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Abstract—Wireless sensor networks can monitor different
types of physical phenomena and are able to provide a diverse set
of context data to interested clients. Allowing mobile pervasive
computing devices to access such data requires solutions for
routing messages between mobile devices and the static sensor
network. This paper presents a novel approach that addresses
this problem with the help of symbolic coordinates. It requires
only a small amount of topology information distributed in the
network and allows mobile devices to send messages to arbitrary
areas. The routing task is split among the client nodes, which
specify a symbolic source route, and the sensor nodes that handle
node-to-node routing. The paper describes the algorithm, specific
challenges associated with its design and gives an extensive
evaluation of the approach and its properties, showing that the
use of symbolic coordinates in these environments is a viable
alternative to more traditional types of routing.

I. INTRODUCTION

The rapid evolution of wireless sensor network technology

in the last few years has allowed them to monitor a variety of

physical parameters and provide this data to interested clients.

For this purpose, the sensor network research community

has developed different solutions for efficient data collection,

data transport and data aggregation that aim to provide the

required services, while at the same time conserving the scarce

resources of sensor nodes.

Many pervasive computing applications rely on the use of

contextual data to provide their services to the user. Pervasive

computing devices can either collect this data directly from

their environment or retrieve it from other devices over the

wireless network. Sensor networks play an important role in

pervasive computing application scenarios as providers of both

raw sensor data as well as of preprocessed context data.

The combination of these two different types of systems –

large scale, extremely resource-constrained sensor networks on

the one hand and mobile pervasive computing devices on the

other hand – creates new challenges that need to be addressed

from the ground up. The most fundamental challenge deals

with the efficient communication and routing of data between

mobile devices and sensor nodes.

Installing a sophisticated infrastructure to collect sensor data

and provide this data to pervasive computing devices can be

costly both in terms of hardware and communication overhead.

For this reason, we propose that mobile devices communicate

directly with the sensor network in their surroundings. How-

ever, while most of the required communication will be with

nearby nodes, mobile devices still need to be able to access

data from nodes in any area of the network.

In the area of ad-hoc networks a variety of solutions has

been developed for routing between mobile devices without

relying on infrastructure support. However, their applicability

to our scenario is very limited due to the special properties of

wireless sensor networks [1], [2]. The main problems are the

scarce availability of resources, the instability of nodes and

communication links between them and the expected larger

scale of sensor networks.

Several types of routing protocols have been proposed

specifically for sensor networks that are optimized for ef-

ficiently collecting data or events from the network while

limiting the amount of traffic and state on the nodes required

for their operation [2]. Many of these algorithms use tree

structures for this purpose. However, they can neither easily

support multiple independent client nodes nor mobile client

nodes that frequently change their position between sending

queries to the network.

Location based routing protocols address most of the effi-

ciency and scalability problems discussed above both for ad-

hoc and for sensor networks. Moreover, they also provide a

natural addressing scheme for sensor network scenarios where

the user normally wants to retrieve data from a certain area

instead of communicating with a specific node. However,

location based routing requires detailed knowledge of the

geographic positions of the individual nodes to allow for in-

formed routing decisions. In many scenarios, such information

is unavailable or too expensive to acquire for all sensor nodes.

The goal of the work presented in this paper is to overcome

the limitations of existing routing protocols and to find an effi-

cient routing solution for mobile pervasive computing devices

in combination with wireless sensor networks. By adding a

small amount of topology information in the form of symbolic

coordinates we obtain the advantages of location based routing



protocols without requiring accurate position information.

We describe a simple, yet efficient routing algorithm that

allows mobile nodes to access data on arbitrary sensor nodes

without relying on support from a base station. The basic idea

is to split the routing task between the mobile node (e.g., a

PDA) that issues the request message and the static sensor

nodes that forward and answer the request. The mobile client

nodes calculate a symbolic source route from their current

position to the destination sent as part of the request message

and the sensor nodes use this information to perform node-to-

node routing. The advantage of such a splitting is that the client

nodes do not need to manage a detailed view of the current

sensor network topology and the sensor nodes can correctly

forward messages using purely local information.

We aim at application scenarios consisting of a large set

of static sensor nodes distributed over the different symbolic

areas of a network and several mobile client devices that move

around these areas and use the data of the sensor nodes to

provide pervasive services to their users. The first specific ap-

plication we are working on is the integration and use of sensor

networks in office scenarios without the need for complex

infrastructure support. For future investigations, we are also

considering larger scale sensor networks in outdoor scenarios

like for agricultural applications or habitat monitoring, where

the definition of the work environment and an assignment of

symbolic coordinates comes naturally.

