is multi-hop communication. To support this, a plug-in
may implement the transceiver and the semantic layer entry-
points as shown in Figure 6 (6). As depicted in Figure 7,
the final destination is used as target for the initial traversal
of the layers which will lead to a stack that covers the se-
mantic, serializer and modifier layers available on the source
and the destination device (SEME, SERE, MODE). Since
there is no single-hop connection between the devices, the
transceiver of a multi-hop plug-in is the only viable selec-
tion. When the communication is about to be initialized, the
transceiver of the multi-hop plug-in can request a connection
to the next hop via the semantic entry-point. The resulting
stack may include modifiers, e.g. for link-layer encryption,
and a transceiver (MOD1, T1). After the connection estab-
lishment to the next hop, the plug-in manager transmits the
stack configuration. The top of the stack is formed by the
semantic of the multi-hop plug-in since it requested the con-
nection. If the final destination has not been reached, the
semantic can then request a stack to the next hop (MOD2,
T2). Once this connection has been established, the plug-
in can begin to forward data. On the destination device,
the multi-hop plug-in can use the transceiver entry-point to
forward the incoming connection to the manager. Once the
end-to-end connection is running, the manager of the source
device transmits the session objects of the initial traversal
and the devices can communicate.

4. EVALUATION
To determine whether the architecture achieves its goals,

we implemented several plug-ins. To test the socket-style
API for communication technologies, we implemented transceiver
plug-ins for IP-, IR- and Bluetooth-based communication.
Since the target operating systems (i.e. on Linux, Windows,
Windows CE and Symbian) already provide connection-oriented
abstractions (e.g. via WinSock), the development of a transceiver
is straight-forward. Yet, due to the overhead of connection
establishment on some devices, we had to develop a multi-

Figure 8: Latency Comparison (20 Remote Calls)

plexer that can be integrated into transceivers.
In addition, we have developed serializers and modifiers

for object serialization, data compression using GZIP and
encryption on top of the bouncy castle library. Furthermore,
we have developed simple and complex multi-layer plug-ins,
e.g. for multi-hop routing, and we have developed various
semantics, e.g. for RMI and application level streaming.
Thereby, we found that the plug-in interfaces are suitable
for various technologies, protocols and abstractions. Given
typical byte code sizes of 10-20 kilo bytes per plug-in, the
reuse enabled by the redesigned architecture is a clear advan-
tage for resource-poor devices. Moreover, we noticed that
the programming effort for the plug-in interfaces is compar-
atively small, i.e. 80 lines for interfaces compared to 600-700
lines for a serializer.

For applications, access to the micro-broker is usually sim-
plified via generated stubs. As a result, the details of the ar-
chitecture can be hidden completely in many cases. To sup-
port fine-grained control, stubs can be generated as source
code which enables customization when needed. By adding
a few lines of code, an application can easily request the
presence of certain plug-ins for a specific interaction. Thus,
we argue that the architecture achieves its goals with respect
to flexibility and simplicity.

To evaluate the impact of the architecture on efficiency,
we discuss the results of several experiments. In the first, we
compare the latency of executing remote method calls with
varying payload sizes using different subjects. As subjects
we use BASE with a monolithic plug-in (which closely re-
sembles the original implementation), the modular version
of BASE that uses individual plug-ins for the semantic, se-
rializer and transceiver layers and an unmodified version of
Java RMI [20]. As test environment we use 2 desktop PCs
(Intel Core 2 Q6600, 2.4 GHz, 4GB RAM) running Windows
Vista and Sun JRE1.6 that are connected via a switched
Ethernet (1GBit). We measure the time to execute 20 iden-
tical remote calls and to determine outliers we repeat each
measurement 1000 times. To avoid high variations, we deac-
tivate the just-in-time compiler which increases the absolute
values by a factor of 1.8.

Figure 8 shows the average with payload sizes ranging
from 0 bytes to 50000 bytes. As indicated by the error bars,
the standard deviation lies well below 3 %. When compar-
ing the two versions of BASE with RMI, BASE introduces
a notable overhead of approximately a factor of 3 in cases
where no payload is transmitted and a factor of 2 in all
other cases. We attribute this mainly to additionally cre-
ated objects, the thread switches and buffers introduced by



Figure 9: Latency Analysis (BASE Modular)

multiplexing the TCP connections in the transceiver plug-in
and the differences in serialization - i.e. BASE implements
object serialization to support J2ME CLDC. When compar-
ing the two BASE versions, we observe 10-15 % overhead.

To determine the impact of an increased number of plug-
ins and to determine the causes of the 10-15 % overhead
of the architecture, we have performed a number of micro-
measurements for remote method calls without payload (worst-
case). The columns of the table shown in Figure 9 represents
different setups. The rows show the percentage of time used
for several stages of the call. These stages are (from top
to bottom), the time spent above the plug-in layer at the
client-side, the time for selecting the semantic plug-in, the
time to compute the compatible plug-ins by computing the
intersection set of the plug-in descriptions, the negotiation of
the connection, the time required to establish a connection
within the transceiver plug-in, the time to connect the plug-
ins forming a stack on the client-side and the total transmis-
sion and processing time on the server.