The rest of this paper is organized as follows. Section II

gives information about existing approaches and their respec-

tive shortcomings for the scenarios we consider. In Section

III, we introduce the concept of using symbolic coordinates in

sensor networks and describe our routing algorithm. Section

IV describes our prototype implementation and Section V

provides an evaluation of our approach. Finally, Section VI

concludes the paper and discusses future work.

II. RELATED WORK

There has been active work on symbolic coordinates and

location models in different areas of pervasive computing

research (e.g., [3], [4], [5]). Becker and Dürr [6] give a

comprehensive overview of different geometric and symbolic

location models from the perspective of pervasive computing

and compare their suitability for different types of queries. The

focus of our work is not the location model but the use of basic

symbolic location information for routing. Since our approach

only requires the availability of a neighborOf-relationship

among symbolic coordinates, it should be compatible with

most existing location models.

The general idea of using symbolic coordinates in sensor

networks has been formulated by Fekete et al. [7]. However,

the focus of their work lies more on detecting boundaries and

extracting information about the topology of the network than

on actually doing message routing between nodes. Moreover,

they assume very densely populated topologies that do not

pose many of the challenges discussed in this paper.

There exists a large body of work on node-to-node rout-

ing in the area of ad-hoc networks which can be coarsely

classified into flooding based approaches, proactive and re-

active algorithms (topological approaches) and location based

approaches. Unfortunately, these different approaches are not

applicable to sensor networks without problems due to the dif-

ferences in the system model of ad-hoc and sensor networks.

The basic way of distributing data in a network – flooding

of messages to all nodes – generates a huge overhead in

large networks as basically every node needs to participate in

every communication. Different optimizations like gossiping

[8] or probabilistic flooding [9] can only partially alleviate

this problem since still a large fraction of the nodes needs

to participate in the message distribution. Proactive rout-

ing protocols (e.g., [10]) only work in networks of very

limited size as the continuous exchange and maintenance of

global routing information creates a considerable overhead

both in terms of messages and concerning the amount of

state maintained by the individual nodes. Reactive routing

protocols (e.g., [11], [12]) only calculate routes on demand

which effectively limits the overhead for continuous route

maintenance. However, discovering routes usually implies the

flooding of route request messages. Despite optimizations like

route caching, this can quickly cause an unacceptable message

overhead in large sensor networks. Source routing (e.g., [13])

is an important subclass of reactive routing protocols. The

idea is to include the discovered route from the source to the

destination in the header of each message. Hybrid routing

protocols (e.g., [14]) combine the concepts of proactive and

reactive routing protocols by actively maintaining routes for a

limited area (e.g., in the local neighborhood) and using reactive

routing on a global scale. Other approaches combine proactive

routing with location based routing [15].

Unlike routing based on symbolic coordinates, location

based or geographic routing based on real-world coordinates

is already well-established in sensor networks and cited in

numerous sensor network publications. Its best-known repre-

sentative is Greedy Perimeter Stateless Routing (GPSR) [16].

However, recent work (e.g., [17]) has shown that considerable

additional effort is required to make geographic routing work

in realistic environments. In sensor networks, the applicability

of geographic routing depends on the availability of the

required position information which is often not provided due

to limitations of the hardware (e.g., no GPS receiver) or the

environment (e.g., indoor scenarios).

Recently there has been some effort on making routing

in large-scale wireless ad-hoc networks more efficient and

scalable by avoiding the flooding of messages for message

distribution or route discovery. VRR [18] maintains a virtual

ring of nodes that allows forwarding messages to arbitrary

nodes. A similar approach is followed by Scalable Source

Routing [19] where all nodes maintain source routes to their

neighbors in a virtual ring. For sensor networks, the main

drawback of both approaches is the required amount of state

at each node that grows with the size of the network. Together

with the instability of links this can make the management of

routes to the virtual neighbor nodes a complex and expensive

task.



III. SYMBOLIC ROUTING IN SENSOR NETWORKS

This section introduces our routing algorithm based on

symbolic coordinates. We start with some preliminaries and

the system model before describing the basic algorithm and

several extenstions required to address challenges occuring

with the basic approach.

A. Preliminaries

Symbolic coordinates define a position or an area in the

form of an abstract symbol, as opposed to geographic coordi-

nates that define a position in the form of a coordinate tuple

(e.g., longitude, latitude and height) relative to a global or local

coordinate system. Typical examples of symbolic coordinates

are room numbers, cell IDs of wireless networks and street

addresses. Since symbolic coordinates do not have any direct

connection to their geographic location, a location model is

required to associate a geographic area with its corresponding

symbolic coordinate.

A symbolic coordinate can represent areas of different

shapes and sizes and, in many cases, directly represent the

semantics of a location, for example when a symbolic coor-

dinate is associated with each room of a building. This can

simplify the formulation of queries since the destination area

of a query can be directly expressed by an intuitive coordinate

similar to the one used in everyday life.

B. System Model

For our algorithm, we assume that there are two types of

devices with a large number of static, resource-constrained

sensor nodes and a much smaller number of mobile, more

powerful pervasive computing devices. In particular, we as-

sume that the number of mobile devices is too small to

reliably form a backbone network of mobile devices to route

requests through them. Both types of devices share a common

communication interface that allows the mobile devices to

communicate with any sensor node in their direct neighbor-

hood. For the communication between the nodes we assume

bidirectional connections.

The mobile nodes must have access to a symbolic location

model which might be preloaded to the nodes or dynamically

retrieved from an external network. A continuous connection

to an infrastructure is not required for the mobile nodes.

The type of information the nodes require in our approach is

not the typical symbolic location model data, as addressed in

the literature, but rather a symbolic topology graph expressing

the neighborhood relationship between individual symbolic

areas. Such a topology graph can be extracted from different

types of location models using simple tools.

We assume that both sensor nodes and mobile devices know

the symbolic coordinate of the area they are located in. This

is a strong requirement, but it is much less demanding than

requiring knowledge of the node’s exact geographic location.

In previous work we have developed mechanisms for a low

overhead assignment of symbolic coordinates using explicit

sensor triggers [20]. We are also working on mechanisms for
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Fig. 1. Example query in an office scenario

further automating this process by grouping nodes based on

sensor data similarity.

C. Basic Approach

The basic idea of our approach is to perform symbolic

routing in sensor networks by letting the mobile client nodes

specify a symbolic source route and having the static sensor

nodes use this source route to make node-to-node routing

decisions. Fig. 1 shows an example of a mobile client device

querying the sensor network in an office scenario. In addition

to the query itself (“Temperature values from room 2”) the

client also provides the symbolic route (“Room 6 - Room 4

- Room 2”) as part of the query message. The sensor nodes

have learned about their local neighborhood using a beaconing

mechanism. They now use this information to forward the

message along the specified route until the destination area

“Room 2” is reached. In the following we describe the

individual parts of the algorithm in detail.

Beaconing mechanism: The sensor nodes send out beacon

messages at regular intervals advertising their own symbolic

coordinates and neighboring symbolic coordinates they have

already heard of. For these neighboring symbolic coordinates

the beacon messages also contain a distance field that adver-

tises the number of hops on the node level to the respective

neighboring symbolic coordinate. Each node only manages

distance information about directly neighboring symbolic co-

ordinates, i.e., symbolic coordinates the node’s own symbolic

coordinate can directly communicate with. This limits the

amount of state each sensor node has to manage.

Mobile client nodes only participate passively in the beacon-

ing process – learning from received beacon messages about

their current symbolic coordinate and about sensor nodes they

can forward their queries to.

Like all protocols that store distance vectors in nodes, our

beaconing mechanism is vulnerable to the count-to-infinity

problem when a connection breaks down. However, since we

only work with local distances to neighboring symbolic coor-

dinates, it is possible to prevent this by defining a reasonable

maximum distance value.



Query preparation: When a mobile client node wants

to send a query message to a specific area of the sensor

network, it first needs to determine a symbolic route from its

current location to the symbolic coordinate of the destination

area (Step 1 in Fig. 1). Since the client node is typically

more powerful than the sensor nodes, it has the capabilities

to compute this route using the symbolic topology graph

information contained in the location model. Note that such

symbolic routes can be computed without performing a route

discovery procedure at the node level.

Node-to-node routing: Once the client has passed its

request message to one of the sensor nodes, it is the task of

the sensor network to perform the node-to-node routing (Step

2 in Fig. 1). For doing this, the sensor nodes use the symbolic

route contained in the request message as well as the local

routing table calculated based on the beacon messages received

from neighboring nodes. When a node receives a message to

forward, it looks up the next-hop symbolic coordinate in its

local routing table, retrieves the next node in direction of this

coordinate and forwards the message to this node.

One simple optimization that achieves shorter communica-

tion paths is to check the source route beyond the next-hop

symbolic coordinate to see whether a symbolic coordinate

further down the path can be directly reached. We call this

optimization path look-ahead.

Message delivery: Once the message reaches the first node

inside of the destination area, the system provides different

semantics to deliver the message to the sensor nodes (Step

3 in Fig. 1): delivering to an arbitrary node in the area (area

anycast), delivering to all nodes in the area (area broadcast),

or delivering to a specific node (area unicast) specified by the

sender. In the future, we also plan to support semantic criteria

for delivering messages. For example, it could be possible to

send a query to all temperature sensors in an area.