The first three measurements (Desktop) are using the same
setup as the previous experiment. To vary the setups, we in-
crease the number of plug-ins on each system by adding one
plug-in to the semantic, serializer and transceiver layers. As
one expects, increasing the number of plug-ins increases the
time to compute the set of usable plug-ins. Furthermore, it
increases the time required during negotiation. However, it
does not increase the time to connect a stack. Furthermore,
one can observe that the overhead of the redesigned plug-
in architecture is mainly an artefact of the more complex
negotiation and the plug-in connection.

One may argue that an overhead of 10 % on desktops can-
not be tolerated on resource-poor devices. To validate this,
we have repeated the same experiment using two PDAs (XS-
cale PXA270, 530MHz, 128MB RAM) connected via WLAN
(802.11b with WPA encryption). When looking at the abso-
lute time, we measure a latency of approximately 100ms for
a remote call. However, as one can see from the 4th column
(PDA), the percentage of time consumed by the modulariza-
tion is well below 10 %. The reason for this are the latencies
introduced by 802.11.

As a consequence, we can conclude that the overhead
for the architecture typically stays around 10-15 % in cases
where a stack needs to be computed and initialized. How-
ever, it is possible to reduce the overhead to 6-7 %, if a se-
mantic plug-in caches the session objects. Finally, all over-
heads can be avoided, in cases where the communication
stacks are reused to transmit multiple invocations. Thus, in
cases where devices are interacting frequently with the same
application requirements on communication, one can avoid
repeated overheads without falling back to a monolithic de-
sign.

5. RELATED WORK
A multitude of middleware systems like CORBA [14] or

Java RMI [20] have been developed for conventional systems
to ease the task of developing distributed applications. Typ-
ically, these systems rely on a fixed set of existing commu-
nication protocols like TCP/IP or HTTP. They do not offer
support for automated dynamic composition of stacks at
runtime. The same is true for most middleware systems for
resource-poor devices (e.g. [13], [17], [18]). These systems
often provide only a restricted set of functionality, including
no support for dynamic protocol reselection. As an excep-
tion, the Universally Interoperable Core (UIC) [16] can be
dynamically extended with new protocols to interact with
existing systems. However, the used stack is determined be-
fore the start of an interaction or even at installation time.
BASE allows switching between different protocols for run-
ning interactions, too.

Dynamically reconfigurable middleware systems (e.g. [2],
[5], [11], [15], [6]) can adapt their behavior at runtime to
different application requirements, e.g. how marshalling is
done, and environments. Still, like with UIC, this adap-
tation is usually not supported for already running inter-
actions. Jini [19] allows using different protocol stacks for
communicating with remote services. This is realized by in-
tegrating the protocol stack into a stub that is downloaded
by the client. Jini provides no support for adapting the pro-
tocol stack used to access one given service. This is possible
with our approach. The mundoCore middleware [1] allows
creating custom protocol stacks by combining so-called pro-
tocol modules. However, mundoCore assigns each stack to
a channel, which is then used to transfer multiple messages.
BASE is able to automatically create an optimized proto-
col stack for each individual message, if required, without
any further programmer interaction. Similar to the BASE
invocation broker, the PIRATES middleware [10] is able to
support different communication abstractions by means of a
wrapper component. However, other aspects of the protocol
stack such as serialization are statically built into the system
and cannot be adapted. The DRAPS framework [12] sup-
ports the dynamic reconfiguration of protocol stacks during
ongoing interactions by means of a state transfer mecha-
nism. Although this is a powerful and efficient mechanism,
it requires the sender and the receiver to reach a safe state to
initiate the transfer which, in turn, requires connectivity to
initiate the adaptation. However, in pervasive systems un-
predictable changes to connectivity are often the root cause
of protocol stack adaptation.

One.World [7] is a middleware system for pervasive com-
puting environments which is based on Tuple Spaces. A cen-
tral paradigm of One.World is to expose change, e.g. to al-
low application programmers to access environment-specific
information and to act correspondingly. In contrast to the
automatic adaptation capabilities of BASE, the responsi-
bility for adapting to changes is completely laid off to the
application programmer. Similar to BASE, the FAME2 [21]
middleware relies on configurability to deal with the hetero-
geneity of pervasive computing. Yet, just like the original
implementation of BASE, FAME2 uses monolithic plug-ins
which induces associated limitations.

Vertical handovers, also known as media-independent han-
dovers as specified in IEEE 802.21 [9] allow mobile users to
roam between 802.11 networks and 3G cellular networks. To
do so, the mobile device switches the used layer 2 communi-



cation technology automatically. BASE extends such layer
2 handovers to all layers.

6. CONCLUSION
Enabling the vision of pervasive computing requires ap-

propriate middleware that can effectively and efficiently cope
with heterogeneity. Due to the resource limitations of de-
vices utilized in pervasive computing applications, configura-
bility is a key requirement that extends to communication
abstractions, protocols and technologies. In this paper, we
presented a novel plug-in architecture that utilizes the run-
time composition of plug-ins to support flexible communi-
cation. By configuring the generic middleware core with an
appropriate set of plug-ins the middleware can be adapted
to the target device and target applications. By automating
the composition of plug-ins in a way that supports coarse-
and fine-grained control, different applications can easily
reuse the same plug-ins in vastly different communication
stacks. The evaluation results show that the associated costs
are acceptable and they indicate that many overheads can be
avoided by a conscious plug-in design that uses caching and
multiplexing. In cases where this is not possible, the plug-
in architecture is flexible enough to support falling back to
monolithic plug-ins at the cost of a higher development effort
and a decreased flexibility.
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