We have implemented area broadcasts and area unicasts

by broadcasting the message inside the destination area and

delivering the message to all nodes or the unicast destination

node. The costs for such a broadcast are limited to the nodes

in the destination area since nodes of neighboring areas do not

forward the broadcast.

Reply routing: Sending a reply message from a sensor node

back to the original sender of the request is done by reversing

the symbolic route received with the query message (Step 4 in

Fig. 1) and sending the reply as an area unicast to the original

sender. Note that this does not require any model knowledge

stored on the sensor nodes.

The reply message can only be delivered to the mobile node

if it stays within the transmission range of the symbolic area

it sent the request from for the short time period between

request and reply. Note that this should be the common case

as we expect the speed of nodes to be rather small compared

to the speed of message transmission. If, however, the mobile

node moves to another symbolic area it is able to detect this

situation based on the beacon messages it receives from its

new neighbor nodes and can resend the request.

We imagine that a more sophisticated solution could be
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AREA 5AREA 2

AREA 1 AREA 3

Fig. 2. Example of a symbolic area graph and a node connection graph

useful in scenarios where higher node mobility is a critical

factor: The mobile node could explicitly store forwarding

information at one of the sensor nodes before leaving the

symbolic area it sent a request from.

D. Challenges

As long as the symbolic routing path specified in a message

is covered by the sensor network, the basic routing approach

described above will always work. In this case, message loss

is only caused by transmission errors, for example due to

collisions, and can be dealt with at the MAC layer (hop-

by-hop) or at the application level (end-to-end). However,

in realistic scenarios, a certain part of the routing attempts

will fail even though the specified symbolic route is perfectly

legal. This is due to a discrepancy between the topology

graph formed by symbolic coordinates and their neighborhood

relationships and the communication topology graph of the

sensor nodes. Our basic routing approach assumes that a

neighborhood relationship between two symbolic coordinates

implies that nodes in these two areas are able to communicate

with each other. While this is a helpful heuristic in most cases,

it does not have to hold in general, as shown in the example

in Fig. 2. We have identified three different types of problems

caused by the limitations of our heuristic: Communication

holes, coverage holes and area partitionings.

The sensor network contains a communication hole when

sensor nodes deployed in two neighboring symbolic areas

cannot communicate with each other without going through

nodes in other symbolic areas. In Fig. 2 this problem shows

between area 2 and area 3. A message coming from a node in

area 2 must go through area 1 to reach area 3 even though the

symbolic path might specify area 3 directly following area 2.

We speak of a coverage hole when the area of a symbolic

coordinate does not contain any sensor nodes. In Fig. 2 area

7 shows an example of this. Coverage holes cause the same

problems as communication holes, i.e., routing over symbolic

paths including the uncovered coordinate fails. Additionally,

messages addressed to the uncovered coordinate cannot be

delivered at all. However, this second problem cannot be

solved by the routing algorithm – coverage of all relevant areas

in a sensor network must be ensured at deployment time.

More subtle than the communication and coverage hole

problems is the problem of having area partitionings. We call



a symbolic area partitioned if two nodes of the same symbolic

coordinate are not connected through a communication path

only consisting of nodes lying in the same symbolic area. Fig.

2 illustrates this problem: While the sensor network as a whole

is connected, the nodes in the upper half of area 4 can only

communicate with the nodes in the lower half of the same

area by going through area 3.

Area partitions cause two types of problems. Firstly, the

success of routing through a partitioned area can depend on

which partition is used. In the example in Fig. 2 a message

coming from area 3 can only be routed to area 6 if the partition

in the lower half of area 4 is used. Secondly, partitioned areas

also interfere with the delivery of messages: Area broadcasts

can only reach nodes in the partition the broadcast is started in.

An area unicast only completes successfully if the destination

node lies in the partition reached by the symbolic routing.

E. Extensions to the Basic Approach

In the following paragraphs we describe several extensions

to the basic symbolic routing approach that address the chal-

lenges described above. They can be classified along whether

they aim to prevent problems (preventing holes), whether

they are used to react to problems (recovering from holes,

recovering from partitionings) or a mixture of both (collecting

connectivity information).

1) Preventing holes: With the help of some model knowl-

edge or control over the network topology, it is possible to

avoid many of the communication and coverage holes on

symbolic paths used for routing. This helps reducing the

number of routing failures experienced by the clients.

The canonical way of preventing communication holes,

coverage holes and area partitionings is to provide for a

sufficiently dense deployment of sensor nodes over the net-

work area. However, a network topology with these properties

usually cannot be guaranteed over the complete network area

due to both cost and deployment reasons.

Another way of avoiding the appearance of communication

holes on symbolic paths is to store knowledge about holes

in the location model used by the client nodes for calculating

symbolic routes. If such information is available, clients can

remove the affected neighborhood relations from their sym-

bolic location graph. One slightly less demanding alternative is

to store a weight factor based on the (expected) node density

for each symbolic area. The reasoning behind this is that two

neighboring areas with high node density are connected with

a higher probability than two neighboring areas with low node

density. By avoiding areas with low node density, a node can

select a safe path from source to destination.

2) Recovering from holes: We have developed two ap-

proaches to recover from holes that cannot be avoided when

using the mechanisms described above: local symbolic broad-

casts and feedback messages.

When using local symbolic broadcasts, a node that is not

able to forward to the specified next-hop symbolic coordinate

(i.e., it detects a hole) forwards the message to all neighbor-

ing symbolic coordinates and asks them to check whether

they can find a way back onto the original symbolic route

specified in the message. Note that broadcasting the message

to neighboring symbolic coordinates of the node does not

require any flooding since each neighboring coordinate can

be reached using unicast messages following the entries in the

node’s routing tables. The maximum depth of the symbolic

broadcast is configurable. However, the forwarding costs grow

considerably when going beyond a depth of one or two.

The alternative to broadcasting the message locally is to

send a feedback message to the original message sender

in order to inform the client node about the routing failure

and to provide information about where the routing failed.

The client node is then able to calculate a new symbolic

route not using this connection and is also able to buffer this

information for later use. After a sufficient number of such

message send and feedback cycles it should always be possible

to send messages to the desired destination area, provided the

sensor network is not partitioned. Although not part of our

current implementation, we also imagine that mobile nodes

could share this feedback information by exchanging messages

when meeting each other or pushing it back to infrastructure.

Which of the two solutions – broadcasting the message

or sending feedback to the original sender – is preferable

might depend on the amount of symbolic hops the message

has already travelled. A message that has almost reached

the destination coordinate should probably be broadcasted

whereas it might be more efficient to send back a feedback

message when the message has only covered a few symbolic

steps.

3) Recovering from partitionings: While routing over par-

titioned areas is possible in most cases using hole prevention

and hole recovery, it is more difficult to find a solution for

the second type of problem caused by area partitionings – the

delivery of broadcast and unicast messages. While the two par-

titions in our example in area 4 of Fig. 2 are connected through

the neighboring area 3, it is also possible that the shortest

connecting path between two partitions traverses multiple

symbolic areas. Finding a solution for the general case would

thus require searching and storing complex routing structures

that are not necessarily limited to the local neighborhood.

In the following solution we only consider the (common)

case where just one symbolic area must be traversed to connect

two partitions of a symbolic area. The idea is that a node

receiving a beacon message from a neighboring symbolic

coordinate not only stores the information that it can directly

reach this coordinate but also calculates a hash value over

the set of neighboring coordinates this node advertises. Every

once in a while it advertises this hash value to the other nodes

in its own symbolic area. For example, in Fig. 3 the upper

most node in area 4 would send the hash value hash(1, 4, 5)
which corresponds to the symbolic neighbors of area 3. If the

neighboring coordinate is partitioned and both partitions are

connected to nodes of this symbolic coordinate two different

hash values will be advertised. Note that the hash values of the

two partitions should differ since it is extremely unlikely that

two partitioned sets of nodes of a symbolic area are connected
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Fig. 3. Example of advertisement messages for a partitioned symbolic area
(Extract from Fig. 2)

to exactly the same set of neighboring coordinates. In the

figure, two different hash values are distributed in area 3 for

the partitioned area 4 whereas in area 4 only one hash value

exists for representing the unpartitioned area 3.

When the nodes in a symbolic area continuously receive

more than one hash value advertised for a neighboring coordi-

nate they detect a partitioning and can treat the partitions like

separate neighbor coordinates. Treating partitions separately

can help solving both problems caused by area partitionings

by a) forwarding messages addressed to the partitioned area

to all known partitions or even forwarding all messages going

through the partitioned area to all known partitions and by b)

forwarding broadcast or unicast deliveries overheard from one

partition to all other known partitions of the area.

4) Collecting connectivity information: Our final solution

to deal with holes, the collection of connectivity information

over time, takes advantage of the mobility of the client devices

by allowing them to collect information about available and

missing connections in the network.

The mobile client nodes can take advantage of the beacon

messages the sensor nodes periodically exchange. Their in-

formation can be used to validate or invalidate connections

between symbolic coordinates in the map stored by the client

node. Together with the information from feedback messages

received after failed routing attempts, this data can provide an

up-to-date view of the sensor network and is able to support

the client in communicating successfully with the network.

In principle, by visiting large parts of the area of the sensor

network, a mobile client node could also learn the complete

map information it needs for sending queries to the sensor

network without ever loading a symbolic topology graph from

the external location model.

IV. PROTOTYPE IMPLEMENTATION

We have implemented a prototype of our symbolic routing

approach for Tmote Sky sensor nodes running the widely-

used TinyOS 2.0 operating system. The complete system

including all communication components and a simple pro-

totype application logic consumes about 14800 bytes of the

48 kilobytes program memory and less than 1 kilobyte of

the 10 kilobytes of main memory. As mobile client nodes

we use Linux PDAs from Sharp (Sharp Zaurus SL-3200)

that allow us to run both native and Java-based applications

interacting with the sensor network. Our prototype client nodes

communicate with the sensor network using a Tmote Sky

sensor node connected to the PDA over USB as a bridge node.

For assigning symbolic coordinates to the sensor nodes we use

the application described in [20].

V. EVALUATION

A. Simulation Setup

To learn more about the properties of our algorithm and

to evaluate its behavior in a larger scenario we implemented

it as an extension to the ns-2 network simulator. The ns-2

simulator provides us with more flexibility concerning the

heterogeneity of the network than TOSSIM, the TinyOS sensor

network simulator. We used TOSSIM to test our TinyOS

implementation and to verify the results obtained with ns-2.

Neither a purely random distribution of nodes in the sim-

ulation area nor a uniform distribtuion of nodes are a good

representation of reality and can lead to extreme results in

individual scenarios. For our simulations, we opted for a

mixture of both models using uniform distribution but adding

an additional random factor to move the nodes between 0 and

20 meters away from their originally assigned position.

For the following simulations, we use an area of 36x36

meters which we divide into between 15 and 100 rectangular

symbolic areas with a random layout. For our sensor nodes we

decided for a maximum communication distance of 7 meters,

a value obtained by our experiences with sensor nodes in

office scenarios, using the Two Ray Ground radio model. In

our experiments we also vary the number of nodes. Results

are shown from a low density with 50 static sensor nodes

(corresponding to 0.039 nodes per square meter) up to very

high densities with 400 sensor nodes (corresponding to 0.309

nodes per square meter). Each situation of all experiments was

repeated 100 times with randomly generated scenarios. We use

40 mobile client nodes that send query messages to randomly

selected destination areas every 2 seconds. The client nodes

are placed randomly and are moved every 5 seconds in order

to cover a large set of possible communication pairs.

B. Evaluation Results

This section analyzes the performance of symbolic routing

in sensor networks both for our basic approach and the various

extensions that deal with holes and partitionings.

One important evaluation metric is the success rate, defined

as the percentage of messages sent by one of the client nodes

and successfully delivered at the destination area. Besides the

success rate of communication, another important evaluation

metric that allows to assess the costs for using symbolic

routing is the so-called stretch, the average ratio between the

real path length used and the shortest path length possible. A

stretch value of 1.0 is, therefore, optimal.

1) Success rate of the basic approach: Fig. 4 a) and b) show

the percentage of expected connectivities between symbolic

areas that are missing in the node communication graph and

thereby illustrate the importance of being able to deal with

communication and coverage holes. Even in our scenarios



with 400 nodes, as an example of a very dense topology, the

percentage of missing connectivities caused by communication

and coverage holes grows to over 10 percent when increasing

the number of symbolic areas up to 100. Fig. 4 c) illustrates

that empty areas are responsible for a large portion of these

missing connectivities.

Fig. 5 shows the resulting success rate for both sparse and

dense node populations when we vary the number of symbolic

areas and neither a message recovery nor any of the described

prevention mechanisms is used. Only the densely populated

scenarios are able to maintain acceptable success rates when

increasing the number of symbolic areas. In the other scenarios

the success rate quickly declines with the sparse topologies

already starting at quite low levels.

2) Preventing holes: Adding knowledge about communi-

cation and coverage holes to the mobile nodes – our sim-

plest method for preventing the occurrence of holes on the

communication path – directly impacts the success rate of

communication: the more knowledge a node possesses about

holes the higher is the success rate it is able to achieve when

sending messages to random destination nodes. An analysis

of the more advanced problems related to this (e.g., costs for

storing and processing this information on the mobile nodes)

is out of the scope of this paper.

Another option for preventing holes is to use node density

information to estimate the success probabilities of route

alternatives. We calculate a density measure da for a symbolic

area a by dividing the node density of the area a and the

node density of the complete network area using the following

equation: da = numNodesa·areatotal

numNodestotal·areaa

, where numNodesa is

the number of sensor nodes located in the symbolic area

a and numNodestotal is the total number of nodes in the

complete network area. areaa is the size of the geographic

area represented by a and areatotal is the total size of the

network area. This gives us a density value larger than 1 if

the node density lies above average and smaller than 1 if it

lies below average. We then use this density to calculate a path

metric mp for a path p = a1, a2, . . . , an (where a1, a2, . . . , an

are the symbolic areas on path p) using the following function:

mp =
1

(da1
)g

+
1

(da2
)g

+ . . . +
1

(dan
)g

(1)

The metric considers both the path length (by adding up the

cost values of the individual areas) and the density of the areas.

The influence of these two factors can be controlled using the

density weighting factor g with g ≥ 0. In our experiments

we use g = 1.0, g = 2.0 and g = 100.0. Using g = 0.0
corresponds to the routing without using density information.

Fig. 6 a) and b) compare the resulting success rate for

different density weighting factors for both 150 and 250 nodes.

Using density information has the desired effect of increasing

the success rate of communication. Particularly interesting

is that it prevents the decrease of the success rate when

increasing the number of areas. This can be explained with

the higher quality of the density information available when

using symbolic areas of small sizes.

As expected, increasing the density weighting factor can

only improve the success rate within certain limits so that the

results for a density weighting factor of 100.0 are only slightly

better than the results for the factor of 2.0.

3) Recovering from holes: With the help of feedback mes-

sages it is possible to almost reach a 100% success rate over

time (when ignoring message loss due to collisions and the

like) assuming that the network is not partitioned. How long

it takes for a mobile node to arrive at this reliability level

mainly depends on the rate of messages it sends to different

receivers. Due to space limitations we do not analyze the

different combinations here but concentrate on recovery using

local symbolic broadcasts.

We analyzed the number of broadcast steps required to

recover from a communication or coverage hole by randomly

selecting 1000 communication paths for each scenario and

searching for the minimum number of broadcast steps for each

hole appearing on these paths. Fig. 7 shows the percentage

of holes recoverable with a maximum of 3 broadcast steps

for scenarios with 50, 100 and 150 nodes. For scenarios with

more than 150 nodes, the proportion of holes recoverable by

one broadcast step quickly approaches 100%.

The results might look discouraging for sparse topologies

like for the scenarios with only 50 nodes. However, it is

only possible to cover a very small number of areas with 50

nodes and the results must be interpreted accordingly. With

25 symbolic areas – resulting in 2 nodes per area on average

– around 70% (90%) of holes are recoverable in one (two)

broadcast step(s). This is a promising result considering that

some symbolic areas still are without coverage due to our

random deployment of nodes.

Fig. 6 c) then shows the average success rate when using

a maximum of 1 broadcast step for recovering from com-

munication or coverage holes. The positive effect compared

to the results without recovery is considerable for all three

node densities (compare Fig. 5). However, as expected, in the

sparse scenarios with 50 nodes it still declines sharply with

an increasing number of areas. Not reaching a 100% success

rate with 150 nodes despite the results shown in Fig. 7 can be

attributed in large parts to moving client nodes that try to send

queries to neighbors they have lost the connection to before

receiving beacon messages from their new neighbor nodes.

4) Recovering from area partitionings: To assess the im-

pact of the area partitioning problem we first investigated how

often this occurs in different scenarios. Fig. 8 (a) shows the

average number of area partitionings that can be found depend-

ing on the overall number of areas the simulation area is split

into. The ability to cope with partitioned areas is obviously less

important for dense topologies and for scenarios with symbolic

areas that are small compared to the transmission range of the

sensor nodes. Particularly interesting is the observation that

the curves are not monotonically decreasing with an increasing

number of areas but possess a maximum (e.g., clearly visible

for the case of 150 nodes at an area number of around 40). This

is due to the fact that for very small numbers of areas only few

partition candidates exist whereas for a large number of areas
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Fig. 4. Percentage of missing connectivities
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Fig. 5. Average success rate without recovery mechanisms
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Fig. 6. Average success rate
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partitioned areas tend to get split up into different symbolic

areas.

The solution for the area partitioning problem presented in

Section III works for cases where the partitions are connected

through only one intermediate symbolic area. Fig. 8 (b)

shows for which percentage of the partitionings this is the

case. Sparse topologies not only tend to have many area

partitionings but are also only able to recover a very limited

proportion of them using our solution. However, already in

the scenarios with 100 nodes it is possible to recover a very

large percentage of partitionings. Even more dense topologies

can recover partitionings in the vast majority of cases. Here

the question is whether the overhead of a recovery solution

is justified considering the small number of partitionings

expected to occur in practice.

5) Connectivity information collection: We also investi-

gated to what extent and how fast mobile client nodes can col-

lect connectivity information by listening to beacon messages

while moving in the network area. Our analyses showed that a

considerable part of the connectivity information is learned in

a relatively short time. However, the learning curve also levels

off quickly so that a complete knowledge of the connectivity

information can only be expected – if at all – after a very

long time. Unfortunately, providing general results is difficult

as such an analysis is influenced by many external factors

specific to the particular situation (e.g., node mobility or floor

plan characteristics). Due to space limitations, we refrain from

showing further results on this issue here.

6) Stretch: Fig. 9 shows the average stretch of our symbolic

routing depending on the number of areas for scenarios with

150, 250 and 350 nodes (a) without and (b) with path look-

ahead. The stretch for the cases with path look-ahead is caused

by the purely local path length optimization of the algorithm,

i.e., each node knows the shortest paths to its neighboring

coordinates but not the shortest paths to all symbolic areas in

the network. The larger stretch for cases without path look-

ahead is due to possible short cuts the algorithm does not take.

We have also measured the effect of using density informa-

tion on the average stretch. The results are shown in Fig. 9 c)

for scenarios with 250 nodes. Clearly, selecting “safer” paths

using density information increases the average path length.

However, even for the very high density weighting factor of

100.0, the path length overhead hardly grows over 50%.

To set the shown results into perspective, Table I compares

the average stretch achieved by the geographic routing al-

gorithm GPSR with the average stretch of symbolic routing

when communicating in the same scenarios. For GPSR the

stretch does not depend on the number of areas as it does

not use symbolic areas but geographic coordinates for its

routing decisions. While the path length overhead for our

symbolic routing is larger than for GPSR, we still consider an

overhead of around 30% (or below 50% when using density

information) compared to the shortest path as reasonably

small considering the limited amount of position and topology

information we are using.

TABLE I
AVERAGE STRETCH OF GPSR AND SYMBOLIC ROUTING

Number of nodes
Average stretch

GPSR Symbolic routing without look-ahead Symbolic routing with look-ahead

150 1.10 1.31 - 1.58 1.23 - 1.28

250 1.14 1.31 - 1.65 1.19 - 1.28

350 1.16 1.32 - 1.66 1.19 - 1.28

C. Discussion

Our simulations have shown that symbolic routing in sensor

networks is possible with relatively low overhead compared to

the optimal path and a promising success rate. Dealing with

inevitable holes and partitionings is possible with the methods

presented in this paper.

The simulation results support our decision to support

both local symbolic broadcasts and the sending of feedback

messages in our implementation. While local broadcasts are

very effective in most cases, they can become expensive for

very sparse topologies (see Fig. 7 and Fig. 6 c)) without

being able to circumvent all holes. Feedback messages give the

message sender all information and control about the message

transfer process. This is advantageous both in sparse scenarios

and when the client node expects to send multiple messages

to the same destination area.

Using density information has also been shown to be

worthwhile for scenarios where such data is available. Using

density information is particularly attractive as it does not

require any implementation on the sensor nodes and therefore

does not incur any runtime overhead for processing or storing

data on these nodes.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a novel routing approach for

heterogeneous networks consisting of sensor nodes and mobile

pervasive computing devices. Routing is based on symbolic

coordinates and the routing task is split among the mobile

devices that specify a symbolic source route and the static

sensor nodes that realize the node-to-node routing based on

this source route.

We have shown that our approach works in a variety of

scenarios with different node densities. It generates a small

overhead below 30% on the path length and is able to achieve

high success rates with the help of different failure prevention

and recovery mechanisms. One important advantage of the

protocol is its flexibility concerning the amount of topology

information known to the clients which allows using it in

various types of application scenarios.

For future work we plan to continue our work on developing

solutions for a (semi-)automatic assignment of symbolic

coordinates to the sensor nodes in a network. Another impor-

tant question is how to use symbolic coordinate information

to support topology control in sensor networks, e.g., for

managing the transmission power level of the sensor nodes.

In addition to potential energy savings, a topology control

mechanism is also very important for our approach to limit

the amount of neighborhood state that must be managed on

the individual sensor nodes. We also plan on implementing
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more advanced solutions to the area partitioning problem

that help delivering messages despite partitionings in a large

fraction of cases. We are going to to integrate symbolic

routing with routing metrics to deal with different link qual-

ities. After successfully applying symbolic location models

to sensor networks we also plan to investigate how hybrid

location models that combine symbolic coordinate data with

geographic information can be used.
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